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a b s t r a c t

In this paper, we consider a system of partial differential equations describing
the pseudo-stationary state of a dense oxide layer. We investigate the question of
existence of a solution to the system and we design a numerical scheme for its
approximation. Numerical experiments with real-life data shows the efficiency of
the method. Then, the analysis is fulfilled on a simplified model.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. General framework of the study

The concept for long term storage of high-level radioactive waste in France under study is based on an
underground repository. The waste shall be confined in a glass matrix and then placed into cylindrical steel
canisters. These containers shall be placed into micro-tunnels in the highly impermeable Callovo-Oxfordian
claystone layer at a depth of several hundred metres.

The long-term safety assessment of the geological repository has to take into account the degradation
of the carbon steel used for the waste overpacks and the cell disposal liners, which are in contact with the
claystone formation. This degradation is mainly caused by generalized corrosion processes which take place
under anaerobic conditions. As a tool to investigate the corrosion processes at the surface of the carbon
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steel canisters, the Diffusion Poisson Coupled Model (DPCM) for corrosion has been developed by Bataillon
et al. [1].

The DPCM model describes the evolution of a dense oxide layer in the region of contact between the
claystones and the metal. This is based on a coupled system of electromigration–diffusion equations for the
transport of the charge carriers in the oxide layer, and a Poisson equation for the electric potential. The inter-
actions between the oxide layer and the clay soil or the metal are described in terms of Robin boundary condi-
tions. The system includes moving boundary equations based on the Pilling–Bedworth ratio [2]. As the oxide
layer is very thin compared to the waste overpack size, the model proposed in [1] is a one-dimensional model.

The questions of existence of a solution to the full DPCM model and of long-time behaviour are still open
questions, due to the complexity of the model. However, some results have been obtained for a simplified
model where only two species of charge carriers (electrons and ferric cations) are taken into account and
where the domain is fixed. In [3], Chainais-Hillairet and Lacroix-Violet prove the existence of an evolutive
solution for this simplified model, while [4] deals with the existence of a stationary solution.

In [5], Bataillon et al. proposed a numerical method for the approximation of the DPCM model.
This numerical scheme has been implemented in the simulation code CALIPSO, developed at ANDRA
(the French nuclear waste management agency). The convergence of the scheme has been established by
Chainais-Hillairet, Colin and Lacroix-Violet in [6] for the two-species model on a fixed domain. The long
time simulations presented in [5] highlighted the existence of a pseudo stationary state: a state where all
the density profiles, as the profile of the electric potential and the size of the oxide layer, are constant, while
both interfaces are moving at the same velocity. Moreover, it appears that the pseudo stationary state can
be reached more or less quickly depending on the value of the pH.

In many cases of application, the significant solution to the DPCM model may be the pseudo stationary
one and in order to reduce the numerical costs, it is interesting to propose a scheme for its direct computation.
Therefore, we propose in this paper an efficient numerical method for the approximation of the pseudo
stationary state of the DPCM model. Moreover, we investigate the question of existence of a pseudo steady
state on a simplified model. We also justify our choice of scheme with the study of its application to the
simplified model: we will see that the scheme that we propose is exact in this case. The existence of a
pseudo steady state is not so obvious and seems strongly related to the boundary conditions. Indeed, in
[7–9], Aiki and Muntean consider a system of reaction–diffusion equations on a moving domain describing
concrete carbonation. In this case, only one boundary is free and there is no steady-state: they prove that
the thickness of the domain increases following a

√
t-law.

1.2. Presentation of the DPCM model

The DPCM model was introduced in [1]. It consists of three drift–diffusion equations for the densities
of charge carriers – ferric cations (P ), electrons (N) and oxygen vacancies (C) –, coupled with one elliptic
equation for the electric potential (Ψ) and two evolutive equations for the interfaces of the domain (X0, X1).

We consider here the dimensionless DPCM model. We will first present the equations and then give a
sense to all the parameters involved in the equations. Let us mention that the scaling in time is performed
with respect to the characteristic time of the cations. The equations for the carrier densities P,N,C, as the
boundary conditions, have the same form. For U = P,N or C, they are written:

εU∂tU + ∂xJU = 0, JU = −∂xU − zUU∂xΨ in (X0(t), X1(t)), ∀t ≥ 0, (1a)
−JU + UX ′0(t) = r0U (U(X0(t)),Ψ(X0(t))) on x = X0(t), ∀t ≥ 0, (1b)
JU − UX ′1(t) = r1U (U(X1(t)),Ψ(X1(t)), V ) on x = X1(t), ∀t ≥ 0, (1c)
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where zU is the charge number of the carrier and εU is the ratio of the mobility coefficient with respect
to the mobility coefficient of the cations (due to the choice of the time scaling). For U = P,N,C, we have
respectively zU = 3,−1, 2, and εU = 1, D1

D2
, D1
D3

.
The functions r0U and r1U defining the boundary conditions in (1b), (1c) are linear and monotonically

increasing with respect to their first argument. More precisely, we assume that they have the following form:

r0U (s, x) = β0
U (x)s− γ0

U (x), (2a)
r1U (s, x, V ) = β1

U (V − x)s− γ1
U (V − x), (2b)

where β0
U , β

1
U , γ

0
U , γ

1
U are smooth positive functions defined as:

γ0
P (x) = m0

PP
me−3b0P x γ1

P (y) = k1
PP
me3a

1
P y

β0
P (x) = m0

P e
−3b0P x + k0

P e
3a0
P x β1

P (y) = m1
P e
−3b1P y + k1

P e
3a1
P y

γ0
N (x) = m0

Ne
b0Nx γ1

N (y) = k1
NNmetal log(1 + e−y)

