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Optimal Transport and applications to the study of some geometrical partial
differential equations

by Thomas GALLOUET

This document is about Optimal Transport and its application to partial differ-
ential equations such as gradient flows or Euler flows in the Wasserstein spaces.
We investigate theoretical as well as numerical questions. On the theoretical side
of optimal transport, we address questions such as Wasserstein splines, Wasserstein
extrapolation and some questions related to the smoothness of Unbalanced Opti-
mal Transport (Unbalanced Brenier polar projection, Unbalanced Monge-Ampeére
equations, a special class of Cone convex functions). We then apply the Wasserstein
Gradient/Euler flow structure to the study of some PDEs.

On the one hand, the flow structure is used to prove theoretical results, notably
the existence of solutions to the system of incompressible immiscible multiphase
flows in porous media, and the definition of the notion of relaxed solution for the
Camassa-Holm equations, which happens to be the counter part for the Unbalanced
Optimal Transport of what Incompressible Euler is for the classical Optimal Trans-
port. One the other hand, the geometrical structure is also used to design, implement
and prove convergence for different numerical schemes. For instance we introduce
the notion of variational Finite Volume schemes for Wasserstein Gradient flows.
These schemes are finite volume schemes defined as the Euler-Lagrange equations
for a space discretization of a minimizing movement (JKO) scheme, a "first discretize
then optimize" approach. We also defined Lagrangian numerical schemes for a class
of Gradient and Euler flows. These schemes are ODEs preserving the underlying
geometrical structure with an approximated energy defined through semi discrete
Optimal Transport. Through a splitting procedure and using Unbalanced Optimal
Transport, all the effort undertaken for Wasserstein Gradient Flows can by extended
to encompass more general and non conservative reaction diffusion equations.
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Chapter 1

Research summary

1.1 Introduction

This manuscript starts with a summary of some of my research papers of the last
ten years. Then after a synthetic reminder of their main contributions, I present the
articles in their entirety. All these works are somehow related to Optimal Transport.
One of the main focus of my research was the study, from a theoretical and numerical
point of view, of PDEs which happen to have a geometric structure in Wasserstein-
like spaces, like Gradient flows or Euler Flows. This requires an in-depth under-
standing of tools that are specific to optimal transport, such as Wasserstein splines,
Wasserstein geodesics extrapolation or a better understanding of Unbalanced Opti-
mal Transport. We can organize these works in two parts.The first one is built around
Optimal Transport and the second one around Unbalanced Optimal Transport. Each
part being composed of three similar research directions. The first direction deals
with structural properties of balanced /unbalanced Optimal Transport. The second
axis details some numerical methods for the approximation of balanced /unbalanced
gradient flows or more general reaction diffusion equations. The last axis focuses on
Euler flows and numerical methods designed to approximate them.

This work was carried out with several collaborators I met in my life as a re-
searcher. At different times, I was their student, their colleague or their supervisor.
First, I give a summary of these collaborators and the contribution of research pa-
pers detailing each articles and the links between them. Then, I join the papers in
the structure presented above, adding at the beginning a quick reminder of the main
contributions and some research perspectives.

Collaborators

Co-authors

J.D. Benamou, C. Cances, C. Chainais-Hillairet (Post-doc supervisor), R. Ghezzi, M.
Laborde, Q. Mérigot, G. Mijoule, L. Monsaingeon, A. Natale, Gabriele Todeschi, Y.
Swan (Post-doc supervisor), FEX. Vialard.

Post-doc students

e Andrea Natale, 2017-2020, co-supervision with F.X. Vialard and then Q. Mérigot.
e Guillaume Mijoule, 2018-2020.

PhD students

o Gabriele Todeschi, 2018- 2021, co-supervision with C. Cancés.
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e Erwan Stampfli, 2021-. 2023, co-supervision with Y. Brenier.

Undergraduate students

e Médard Govoeyi, Master 2, Avril 2023- Sep. 2023, co-supervision with M.
Laborde.

o Erwan Stampfli, Master 2, Avril 2021- Sep. 2021, co-supervision with Y. Brenier.

e Jean Jacques Godeme, Master 2, Avril 2020- Sep. 2020, co-supervision, with
Léonard Monsaingeon.

o Gabriele Todeschi, Master 2, Avril 2018- Sep. 2018, co-supervision with C. Can-
ces.

e Jean Paul Greveni, L3, 2017

o Cédric Oms, Master 1, 2016

Research papers

The manuscript is composed of the following research papers, listed in order of ap-
pearance in the manuscript:

1. Second order models for optimal transport and cubic splines on the Wasser-
stein space. Foundations of Computational Mathematics, Springer Verlag (2019)
https://hal.science/hal-01682107v2 J.D. Benamou, Gallouét T.O. et
Vialard F.X.

2. From geodesic extrapolation to a variational BDF2 scheme for Wasserstein
gradient flows. Under minor revision Mathematics of Computations (2022) Gal-
louét T.O., Natale A. et Todeschi. Ghttps://hal.science/hal-03f790981v2

3. The gradient flow structure for incompressible immiscible two-phase flows
in porous media. C. R. Acad. Sci. Paris, Ser. 1(353) :985— 989 (2015). https:
//hal.science/hal-01122770. Cances C., Gallouét T.O., Monsaingeon L.

4. Incompressible immiscible multiphase flows in porous media: a variational
approach.  Analysis and PDE Vol. 10 (2017), No. 8, 1845-1876 https://
arxiv.org/abs/1607.04009. Cances C., Gallouét T.O., Monsaingeon L.

5. Simulation of multiphase porous media flows with minimizing movement
and finite volume schemes.) European Journal of Applied Mathematics, Cam-
bridge University Press (CUP), 30 (6), pp.1123-1152 (2019). https://arxiv.
org/abs/arXiv:1802.01321. Cances C., Gallouét T.O., Laborde M., Mon-
saingeon L.

6. A Lagrangian scheme a la Brenier for the incompressible Euler equations.
Found Comput Math 18: 835 (2018). https://doi.org/10.1007/s10208-017-9355-y.
Gallouét T.O. and Mérigot Q.

7. Convergence of a Lagrangian discretization for barotropic fluids and porous
media flow. SIAM Journal on Mathematical Analysis (2021) https://hal.
science/hal-03234144. Gallouét T.O., Mérigot Q., Natale A.


https://hal.science/hal-01682107v2
https://hal.science/hal-03f790981v2
https://hal.science/hal-01122770
https://hal.science/hal-01122770
https://arxiv.org/abs/1607.04009
https://arxiv.org/abs/1607.04009
https://arxiv.org/abs/arXiv:1802.01321
https://arxiv.org/abs/arXiv:1802.01321
https://doi.org/10.1007/s10208-017-9355-y
https://hal.science/hal-03234144
https://hal.science/hal-03234144
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8. Regularity theory and geometry of unbalanced optimal transport. Submit-
ted 2023 Gallouét T.O., Ghezzi R. et Vialard EX. https://hal.science/
hal-03498098vl.

9. A JKO splitting scheme for Kantorovich-Fisher-Rao gradient flows. SIAM
Journal on Mathematical Analysis, Vol. 49, Issue 2. (2017) https://arxiv.
org/abs/1602.04457. Gallouét T.O. et Monsaingeon L.

10. An unbalanced optimal transport splitting scheme for general advection-
reaction-diffusion problems. ESAIM: Control, Optimisation and Calculus of Vari-

ations (2018) https://hal.science/hal-01508911. GallouétT.O., Laborde

M. and Monsaingeon L.

11. The Camassa-Holm equation as an incompressible Euler equation: a geo-
metric point of view. Journal of Differential Equations, Volume 264, Issue 7, Pages
4199-4234. (2018) https://arxiv.org/abs/1609.04006. Gallouét T.O.
and Vialard FX.

12. Generalized compressible flows and solutions of the H(div) geodesic prob-
lem. Archive for Rational Mechanics and Analysis, Springer Verlag (2020) https:
//hal.science/hal-01815531v3. GallouétT.O., Natale A. et Vialard F.X.

1.2 Optimal Transport

1.2.1 Optimal Transport, Wasserstein space

The following two papers deal with some notions in the Wasserstein space namely
Wasserstein splines and Wasserstein extrapolation. The first paper was realized with
two collaborators I got when I arrived at Inria Paris: J.D. Benamou (DR Inria Paris)
and EX. Vialard (MCF Dauphine now Professeur at Paris Est). The second paper
was written with A. Natale (former post doc student, now CR at Inria Lille) and G.
Todeschi (former PhD student, currently Post-doc.)

Articles:

1. Second order models for optimal transport and cubic splines on the Wasser-
stein space. Foundations of Computational Mathematics, Springer Verlag (2019)
https://hal.science/hal-01682107v2 J.D. Benamou, Gallouét T.O. et
Vialard FX.