β0
N (x) = k0

Ne
−a0
Nx β1

N (y) = m1
N

γ0
C(x) = m0

Ce
−2b0Cx γ1

C(y) = k1
Ce

3a1
Cy

β0
C(x) = m0

Ce
−2b0Cx + k0

Ce
2a0
Cx β1

C(y) = m1
Ce
−3b1Cy + k1

Ce
3a1
Cy

The equation on the electric potential Ψ is a Poisson equation, written as:

−λ2∂2
xxΨ = 3P −N + 2C + ρhl, x ∈ (X0(t), X1(t)) , (3a)

Ψ − α0∂xΨ = ∆Ψpzc0 , x = X0(t), (3b)
Ψ + α1∂xΨ = V −∆Ψpzc1 , x = X1(t). (3c)

The moving boundary equations are written as:

dX0

dt
= v0d(t) + dX1

dt


1− Ωox
mΩFe


, (4a)

dX1

dt
= − D3

4D1

ΩFe
Ωox

(JC(X1) + CX ′1(t)) , (4b)

where v0d(t) is the dissolution speed of the layer, given by v0d(t) = k0
de
−5a0

dΨ(X0(t)).
The system is supplemented with initial conditions:

N(x, 0) = N0(x), P (x, 0) = P 0(x), C(x, 0) = C0(x), x ∈ (0, 1), (5a)
X0(0) = 0, X1(0) = 1. (5b)

Let us now shortly explain the parameters of the model. We first introduce the physical parameters:

• D1, D2 and D3 are respectively the mobility or diffusion coefficients of cations, electrons and oxygen
vacancies. D1 and D3 have the same order of magnitude, but D1 ≪ D2 due to the difference of size
between cations and electrons and the resulting difference of mobilities.
• (a0

U , b
0
U ) for U = P,N,C, r, (a1

U , b
1
U ) for U = P,C and a0

d are positive transfer coefficients. They satisfy:

a0
U + b0U = 1 = a1

U + b1U for U = P,N,C. (6)

• Ωox is the molar volume of the oxide, ΩFe is the molar volume of the metal and m is the number of moles
of iron per mole of oxide (m = 3 for magnetite). As the Pilling–Bedworth ratio is the ratio of elementary
cell volume of metal oxide to the elementary cell volume of the equivalent metal where the oxide has been
created, it is equal to Ωox/(mΩFe) and it acts in (4a).
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The following parameters come from physical parameters but are concerned by the scaling. There are scaled
parameters:

• (miP , kiP )i=0,1, (miN , kiN )i=0,1, (miC , kiC)i=0,1, (n0
N , p

0
N ), k0

d are interface kinetic functions. We assume that
these functions are constant and strictly positive.
• Pm is related to the maximum occupancy for octahedral cations in the host lattice.
• Nmetal is related to the electron density of state in the metal (Friedel model).
• ρhl is the related to net charge density of the ionic species in the host lattice. We assume that ρhl is

homogeneous.
• ∆Ψpzc0 ,∆Ψpzc1 are related respectively to the outer and the inner voltages of zero charge.
• λ2, α0, α1 are positive dimensionless parameters coming from the scaling.

In the system (1)–(5), V is an applied potential and the system corresponds to a “potentiostatic case”.
However, the system (1)–(5) can be supplemented with an additional equation ensuring the electron charge
balance at the inner interface :

− 3

JP + PX ′1(t) + D3

4D1
(JC + CX ′1(t))


+ D2

D1
(JN +NX ′1(t)) = J̃ , x = X1(t). (7)

This corresponds to a “galvanostatic case”. If J̃ = 0, we speak of free corrosion and the resulting V is called
“free corrosion potential”.

Remark 1.1. The DPCM model involves many parameters. Some of these parameters are known from the
literature or given by physical experiments. Some other ones, as k0

d for instance, can be set up thanks to
numerical experiments. The scaling process leading to a dimensionless system of equations is partly described
in [10, Section 5].

1.3. Main results

A numerical scheme was proposed in [5] in order to compute an approximate solution to the system
(1)–(5) (or (1)–(7)). This scheme is a fully implicit Euler scheme in time and a finite volume scheme in space
with a Scharfetter–Gummel approximation of the convection–diffusion fluxes. The numerical experiments,
see for instance Figure 6.2 in [5] or Figure 36 in [1], show the apparition in large time of a pseudo steady state.
The paper is devoted to the theoretical and numerical analysis of this steady state. It is structured as follows.

In Section 2, we define the steady state and we propose a finite volume scheme, closely related to the
scheme from [5], in order to compute an approximate solution. We discuss the numerical implementation (as
the scheme leads to a nonlinear system of equations). We also present and analyse some numerical results
obtained with real-life data.

In Section 3, we investigate the question of existence of a steady state. We perform a complete analysis
on a simplified model. The existence result is stated in Theorem 3.1. Then, Section 4 is devoted to the
numerical analysis of the scheme proposed in Section 2 and applied to the simplified model. We prove that
the scheme is exact in this case.

2. Study of the pseudo stationary state

2.1. Characterization of the pseudo stationary state

The numerical experiments presented in [5,1] show the apparition, in large time, of a pseudo stationary
state. Indeed, it appears that the thickness of the oxide layer become constant, as well as the profiles of the



42 C. Chainais-Hillairet, T.O. Gallouët / Nonlinear Analysis: Real World Applications 31 (2016) 38–56

densities and of the electric potential, while both interfaces are moving at the same velocity. In order to
define this pseudo stationary state, we first reformulate the DPCM model (1)–(4) on a fixed domain, as in [5].

Therefore, we use the following change of variables:
0≤t≤T

[X0(t), X1(t)]× {t} → [0, 1]× [0, T ]

(x, t) →

ξ = x−X0(t)
X1(t)−X0(t) , t


.

We set

L(t) = X1(t)−X0(t). (8)

Equations (1) on U = P,N,C rewrite as:

εUL(t)∂t(L(t)U) + ∂ξĴU = 0, (9a)
ĴU = −∂ξU − [zU∂ξΨ + εUL(t) (X ′0(t) + ξL′(t))]U, ξ ∈ (0, 1), (9b)
−ĴU = L(t)r0U (U,Ψ), ξ = 0, (9c)
ĴU = L(t)r1U (U,Ψ , V ), ξ = 1. (9d)

Equations (3) on Ψ rewrite as:

− λ
2

L(t)2 ∂
2
ξξΨ = 3P −N + 2C + ρhl, ξ ∈ (0, 1), (10a)

Ψ − α0

L(t)∂ξΨ = ∆Ψpzc0 , ξ = 0, (10b)

Ψ + α1

L(t)∂ξΨ = V −∆Ψpzc1 , ξ = 1. (10c)

Let us denote Π = Ωox
mΩFe

and K = D3
4D1

ΩFe
Ωox

. Then, the moving boundary equations rewrite as:

dX0

dt
= v0d(t) + dX1

dt
(1−Π ), (11a)

dX1

dt
= −Kr1C(C(1, t),Ψ(1, t), V ), (11b)

with v0d(t) = k0
de
−5a0

dΨ(0,t). (11c)

Moreover, in the galvanostatic case, the additional equation becomes

− 3

ĴP + εC4 ĴC


+ εN ĴN = J̃ , ξ = 1. (12)

We are now able to write the set of equations which will define the steady state model for DPCM. The
unknowns of this model are the densities of charge carriers P,N,C, the electric potential Ψ , the velocity of
the interfaces δ and the thickness of the oxide layer ℓ. The set of equations is obtained from (9)–(11) by letting
down the dependency with respect to time and by setting L(t) = ℓ and X ′0(t) = X ′1(t) = δ. It writes as:

• Equations and boundary conditions for U = P,N,C:

∂ξĴU = 0, ĴU = −∂ξU −

zU∂ξΨ + εU ℓδ


U, ξ ∈ (0, 1), (13a)

−ĴU = ℓr0U (U,Ψ), ξ = 0, (13b)
ĴU = ℓr1U (U,Ψ , V ), ξ = 1. (13c)
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• Equation and boundary conditions for Ψ :

−λ
2

ℓ2
∂2
ξξΨ = 3P −N + 2C + ρhl, ξ ∈ (0, 1), (14a)

Ψ − α0

ℓ
∂ξΨ = ∆Ψpzc0 , ξ = 0, (14b)

Ψ + α1

ℓ
∂ξΨ = V −∆Ψpzc1 , ξ = 1. (14c)

• Equation for the velocity δ and the thickness ℓ:

δ = v
0
d

Π
, (15a)

ℓ = −K ĴC(1)
δ
, (15b)

with v0d = k0
de
−5a0

dΨ(0). (15c)

The set of equations (13)–(15) describing the steady state will be denoted (M) in the sequel. It describes
the potentiostatic case. In the galvanostatic case, V is defined by an additional equation:

− 3

ĴP + εC4 ĴC


+ εN ĴN = 0. (16)

The system (13)–(16) will be denoted (Mg).

2.2. Numerical scheme

In order to compute an approximate solution to (M) or (Mg), we propose a finite volume scheme close
to the one introduced in [5]. Therefore, we consider a mesh for the domain [0, 1], which is not necessarily
uniform, i.e a family of given points (xi)0≤i≤I+1 satisfying

x0 = 0 < x1 < x2 < · · · < xI < xI+1 = 1.

Then, for 1 ≤ i ≤ I − 1, we define xi+ 1
2

= xi+xi+1
2 and we set x 1

2
= x0 = 0, xI+ 1

2
= xI+1 = 1. The cells of

the mesh are the intervals (xi− 1
2
, xi+ 1

2
) for 1 ≤ i ≤ I. Let us set

hi = xi+ 1
2
− xi− 1

2
, for 1 ≤ i ≤ I,

hi+ 1
2

= xi+1 − xi, for 0 ≤ i ≤ I

and h = max{hi, 1 ≤ i ≤ I} is the size of the mesh.
The unknowns of the scheme for (M) are the densities (Ni, Pi, Ci)0≤i≤I+1 and the electric potential

(Ψi)0≤i≤I+1, the velocity of the interfaces δh and the thickness of the domain ℓh.
The scheme writes as:

• Scheme for Ψ :

− λ
2

ℓh
2 (dΨi+ 1

2
− dΨi− 1

2
) = hi(3Pi −Ni + 2Ci + ρhl), 1 ≤ i ≤ I, (17a)

with dΨi+ 1
2

= Ψi+1 −Ψi
hi+ 1

2

, 0 ≤ i ≤ I, (17b)

Ψ0 −
α0

ℓh
dΨ 1

2
= ∆Ψpzc0 , (17c)

ΨI+1 + α1

ℓh
dΨI+ 1

2
= V −∆Ψpzc1 . (17d)
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• Scheme for U = P,N,C:

GU,i+ 1
2
− GU,i− 1

2
= 0, 0 ≤ i ≤ I, (18a)

GU,i+ 1
2

= 1
hi+ 1

2


B

hi+ 1

2


zUdΨ i+ 1

2
+ εU ℓhδh


Ui (18b)

− B

−hi+ 1

2


zUdΨ i+ 1

2
+ εU ℓhδh


Ui+1


, 1 ≤ i ≤ I, (18c)

−GU, 12 = ℓhr0U (U0,Ψ0), (18d)

GU,I+ 1
2

= ℓhr1U (UI+1,ΨI+1), (18e)

where B is given by the Bernoulli function

B(x) = x

ex − 1 ∀x ̸= 0, B(0) = 1. (19)

• Scheme for δ and ℓ:

δh = k
0
d

Π
e−5a0

dΨ0 , (20a)

ℓh = −K
GC,I+ 1

2

δh
. (20b)

The scheme (17)–(20) will be denoted by (S). In the galvanostatic case, we have to discretized the additional
equation (16). We write:

− 3

GP,I+ 1

2
+ εC4 GC,I+

1
2


+ εNGN,I+ 1

2
= 0. (21)

It adds one unknown and one nonlinear equation to the previous system of nonlinear equations (S). In the
sequel, we will denote this scheme (Sg).