2. From geodesic extrapolation to a variational BDF2 scheme for Wasserstein
gradient flows. Under minor revision Mathematics of Computations (2022) Gal-

louét T.O., Natale A. et Todeschi. Ghttps://hal.science/hal-03£790981v2

Cubic Splines.

In this work realized in collaboration with J.D. Benamou and F.X. Vialard, we extend
the Wasserstein geodesics, defined on the space of probability densities, to the case
of higher-order interpolation such as cubic spline interpolation. Our motivation is
to answer the practical question of the extension of cubic splines to the Wasserstein
space and their numerical computation. First we present the natural extension of cu-
bic splines to the Wasserstein space when considered as a Riemannian manifold. We
then propose a simpler approach based on the relaxation of the variational problem


https://hal.science/hal-03498098v1
https://hal.science/hal-03498098v1
https://arxiv.org/abs/1602.04457
https://arxiv.org/abs/1602.04457
https://hal.science/hal-01508911
https://arxiv.org/abs/1609.04006
https://hal.science/hal-01815531v3
https://hal.science/hal-01815531v3
https://hal.science/hal-01682107v2
https://hal.science/hal-03f790981v2
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on the path space. This relaxation is defined on the space of densities using mul-
timarginal optimal transport and yields a convex minimization problem. In short,
the proposed method consists in minimizing, on the space of measures on the path
space, under marginal constraints, the squared norm of the acceleration. This relax-
ation is performed in the spirit of generalized geodesics for Euler equations intro-
duced by Brenier. In this setting, we show that two numerical approaches, classical
in optimal transportation can be applied. One is based on entropic regularization
and the Sinkhorn Algorithm, the other relies on the Semi-Discrete formulation of
Optimal Transportation and the computation of Laguerre cells, a classical problem
in computational geometry. We showcase our methodology on 1D and 2D data. To
the best of our knowledge, this question has not been yet addressed in the liter-
ature on optimal transport until very recently in two independent and simultane-
ous preprints : [4] and 1 (this paper). Both works share the same idea of relaxing
the cubic spline formulation in the space of measures using multi-marginal optimal
transport. Our paper however explores a larger hierarchy of models and several
numerical methods.

In our implementation the numerical methods we proposed shared the same
drawback, for a reasonable computational time, they are limited to low dimension
d < 3. Moreover the semi-discrete method is limited to the quadratic cost and is not
convex in general. A smart initialization or optimization strategy is needed to obtain
the convergence towards global minima. Recent advances in Semi-Discrete Optimal
Transport Solvers open the door to an implementation in higher order dimension
whereas for the entropic regularization problems classical multi-scale approaches
can be used, bearing in mind that for the interpolation the dependence in the time-
step discretization is of a higher order than the one in the case of Sinkhorn algo-
rithm for classical optimal transport. This prevents us to decrease the regularized
parameter e as efficiently as done for Sinkhorn algorithm for classical optimal trans-
port. At the end of the paper (Remark 6) we notice that this notion of interpolation
with relaxed multi-marginal optimal transport can be used to define a Wasserstein
extrapolation. This question of defining an interpolation was then pursued in the
work described below with different collaborators.

Wasserstein extrapolation.

The study of Wasserstein geodesic extrapolation is a part of 2. In this paper it is used
as a tool to define a 2nd order in time numerical scheme for Wasserstein gradient
flows. However it has is own interest. This operation is not uniquely defined in gen-
eral since after time 1 shocks can occur in the trajectory of particles associated to the
Wasserstein geodesic. With Andrea Natale (former post doc) and Gabriele Todeschi
(former PhD student) we proposed different definitions of Wasserstein extrapolation
in the case where the cost is given by the square of the euclidian distance. These def-
initions are given via different formulations of Optimal Transport and leads to the
definition of Free-flow, metric, viscosity extrapolations. Each of these corresponds to
a different way of handling shocks: either a shockless traverse, or different types of
dissipative collisions. We proved the well posedness of these notions as well as some
important properties that we define such as consistency or dissipation. The metric
formulation for instance is given by a convex optimization problem. This convexity
is not obvious and can be obtained thanks to a dual convex formulation in the spirit
of Toland duality [3]. We also proposed a numerical scheme and an implementation
to approximate the viscosity extrapolation. However the metric extrapolation seems
to us the more natural and richest definition. In a follow up work we study more
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deeply the metric extrapolation and its dual formulation for more general costs. In
the quadratic case we aim at proposing a numerical scheme and an implementa-
tion for this metric extrapolation based on a non convex reformulation of the dual
problem and semi-discrete techniques.

1.2.2 Wasserstein Gradient flows

Alarge part of my research was focused on PDEs that can be recast as gradient flows
in the Wasserstein space i.e. equations or system of equations that can be recast
under the form s

Opp — div <PV5p(P)) =0,
with a zero flux boundary condition and for a given energy £ defined on the set
of probability measures. We used this interpretation either to prove the existence
of solutions for a system of PDEs but also to build variational, energy-diminishing
schemes. The first three papers presented below deal with a particular system of
PDEs: incompressible immiscible multiphase flows. The next two papers aim at
building variational finite volume numerical scheme in order to compute numerical
approximations of general Wasserstein gradient flows.

Articles:

3. The gradient flow structure for incompressible immiscible two-phase flows
in porous media. C. R. Acad. Sci. Paris, Ser. 1(353) :985— 989 (2015). https:
//hal.science/hal-01122770. Cances C., Gallouét T.O., Monsaingeon L.

4. Incompressible immiscible multiphase flows in porous media: a variational
approach.  Analysis and PDE Vol. 10 (2017), No. 8, 1845-1876 https://
arxiv.org/abs/1607.04009. Cances C., Gallouét T.O., Monsaingeon L.

5. Simulation of multiphase porous media flows with minimizing movement
and finite volume schemes.) European Journal of Applied Mathematics, Cam-
bridge University Press (CUP), 30 (6), pp.1123-1152 (2019). https://arxiv.
org/abs/arXiv:1802.01321. Cances C., Gallouét T.O., Laborde M., Mon-
saingeon L.

6. A variational finite volume scheme for Wasserstein gradient flows. Nu-
merische Mathematik, Springer Verlag, 146 (3), pp 437 - 480 (2020). https://
hal.science/hal-02189050. C.Cances, Gallouét T.O., Todeschi. G

7. From geodesic extrapolation to a variational BDF2 scheme for Wasserstein
gradient flows. Under minor revision for Mathematics of Computations (2023)
https://hal.science/hal-03790981 Gallouét T.O., Natale A. et Tode-
schi. G

Incompressible immiscible multiphase flows in porous media

This research was carried out in collaboration with C. Cancés and L. Monsaingeon.
We were joined by M. Laborde for the numerical paper 5. The models for multi-
phase porous media flows have been widely studied in the last decades since they
are of great interest in several fields of applications, like e.g. oil-engineering, carbon
dioxide sequestration, or nuclear waste repository management. However in the
case of more than three phases there were no existence results. The difficulty is that


https://hal.science/hal-01122770
https://hal.science/hal-01122770
https://arxiv.org/abs/1607.04009
https://arxiv.org/abs/1607.04009
https://arxiv.org/abs/arXiv:1802.01321
https://arxiv.org/abs/arXiv:1802.01321
https://hal.science/hal-02189050
https://hal.science/hal-02189050
https://hal.science/hal-03790981
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the system of PDEs is not completely parabolic, making it difficult to obtain a priori
estimates. Moreover the possible presence of vacuum for some phases leads to a
series of technical difficulties. In 3 we highlight the Wasserstein gradient flow struc-
ture. Then in 4 we fully leverage this interpretation in order to prove the existence
of solutions to the incompressible immiscible mutliphase-phase flow in a possibly
heterogeneous porous medium. The proof is based on the convergence of a JKO
scheme. It uses, among other things, flow interchange and duality methods in or-
der to collect enough estimates for an Aubin-Lions convergence strategy to work.
Finally in 5 we propose, implement and compare two numerical methods which are
both designed to decrease the natural energy. One is based on a classical upstream
mobility finite volume scheme, which is a reference for such equations. The other,
ALG2-JKO, is a discretization of the JKO scheme. Both methods are well adapted
for gradient flows equations, and more precisely they verify the following key prop-
erties for the numerical solutions; namely:

e preservation of positivity,
e conservation of mass and saturation constraints,
e energy dissipation along solutions.

We found that the ALG2-JKO scheme produces very similar results: same qualitative
behaviour, conservation of the mass of each phase and preservation of the positivity
while being more robust and adaptative. But the finite volume approach is under
some conditions computationally more efficient. A natural question then arises: can
we build a numerical scheme that would share the best of the two approaches? This
is the object of the next section. Another direction of research is to understand what
happens when the internal energy of the multiphase flow vanishes. All that remains
are potential energies and constraints. In this vanishing internal-energy limit the
system becomes hyperbolic instead of almost parabolic. This is the object of the
ongoing thesis by Erwan Stampli’s PhD that I co-supervise with Y. Brenier. We have
two works in progress on this subject proving for instance the convergence of the
parabolic system towards the hyperbolic counterpart on a torus in dimension 1.