Let us remark that the choice of the Bernoulli function for B corresponds to a Scharfetter–Gummel
approximation of the convection–diffusion fluxes. These numerical fluxes have been introduced by Il’in in [11]
and Scharfetter and Gummel in [12] for the numerical approximation of linear the drift–diffusion system
arising in semiconductor modelling. It has been established by Lazarov, Mishev and Vassilevski in [13] that
they are second-order accurate in space. Dissipativity of the Scharfetter–Gummel scheme with a backward
Euler time discretization for the classical drift–diffusion system was proved in [14] and Chatard in [15]. One
crucial property of the Scharfetter–Gummel fluxes is that they generally preserve steady-states. We will see
in Section 4 that this property remains true in our case.

2.3. Implementation and numerical results

2.3.1. Implementation
The scheme (S) can be seen as the limit ∆t→ +∞ of the scheme proposed in [5] (in this paper, the system

is the evolutive DPCM model and ∆t is the time step of the scheme). Therefore, the implementation is similar
to the one proposed in [5]. The main difference is that the equations for the moving boundary interfaces,
written on X0 and X1 in the evolutive case, become equations on the velocity δh and the thickness ℓh.
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Fig. 2.1. Potentiostatic case with V = 0.5, at pH = 9.3. Density profiles at the steady-state, (a) reached by the code CALIPSO for
the evolutive system, (b) directly computed by CALIPSO-(S).

The scheme (S) leads to a nonlinear system of equations F (Z) = 0, whose unknown vector is

Z = ((Ψi, Pi, Ni, Ci)0≤i≤I+1, δ
h, ℓh) ∈ R4(I+2)+2

in the potentiostatic case or Z = ((Ψi, Pi, Ni, Ci)0≤i≤I+1, δ
h, ℓh, V ) ∈ R4(I+2)+3 in the galvanostatic case. A

Newton’s method is used to solve the nonlinear system of equations, with a Schur complement technique for
the solution of linear systems. We refer to [5] for more details. The implementation of the scheme (S) has
been done in the code CALIPSO and we will denote from now on CALIPSO-(S) this part of the code.

One difficult task is the choice of the initialization for the Newton’s method. We can start with a set of
values for ((Pi), (Ni), (Ci))0≤i≤I given in the input data file and compute (Ψi)0≤i≤I+1 as a solution to (17).
In this case, we choose some constant values for the densities and the convergence of the Newton’s method
is not always ensured. In practice, it works only for very few values of the pH. With the set of parameters
given in the Appendix, it works for instance for pH = 9.3.

Then, an other strategy is to apply a continuation process : we start with a pH value that is supporting the
first method and we use the computed solution as initial data for a new value of pH, close to the preceding
one. Thus, using small increments for the value of the pH, we are able to compute the pseudo stationary
state for any value of the pH, in the potentiostatic as in the galvanostatic case.

2.3.2. Numerical experiments
Qualitative results.

We first want to compare the different profiles computed with the code CALIPSO for the evolutive system
at a large time and the pseudo steady state directly computed with the code CALIPSO-(S). In practice, we
consider that the steady state is reached by the evolutive scheme when the relative variation of the thickness
of the oxide layer is small with respect to a given parameter named ϵtol. This parameter must be sufficiently
small in order to obtain accurate results. In practice, we choose ϵtol = 10−6.

The set of parameters defining the test case is given in the Appendix. We choose a Chebychev mesh (so
that the mesh is refined at the boundaries, see [5]) with 2000 cells. In the evolutive case, the time step is
∆t = 1000 s (before scaling).

Figs. 2.1 and 2.2 show the profiles of the densities and of the electric potential in the potentiostatic case
with V = 0.5 and pH = 9.3. We observe that the profiles computed with the evolutive scheme and with
(S) are similar. The conclusion is the same in the galvanostatic case with pH = 9.3, see Figs. 2.3 and 2.4.
Efficiency of the direct computation with (S) or (Sg)
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Fig. 2.2. Potentiostatic case with V = 0.5, at pH = 9.3. Profile of the electric potential at the steady-state, (a) reached by the code
CALIPSO for the evolutive system, (b) directly computed by CALIPSO-(S).

Fig. 2.3. Galvanostatic case at pH = 9.3. Density profiles at the steady-state, (a) reached by the code CALIPSO for the evolutive
system, (b) directly computed by CALIPSO-(S).

Fig. 2.4. Galvanostatic case at pH = 9.3. Profile of the electric potential at the steady-state, (a) reached by the code CALIPSO for
the evolutive system, (b) directly computed by CALIPSO-(S).
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Table 2.1
Number of Newton iterations.

Potentiostatic case Galvanostatic case
pH = 9.3 pH = 10.2 pH = 9.3 pH = 10.2

CALIPSO-(S) 12 57 23 68
CALIPSO 2359 12,037 97 3654

Fig. 2.5. Dependency of the thickness of the oxide layer with respect to the pH value. Reached by CALIPSO-(S) and CALIPSO for
increasing final time, (a) potentiostatic case, (b) galvanostatic case.

We now compare the codes CALIPSO and CALIPSO-(S) in term of the number of iterations of the
Newton’s method. Indeed, as the scheme for the evolutive DPCM model implemented in the code CALIPSO
is a fully implicit scheme, the discrete solution at each time step is computed with a Newton’s method. In
this case, the values for the initialization of the method are given by the solution at the preceding time step.