Variational finite volume scheme

As seen above, a natural question arises from the numerical comparison between
the ALG2-JKO scheme and the upstream mobility Finite Volume scheme presented
in 5. Is there a way to combine the best of both methods? In other words can we
build a Variational finite volume scheme that would exactly be the Euler-Lagrange
equation of a fully discretized JKO step? A first discretize then optimize approach that
would allow us to use a Newton method while keeping the variational structure.
This was the starting point of Gabriele Todeschi’s Phd done under the supervision
of C. Cances and myself. The first paper 6 answers this question positively, while
in the second one 7 we propose to modify the variational structure in order to make
the scheme 2nd order in time. During his PhD G. Todeschi developed together with
A. Natale some methods to reach higher space orders within this class of schemes.
In 6, we then propose a variational finite volume scheme to approximate the
solutions to Wasserstein gradient flows. The time discretization is based on a JKO
formula and an implicit linearization of the Wasserstein distance expressed thanks
to the Benamou-Brenier formula, whereas the space discretization relies on an up-
stream mobility two-point flux approximation finite volume scheme. The scheme is
based on a first discretize then optimize approach in order to preserve the variational
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structure at the discrete level. It can be applied to a wide range of energies and
guarantees non-negativity of the discrete solutions as well as decay of the energy.
We show that the scheme admits a unique solution whatever the convex energy in-
volved in the continuous problem is, and we prove its convergence in the case of the
linear Fokker-Planck equation with positive initial density. Numerical illustrations
show that it is first order accurate in both time and space, and robust with respect to
both the energy and the initial profile.

Then G. Todeschi was able to build in is PhD thesis higher order space approx-
imations while keeping the variational structure. Later on in 7 we proposed a sec-
ond order in time variational finite volume scheme. To do this we introduce a time
discretization for Wasserstein gradient flows based on the classical Backward Dif-
ferentiation Formula of order two. The main building block of the scheme is the
notion of geodesic extrapolation in the Wasserstein space described in Section 1.2.1.
We prove the convergence of the resulting scheme to the solution of the limit PDE
in the case of the Fokker-Planck equation, and for a specific choice of extrapolation
we also prove a more general result, that is convergence towards EVI flows. Finally,
we propose a full discretization which numerically achieves second order accuracy
in both space and time. This paper is inspired from previous works that were done
in this direction but not completely satisfying to us from a numerical point of view
see [16, 15, 11] for instance. The key difference between these papers and our work
is a different interpretation of the BDF2 scheme. The method of proofs for the con-
vergence of the scheme are then largely inspired from [16, 15].

1.2.3 Euler flows

Another class of PDEs relates to the Wasserstein space: the Euler flows where, in-
stead of the speed, the acceleration is given by the Wasserstein gradient of an energy:

o€

dyp + div (pv) =0, dv +v- Vo = —vd—p(p)-

The incompressible Euler’s equations fall into this category as well as some com-
pressible Euler equations. Building Lagrangian numerical schemes for these equa-
tions was the object of the following works. As a by product of the second paper we
also build Lagrangian numerical schemes for Wasserstein gradient flows such as the
porous medium equation. One can interpret this flow as some high friction limit of
Euler flows.

Articles:

8. A Lagrangian scheme a la Brenier for the incompressible Euler equations.
Found Comput Math 18: 835 (2018). https://doi.org/10.1007/s10208-017-9355-y.
Gallouét T.O. and Mérigot Q.

9. Convergence of a Lagrangian discretization for barotropic fluids and porous
media flow. SIAM Journal on Mathematical Analysis (2021) https://hal.
science/hal-03234144. Gallouét T.O., Mérigot Q., Natale A.

The first paper is a collaboration with Q. Mérigot. It is based on the reinterpre-
tation of Y. Brenier’s old ideas and Q. Mérigot’s new method that allows to deal nu-
merically with semi-discrete Optimal Transport: a transport between sums of Dirac
masses and a smooth measure. It was done when I was a post-doc of Y. Brenier. The
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second paper is a collaboration with Q. Mérigot and A. Natale. At the time A. Natale
was a post-doc under our supervision.

Incompressible Euler

In 8 we approximate the regular solutions of the incompressible Euler equations
by the solution of ODEs on finite-dimensional spaces. This approach combines
Arnold’s interpretation of the solution of the Euler equations for incompressible and
inviscid fluids as geodesics in the space of measure-preserving diffeomorphisms,
and an extrinsic approximation of the equations of geodesics due to Brenier. Indeed
the empirical measure of a system of particles cannot be uniform. In our scheme, the
incompressibility constraint is relaxed by imposing that the Wasserstein distance be-
tween the uniform measure and the empirical measure should be small relative to a
parameter e. This is enforced in an Hamiltonian fashion, the Wasserstein distance
acting as a spring attached to the manifold of measure preserving maps. Using
recently developed semi-discrete optimal transport solvers, this approach yields a
numerical scheme which is able to handle problems of realistic size in 2D at the time
of the paper and by now much larger 3D systems composed of millions of particles.
We prove the convergence of this scheme towards regular solutions of the incom-
pressible Euler equations thanks to a relative entropy method. The key arguments
allowing to apply a (double) Gronwall argument are the use of optimality, orthogo-
nality properties and the degree of freedom in the pressure term: its mean. We also
provide numerical experiments on a few simple test cases in 2D. Many extension of
this work are possible. Two ongoing projects are the fluid-structure interactions and
incompressible Navier-Stokes equations as our Lagrangian scheme is particularly
adapted with the finite volume discretization of the Laplacian.

Barotropic fluids

When expressed in Lagrangian variables, the equations of motion for compressible
(barotropic) fluids have the structure of a classical Hamiltonian system in which the
potential energy is given by the internal energy of the fluid. The dissipative coun-
terpart of such a system coincides with the porous medium equation, which can be
cast in the form of a Wasserstein gradient flow for the same internal energy. Moti-
vated by these related variational structures, we propose a particle method for both
problems in which the internal energy is replaced by its Moreau-Yosida regulariza-
tion in the L? sense, which can be efficiently computed as a semi-discrete optimal
transport problem in the spirit of what we have done for the incompressible Euler
equation. This last equation corresponds to the case where energy is the characteris-
tic function of measure preserving maps. Again using a modulated energy argument
which exploits the convexity of the problem in Eulerian variables, we prove quan-
titative convergence estimates towards smooth solutions. We verify such estimates
by means of several numerical tests.

The main strength of these Lagrangian methods is that they are based on the
physical energy and a nice geometrical structure for the PDE: either Gradient flows,
Euler/Hamiltonian Flows, or Conservative flows where the velocity is given by the
rotation of the Wasserstein gradient of the energy (v = —J V%(p)), with J an anti-
symmetric matrix). In particular we have two extensions in mind: the Keller-Segel
model and semi-geostrophic equations, using some recent technics developed by D.
Bresch and co-authors and S. Serfaty and co-authors [7, 2] in order to deal with the
additional interaction term into the Gronwall arguments.
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1.3 Unbalanced Optimal transport, geometry and PDE

Optimal Transport is a powerful tool to compare probability distributions and inter-
pret PDEs with some geometrical structure. However in some applications or PDEs
it is natural to consider change of total mass or different mass between the measures.
This mass constraint can easily be alleviated with global renormalization but the ob-
tained model will not be able to account for possible local change of mass. Consid-
ering this shortcoming [8, 1], it was natural to enrich the model using local change
of mass as proposed by three research groups independently in [6, 5, 10, 12]. This
definition shares a lot with classical optimal transport with primal, dual, static for-
mulation and importantly a Riemannian submersion. Once again, the work I have
contributed to on this subject can be divided in three categories: properties of Unbal-
anced Optimal Transport, applications to gradient flows for this metric and finally
Euler flows and more specifically the counterpart of the Incompressible equation in
this framework which is the Camassa-Holm equation.

1.3.1 Unbalanced Optimal transport, geometry and PDE
Articles:

10. Regularity theory and geometry of unbalanced optimal transport. Gallouét
T.O., Ghezzi R. et Vialard EX. https://hal.science/hal-03498098v1.