In Table 2.1, we present the number of iterations of the Newton’s method necessary for the computation
of the steady state with CALIPSO and CALIPSO-(S) for two values of pH. At pH = 9.3, we can initialize the
Newton’s method in CALIPSO-(S) with a constant set of discrete densities. But, the solution at pH = 10.2
is obtained thanks to the continuation process described above: starting from pH = 9.3 and increasing the
value of pH up to 10.2 by increments of pH equal to 10−2. The stopping criterion in both codes are the same
and equal to ϵNewt = 10−8. Table 2.1 shows the efficiency of the direct computation of the steady state with
(S) or (Sg).

Fig. 2.5 shows the dependency of the thickness of the oxide layer with respect to the pH value. We remark
that the pseudo steady state is reached earlier for low values of the pH (close to 9) than for high values.
Therefore, the computation of the steady state with CALIPSO-(S) is the more useful than the pH is high.
Sensitivity of the models (M) and (Mg) to the parameters.

The thickness of the oxide layer at the steady state strongly depends on the pH and, in the potentiostatic
case, on the applied potential V . We can already see on Fig. 2.5 that the steady state thickness follows a
logarithmic law with respect to pH with a slope equal to 1. It is related to the fact that k0

d is proportional
to 10−pH. The depassivation pH is defined as the supremum of the pH values for which the thickness of the
corrosion layer is smaller the 1nm.

Fig. 2.6 shows that the depassivation pH highly depends on the value of k0
d and therefore the importance

of giving a very good approximation of this data. The slope of the logarithmic law does not change. The
value of k0

d,ref is given in the Appendix. The dependence on the parameter V , in the potentiostatic case, is
showed in Fig. 2.7.
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Fig. 2.6. Dependency of the thickness of the oxide layer with respect to the pH value. Reached by CALIPSO-(S) for multiple values
of k0

d. (a) potentiostatic case, (b) galvanostatic case.

Fig. 2.7. Dependency of the thickness of the oxide layer with respect to the applied potential V. Reached by CALIPSO-(S) for
multiple values of the pH in the potentiostatic case.

3. Mathematical study of a simplified model

The existence of a solution to the evolutive DPCM model (1)–(5) is an open question. The main difficulties
are of three types: the system is strongly coupled (the coupling arises in the equations and in the boundary
conditions), the boundary conditions are Robin boundary conditions and the interfaces are moving. In [3],
Chainais-Hillairet and Lacroix-Violet prove the existence of a solution in a simplified case where only
electrons and cations are taken into account and therefore the domain is fixed. Convergence of backward
Euler scheme in time and finite volume scheme in space for the same simplified system has been established
in [6]. Chainais-Hillairet and Lacroix-Violet have also proved in [4] the existence of a steady state for the
two species system on a fixed domain, while the convergence of a finite volume scheme is studied in [10].

In this paper, we have introduced the system defining the steady state of the full DPCM model: (M) in
the potentiostatic case and (Mg) in the galvanostatic case. From now on, we will focus on the potentiostatic
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Fig. 3.1. Profiles of the electric potential for different values of pH in the potentiostatic case.

case. The coupling is still strong. However, the numerical experiments done for (M) show, for different values
of the pH, that the electric potential Ψ has a linear profile, see Fig. 3.1.

This observation leads us to the following simplification in (M): we cancel the right-hand-side in the
Poisson equation on Ψ (14). Therefore Ψ is effectively an affine function on [0, 1] which is explicitly
determined, but the densities and the electric potential are still coupled via the boundary conditions in
the equations for the densities. This simplified model can be seen as a toy model for the theoretical analysis
and the numerical analysis. We will denote it (TM).

In this section, after introducing (TM), we prove the existence of a solution. The question of the positivity
of the densities and of the thickness of the oxide layer is also investigated. The numerical analysis of the
schemes deduced from (S) for (TM) is proposed in Section 4.

3.1. Presentation of the toy model

The simplified model (TM)is obtained by cancelling the right hand side of the equation on Ψ (14). It is
given by the following set of equations:

• Equation and boundary conditions for Ψ :

−λ
2

ℓ2
∂2
ξξΨ = 0, ξ ∈ (0, 1), (22a)

Ψ − α0

ℓ
∂ξΨ = ∆Ψpzc0 , ξ = 0, (22b)

Ψ + α1

ℓ
∂ξΨ = V −∆Ψpzc1 , ξ = 1. (22c)

• Equation and boundary conditions for C

∂ξĴC = 0, ĴC = −∂ξC − (zC∂ξΨ + εCℓδC), ξ ∈ (0, 1), (23a)
−ĴC = ℓr0C(C,Ψ(0)), ξ = 0, (23b)
ĴC = ℓr1C(C,Ψ(1), V ), ξ = 1. (23c)
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• Equation for the velocity δ and the thickness ℓ:

δ = k
0
de
−5a0

dΨ(0)

Π
, (24a)

ℓ = −K ĴC(1)
δ
. (24b)

• Equation and boundary conditions for U = P,N .

∂ξĴU = 0, ĴU = −∂ξU − (zU∂ξΨ + εU ℓδU), ξ ∈ (0, 1), (25a)
−ĴU = ℓr0U (U,Ψ(0)), ξ = 0, (25b)
ĴU = ℓr1U (U,Ψ(1), V ), ξ = 1. (25c)

The computation of N and P , solutions to (25), is decoupled from (22)–(24). Therefore, the model
(TM)corresponds to (22)–(24).

Remark 3.1. We expect the densities U = P,N,C to be nonnegative and bounded. According to (24b) the
flux ĴC must be nonnegative. In regards of numerical results, it can be relevant to ask for ĴP and ĴN to be
nonpositive.

3.2. Existence of a solution for (TM)

In order to prove the existence of a solution for (TM), we start with a given ℓ > 0 and study the system
(22), (23), (24a), see Lemma 3.1. Afterwards, we will prove the existence of ℓ satisfying (24b) thanks to an
intermediate value theorem.

Lemma 3.1. Let ℓ > 0. There exists a unique solution (Ψ , C, δ) ∈ (C∞[0, 1])2 × R∗+ to the system
(22)–(23)–(24a).

Proof. Given ℓ > 0, we compute Ψ solution to (22). We have:

Ψ(ξ) = (Ψ(1)−Ψ(0)) ξ + Ψ(0),

Ψ(0) = (ℓ+ α1) ∆Ψpzc0 + α0 (V −∆Ψpzc1 )
ℓ+ α0 + α1

, (26)

Ψ(1) = α1∆Ψpzc0 + (ℓ+ α0) (V −∆Ψpzc1 )
ℓ+ α0 + α1

.

As max(∆Ψpzc0 , V −∆Ψpzc1 ) and min(∆Ψpzc0 , V −∆Ψpzc1 ) are sur- and sub-solutions of (22), Ψ is bounded
independently of ℓ:

min(∆Ψpzc0 , V −∆Ψpzc1 ) ≤ Ψ(ξ) ≤ max(∆Ψpzc0 , V −∆Ψpzc1 ), ∀ξ ∈ (0, 1). (27)

According to formula (26), we remark that the solution to (22) tends to a constant function when ℓ tends
to 0, the constant is

Ψ = α1∆Ψpzc0 + α0(V −∆Ψpzc1 )
α0 + α1

.

When Ψ is defined, we can deduce δ:

δ = k
0
d

Π
e−5a0

dΨ(0) > 0. (28)

Then, knowing ℓ,Ψ and δ, it is now possible to compute C solution to (23) (and similarly P and N solutions
to (25)). Therefore, we use the Slotboom’s change of variables, which is classical for drift–diffusion equations,
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see for instance [16]. Defining u(ξ) = U(ξ)ezUΨ(ξ)+εU ℓδξ for U = C or U = P,N we can rewrite (23) and
(25) as:

∂ξĴU = 0, ĴU = −e−zUΨ(ξ)−εU ℓδξ∂ξu, ξ ∈ (0, 1), (29a)
∂ξu− ℓβ0

U (Ψ(0))u = −ℓγ0
U (Ψ(0))ezUΨ(0), ξ = 0, (29b)

∂ξu+ ℓβ1
U (V −Ψ(1))u = ℓγ1

U (V −Ψ(1))ezUΨ(1)+εU ℓδ, ξ = 1, (29c)

Let us set B0
U = β0

U (Ψ(0)), B1
U = β1

U (V −Ψ(1)),Γ 0
U = γ0

U (Ψ(0)) and Γ 1
U = γ1

U (V −Ψ(1)). It is possible to give
an explicit formulation of the solution to (29). The calculations have been detailed in [4, see Proposition 1].
We get:

u(ξ) = u(0)− ĴU
 ξ

0
ezUΨ(ζ)+εU ℓδζdζ, (30a)

−ĴU = Γ 1
Ue
zUΨ(1)+εU ℓδ/B1

U − Γ 0
Ue
zUΨ(0)/B0

U

ezUΨ(0)/ (ℓB0
U ) + ezUΨ(1)+εU ℓδ/ (ℓB1

U ) +
 1

0 e
zUΨ(ζ)+εU ℓδζdζ

, (30b)

u(0) = Γ 0
Ue
zUΨ(0)/B0

U − ĴUezUΨ(0)/(ℓB0
U ). (30c)

Then, U is uniquely defined by U(ξ) = u(ξ)e−zUΨ(ξ)−εU ℓδξ for U = C,P,N . It concludes the proof of
Lemma 3.1. �

Let us introduce d(ℓ) = zC
δ

V−∆Ψpzc1 −∆Ψpzc0
ℓ+α0+α1

, such that

zC (Ψ(1)−Ψ(0)) = d(ℓ)ℓδ and ezCΨ(ζ) = ezCΨ(0)ed(ℓ)ℓδζ ∀ζ ∈ [0, 1].

It permits to rewrite (30a) and (30b) as

c(ξ) = c(0)− ĴC
ℓδ

e(d(ℓ)+εC)ℓδξ − 1
d(ℓ) + εC

ezCΨ(0), (31a)

− ĴC
ℓδ

= Γ 1
Ce

(d(ℓ)+εC)ℓδ/B1
C − Γ 0

C/B
0
C

δ/B0
C + δe(d(ℓ)+εC)ℓδ/B1

C +

e(d(ℓ)+εC)ℓδ − 1


/ [d(ℓ) + εC ]

. (31b)

We are now able to give the existence theorem for (TM).

Theorem 3.1. Let

K̃1 = Π

Kγ1
C(∆Ψpzc1 )− β

1
C(∆Ψpzc1 )
εC


e5a

0
dΨ̃ ,

K̃2 = ΠK
β0
C(Ψ)γ1

C(V − Ψ)− β1
C(V − Ψ)γ0

C(Ψ)
β0
C(Ψ) + β1

C(V − Ψ)
e5a

0
dΨ̃ ,

C̃ = 1 + 1
ΠK

k0
de
−5a0

dmin(∆Ψpzc0 ,V−∆Ψpzc1 )

m0
Ce
−2b0

C
max(∆Ψpzc0 ,V−∆Ψpzc1 ) + k0

Ce
2a0
C

min(∆Ψpzc0 ,V−∆Ψpzc1 ) .

We assume

min

K̃1, K̃2


< k0
d < max


K̃1, K̃2


. (32)

Then, the problem (TM) has a solution (Ψs, Cs, ℓs, δs) ∈ (C∞ ([0, 1],R))2 × (R∗+)2 which satisfies 0 ≤
Cs(ξ) ≤ C̃ for all ξ ∈ [0, 1].