This work is done in collaboration with R.Ghezzi and F.X.Vialard. It is a preprint
that will be shortly submitted for publication. Using the dual formulation only, we
show that regularity of unbalanced optimal transport also called entropy-transport
inherits from the regularity of standard optimal transport. We then provide detailed
examples of Riemannian manifolds and costs for which unbalanced optimal trans-
port is regular. Among all entropy-transport formulations the Wasserstein-Fisher-
Rao metric, also called Hellinger-Kantorovich, stands out since it admits a dynamic
formulation, which extends the Benamou-Brenier formulation of optimal transport.
After demonstrating the equivalence between dynamic and static formulations on
a closed Riemannian manifold, we prove a polar factorization theorem, similar to
the one due to the Brenier-McCann one. As a byproduct, we formulate the Monge-
Ampere equation associated with Wasserstein-Fisher-Rao (WFR) metric, which also
holds for more general costs. This allows to give a sense to Brenier’s weak variational
solutions for this large class of PDEs composed of a "classical" Monge-Ampere op-
erator combined with lower order non linear terms. This includes for instance the
JKO scheme, moment maps, and is a key ingredient for the regularity of Unbalanced
Optimal Transport maps. Last, we give explicit links between c-convex functions/c-
segment for the cost induced by the WFR metric and c-convex functions/c-segment
for the associated cost on the cone space. One of the main corollaries is that weak
Ma-Trudinger-Wang condition on the cone implies it for the cost induced by WFR.

1.3.2 Unbalanced gradient flows and general reaction diffusion PDEs

Articles:

11. A JKO splitting scheme for Kantorovich-Fisher-Rao gradient flows. SIAM
Journal on Mathematical Analysis, Vol. 49, Issue 2. (2017) https://arxiv.
org/abs/1602.04457. Gallouét T.O. et Monsaingeon L.
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12. An unbalanced optimal transport splitting scheme for general advection-
reaction-diffusion problems. Journal of Differential Equations ESAIM: Control,
Optimisation and Calculus of Variations (2018) https://hal.science/hal-01508911.
Gallouét T.O., Laborde M. and Monsaingeon L.

The first article is written in collaboration with L. Monsaingeon. In this work we
set up a splitting variant of the Jordan-Kinderlehrer-Otto scheme in order to han-
dle gradient flows with respect to the Wasserstein-Fisher-Rao metric, defined on the
space of positive Radon measure with varying masses. We perform successively a
JKO time step for the quadratic Wasserstein/Monge-Kantorovich distance, and then
for the Hellinger/Fisher-Rao distance. Exploiting the inf-convolution structure of
the metric we show convergence of the whole process for the standard class of en-
ergy functionals under suitable compactness assumptions, and investigate in details
the case of internal energies. The interest is twofolds: on the one hand, we prove
existence of weak solutions for a certain class of reaction-advection-diffusion equa-
tions, and on the other hand this process is constructive and well adapted to avail-
able numerical solvers. From a technical point of view, this approach has the ad-
vantage of avoiding too detailed an examination of the geometry of the WER space,
which is now well known. [13].

Later and with M. Laborde in addition, we extended this work and showed
that unbalanced optimal transport provides a convenient framework to handle more
general reaction and diffusion processes in a unified metric setting. Using the same
strategy of alternating minimizing movement schemes for the Wasserstein distance
and for the Fisher-Rao distance, but with a different energy for each step, we prove
existence of weak solutions for general scalar reaction-diffusion-advection equations
or systems of multiple interacting species like prey-predator systems. We also con-
sider an application to a very degenerate Hele-Shaw diffusion problem involving a
Gamma-limit. Moreover we provide some numerical simulations using an ALG2-
JKO strategy for the Wasserstein JKO step. This splitting strategy allows to transfer
all recent developments on the JKO scheme to the case of reaction-diffusion equa-
tions such as Unbalanced gradient flows.

1.3.3 Camassa-Holm

Optimal Transport and Unbalanced Optimal transport costs share the same struc-
ture, in particular the existence of a right invariant action leading to a formal Rie-
mannian submersion. In the optimal transport case the geodesic on the isotropy
group of this action and for the induced metric are exactly the Incompressible Eu-
ler’s equations. Y. Brenier used this remark to propose, among other things, the
notion of generalized solutions for the Incompressible Euler’s equation where the ini-
tial and final positions are given. The natural question we asked ourselves was:
"what is the counterpart to the incompressible Euler’s equations in the Unbalanced
Optimal Transport framework". This question led to the following two works to-
gether with EX. Vialard and then with FX. Vialard and our shared postdoc student
A. Natale. The counterpart of the Incompressible Euler’s equations is identified to
the Camassa-Holm equation when d = 1, and one of its possible multi-dimensional
generalizations when d > 1: the geodesic on the group of diffeomorphisms for the
H(div) metric.