Proof. For a given ℓ, we will now denote by (Ψℓ, Cℓ, δℓ) the solution to (22)–(23)–(24a) given by Lemma 3.1.
We introduce the function:

F : R∗+ → R

ℓ → −K ĴCℓ
ℓδℓ
.
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The function F is well defined and continuous. In order to prove the existence of ℓs > 0 such that F (ℓs) = 1,
we will apply the intermediate value theorem. Therefore, we have to study the limits of F when ℓ tends to
0 and when ℓ tends to +∞.

When ℓ→ +∞, we have the following limits :

Ψℓ(0)→ ∆Ψpzc0 , Ψℓ(1)→ (V −∆Ψpzc1 ),
d(ℓ)ℓδℓ → zC(V −∆Ψpzc1 −∆Ψpzc0 ),

δℓ →
k0
d

Π
e−5a0

d∆Ψpzc0 , d(ℓ)→ 0.

Then, using (31b), we deduce:

lim
ℓ→+∞

F (ℓ) = KΠ
εCγ

1
C(∆Ψpzc1 )

εCk0
de
−5a0

d
∆Ψpzc0 + Πβ1

C(∆Ψpzc1 )
.

When ℓ→ 0, the limits are:

Ψℓ(0)→ Ψ , Ψℓ(1)→ Ψ ,
d(ℓ)ℓδℓ → 0, δℓ →

k0
d

Π
e−5a0

dΨ .
Therefore,

lim
ℓ→0
F (ℓ) = KΠ

γ1
C(V − Ψ)β0

C(Ψ)− γ0
C(Ψ)β1

C(V − Ψ)
k0
de
−5a0

d
Ψ (β1

C(V − Ψ) + β0
C(Ψ))

.

Then we can see that, if min

K̃1, K̃2


< k0
d < max


K̃1, K̃2


,

min


lim
ℓ→0
F (ℓ), lim

ℓ→+∞
F (ℓ)


< 1 < max


lim
ℓ→0
F (ℓ), lim

ℓ→+∞
F (ℓ)


.

It ensures the existence of ℓs satisfying F (ℓs) = 1. Denoting by (Ψs, Cs, δs) the corresponding solution to
(22)–(23)–(24a), we obtain that (ℓs,Ψs, Cs, δs) is a solution to (TM).

Let us now prove that Cs is a positive, bounded function. Writing (30c) for u = cs while replacing ĴC
by −ℓsδs/K, we obtain that cs(0) is a sum of positive terms, so that it is positive. Then, writing (31a) for
c = cs and ξ = 1, we also get that cs(1) is positive. Therefore, as cs is a monotone function thanks to (31a),
we conclude that cs and Cs are positive in [0, 1].

From (29) written for U = Cs and using the known values of δ and ĴC/(ℓδ) at the steady state, we can
deduce simple expressions for the boundary values of Cs:

Cs(0) = 1
β0
C(Ψs(0))


γ0
C(Ψs(0)) + k

0
de
−5a0

dΨs(0)

ΠK


,

Cs(1) = 1
β1
C(V −Ψs(1))


γ1
C(V −Ψs(1))− k

0
de
−5a0

dΨs(0)

ΠK


.

It leads, using (27) and the definition of the functions β0
C , β

1
C , γ

0
C , γ

1
C ,

Cs(0) ≤ γ
0
C(Ψs(0))
β0
C(Ψs(0)) + k0

de
−5a0

dΨs(0)

β0
C(Ψs(0))ΠK ≤ 1 + 1

ΠK
k0
de
−5a0

dΨs(0)

m0
Ce
−2b0

C
Ψs(0) + k0

Ce
2a0
C
Ψs(0) ≤ C̃,

Cs(1) ≤ γ
1
C(V −Ψs(1))
β1
C(V −Ψs(1)) ≤

k1
Ce

3a1
C(V−Ψs(1))

m1
Ce
−3b1

C
(V−Ψs(1)) + k1

Ce
3a1
C

(V−Ψs(1)) ≤ 1 ≤ C̃.

Thanks to the monotonicity of Cs, it concludes the proof. �
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Remark 3.2. Theorem 3.1 is worthy of interest if max

K̃1, K̃2


> 0. This can be true if either β0

C(Ψ)γ1
C(V −Ψ) ≥ β1

C(V − Ψ)γ0
C(Ψ) or εCKγ1

C(∆Ψpzc1 ) ≥ β1
C(∆Ψpzc1 ), which is satisfied if

e3V e−Ψ ≥ m0
Cm

1
C

k0
Ck

1
C

or e−3∆Ψpzc1 ≤ (εCK − 1) k
1
C

m1
C

.

Remark 3.3. We do not have any uniqueness result with our method. We can set partial results of uniqueness
in the spirit of Lemma 3.1. To guarantee the uniqueness of (Ψs, ℓs, δs, Cs) one can impose for instance that
F is strictly monotone, which adds new conditions on the parameters.

Remark 3.4. For U = P,N , there exists a unique solution to (25), given by formula (31a) and (31b). It is
possible to impose conditions such that ĴP and ĴN are nonpositive fluxes or to ensure that Ps and Ns are
non negative densities.

Remark 3.5. For the simplified model (TM), equations (22) and (24a) imply that both interfaces of the
domain, in the pseudo-stationary case, move at a constant velocity. The velocity is prescribed by the solution
to (22) and is clearly finite.

4. Numerical analysis of the simplified model

4.1. Presentation of the numerical scheme

The numerical scheme defined for toy model (TM) is the adaptation of the scheme (S) introduced in
Section 2.2 to this simplified model. We denote it (S-TM).

Numerical scheme (S-TM)
The unknowns of the scheme are the discrete densities (Ci)0≤i≤I+1 and the discrete electric potential

(Ψi)0≤i≤I+1, the velocity of the interfaces δh and the thickness of the domain ℓh.

• Scheme for Ψ :

− λ
2

ℓh
2 (dΨi+ 1

2
− dΨi− 1

2
) = 0, 1 ≤ i ≤ I, (33a)

with dΨi+ 1
2

= Ψi+1 −Ψi
hi+ 1

2

, 0 ≤ i ≤ I, (33b)

Ψ0 −
α0

ℓh
dΨ 1

2
= ∆Ψpzc0 , (33c)

ΨI+1 + α1

ℓh
dΨI+ 1

2
= V −∆Ψpzc1 . (33d)

• Scheme for C:

GC,i+ 1
2
− GC,i− 1

2
= 0, 0 ≤ i ≤ I, (34a)

GC,i+ 1
2

= 1
hi+ 1

2


B

hi+ 1

2


zCdΨ i+ 1

2
+ εCℓhδh


Ci (34b)

− B

−hi+ 1

2


zCdΨ i+ 1

2
+ εCℓhδh


Ci+1


, 1 ≤ i ≤ I, (34c)
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−GC, 12 = ℓhr0C(C0,Ψ0), (34d)

GC,I+ 1
2

= ℓhr1C(CI+1,ΨI+1, V ), (34e)

where B is the Bernoulli function (19).
• Scheme for δ and ℓ:

δh = k
0
d

Π
e−5a0

dΨ0 , (35a)

ℓh = −K
GC,I+ 1

2

δh
. (35b)

In the next section, we show that the schemes (S-TM) is exact. It means that the exact solution to (S-TM) is
a solution to the scheme. It is a well-known property of the Scharfetter–Gummel scheme for a stationary
drift–diffusion equation when the drift velocity is the gradient of a potential (see for instance [17]). The
novelty here is that the drift–diffusion equation is coupled with equations on the interface velocity δ and the
size of the layer ℓ. However, we prove that the preservation of the steady-state by the Scharfetter–Gummel
scheme still holds.

4.2. Existence of a solution for (S-TM)

Theorem 4.1. Assume

min

K̃1, K̃2


< k0
d < max


K̃1, K̃2


,

where K̃1, K̃2 are defined in Theorem 3.1. Then the scheme (S-TM) has a solution

Ψh, Ch, δh, ℓh


∈

RI+22 ×

R∗+
2. Moreover, there exists (Ψs, Cs, δs, ℓs) solution to (TM), such that:

∀i ∈ [0, I + 1],

Ψhi , C

h
i , δ
h, ℓh


=

Ψs(ih), Cs(ih), δs, ℓs


. (36)

Proof. Existence. Let (Ψs, Cs, δs, ℓs) be a solution of (TM). Since (33) is exact on the linear solutions of
(22), we define Ψhi = Ψ(ih), i ∈ [0, I + 1] solution of (33) with ℓh = ℓs. We then fix

δh = δs = k
0
d

Π
e−5a0

dΨ
h
0 .

We observe that

zCdΨ i+ 1

2
+ εCℓhδh


is constant, therefore the Scharfetter–Gummel scheme (34) is exact

on (23). Define

Chi


= (C(ih)) , i ∈ [0, I + 1], it is solution of (34). Finally (24b) implies (35b). It concludes
the proof of the existence of a solution.

Any solution is exact. Let (Ψh, Ch, δh, ℓh) be a solution of (S-TM). We apply Lemma 3.1 with ℓ = ℓh it
gives (Ψℓh , Cℓh , δℓh) ∈ (C∞[0, 1])2 × R∗+ a solution of (22)–(23)–(24a). Since Ψℓh is linear and the scheme
given by (33) is exact on linear function we have for all i ∈ [0, I + 1] Ψhi = Ψℓh(ih). Therefore (35a) implies
δh = δℓh . The exactness of the Scharfetter–Gummel scheme gives Chi = Cℓh(ih), for all i ∈ [0, I + 1]. Then
equations (34e) and (23c) implies GCh,I+ 1

2
= ĴC

ℓh
. Combined to (35b) we deduce that

ℓh = −K
GCh,I+ 1

2

δh
= −K

ĴC
ℓh

δℓh
.

It shows that (Ψℓh , Cℓh , δℓh , ℓh) is a solution to (TM)and concludes the proof.
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Table A.1
Physical parameters of the test case.

D1 (m2 · s−1) D2 (m2 · s−1) D3 (m2 · s−1)
10−20 10−6 10−20

m Ωox (m3 ·mol) ΩFe (m3 ·mol)
3 4.474 · 10−5 7.105 · 10−6
a0
u, b

0
u


(u = P,N,C, r)


a1
u, b

1
u


(u = P,C) a0

d

(0.5, 0.5) (0.5, 0.5) 0

Table A.2
Scaled parameters of the test case.

∆Ψpzc0 ∆Ψpzc1 k0
d,ref

−8.22136 · 10−12 0 64.267 · 10−pH

Pm Nmetal ρhl
2 2.48502 · 10−1 −5

λ2 α0 α1
1.05432 · 10−3 0.177083 8.854 · 10−2

m0
P k0

P m1
P k1

P

0 108 108 1014

m0
N k0

N m1
N k1

N

0 2.10740 · 10−19 2.68111 · 101 2.68111 · 101

m0
C k0

C m1
C k1

C

1.78113 · 10−13 4.474 · 1047 0 7.85325

Remark 4.1. The convergence of the scheme (S-TM) towards (TM) is a straightforward consequence of the
exactness property. This exactness property, peculiar to the Scharfetter–Gummel fluxes, enhance the choice
of these fluxes when building the scheme (S). �
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Appendix. Parameters used for the numerical experiments

All the numerical simulations have been done with the set of parameters given in Tables A.1 and A.2.
The scaling process and the physical values used to obtain the scaled values in Table A.2 are detailed in
[10, Section 5].
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