Articles:
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13. The Camassa-Holm equation as an incompressible Euler equation: a geo-
metric point of view. Journal of Differential Equations, Volume 264, Issue 7, Pages
4199-4234. (2018) https://arxiv.org/abs/1609.04006. Gallouét T.O.
and Vialard EX.

14. Generalized compressible flows and solutions of the H(div) geodesic prob-
lem. Archive for Rational Mechanics and Analysis, Springer Verlag (2020) https:
//hal.science/hal-01815531v3. GallouétT.O., Natale A. et Vialard F.X.

The group of diffeomorphisms of a compact manifold endowed with the L? met-
ric acting on the space of probability densities gives a unifying framework for the
incompressible Euler equation and the theory of optimal mass transport. In 13, we
show a similar relation between this unbalanced optimal transport problem and the
H(div) right-invariant metric on the group of diffeomorphisms, which corresponds
to the Camassa-Holm equation in one dimension. It leads us to study this geodesic
problem on the group of diffeomorphisms, equipped with the H(div) metric. Ge-
ometrically, we present an isometric embedding of the group of diffeomorphisms
endowed with this right-invariant metric in the automorphisms group of the fiber
bundle of half densities endowed with an L? type of cone metric. This point of
view has three applications: (1) We interpret solutions to the Camassa-Holm equa-
tion and one of its generalization in higher dimension as particular solutions of the
incompressible Euler equation on the plane for a radial density which has a sin-
gularity within the origin. This correspondence can be introduced via a sort of
Madelung transform. More precisely on S! it gives that solutions to the standard
Camassa-Holm thus give radially 1-homogeneous solutions of the incompressible
Euler equation on R? which preserves a radial density that has a singularity at 0.
(2) We generalize a result of Khesin et al. in [9] by computing the curvature of the
group as a Riemannian submanifold. (3) Generalizing a result of Brenier to the case
of Riemannian manifolds, which states that solutions of the incompressible Euler
equations are length minimizing geodesics for sufficiently short times. We prove a
similar result for the Camassa-Holm equation: smooth solutions of the Euler-Arnold
equation for the H(div) right-invariant metric are length minimizing geodesics for
sufficiently short times.

We then pursue the analogy with Brenier’s work for the Incompressible Euler’s
equations in 14. In particular we propose a relaxation a la Brenier of this problem,
in which solutions are represented as probability measures on the space of continu-
ous paths on the cone over the domain. We call the minimizers of such a relaxation
generalized solutions. This approach allows us to obtain several results on the H (div)
geodesic problem. In particular, we show that: if the base space is convex, smooth
H(div) geodesics are globally length-minimizing for short times and in any dimen-
sion. This result generalizes the one in 13, which was only valid on the unit circle and
was local otherwise. On the torus S' x S!, we show that there exists h € Diff (S x S!)
such that the infimum of the action problem, that defined the generalized geodesics
of Camassa-Holm equation, cannot be attained by any smooth flow. This result is
within the spirit of Shnirelman’s work on Incompressible Euler’s equations [17]. On
the contrary, for the same h there exists a generalized solution that arises as the limit
of a minimizing sequence of smooth flows.There exists a unique pressure field in
the sense of distribution associated with generalized solutions. To the best of the au-
thors” knowledge, the pressure field we consider is a variable that has not been stud-
ied before in the literature on the Camassa-Holm equation or the H(div) geodesic
problem. It appears however as a natural variable in the generalized setting and
deserves a closer look from a more conventional PDE perspective in order to obtain
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a priori estimates. Finally, we propose a numerical scheme to construct generalized
solutions on the cone and present some numerical results illustrating the relation
between the generalized Camassa-Holm and incompressible Euler solutions.
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Chapter 2

Optimal transport geometry and
PDE

2.1 Optimal Transport

Articles:

e Second order models for optimal transport and cubic splines on the Wasser-
stein space. Foundations of Computational Mathematics, Springer Verlag (2019)
https://hal.science/hal-01682107v2 J.D. Benamou, Gallouét T.O. et
Vialard EX.

e From geodesic extrapolation to a variational BDF2 scheme for Wasser-
stein gradient flows. Under minor revision Mathematics of Computations
(2022) Gallouét T.O., Natale A. et Todeschi. G https://hal.science/
hal-03£790981v2

Collaborators: The first paper has been done with two collaborators I got when I
arrived at Inria Paris: J.D. Benamou (DR Inria Paris) and E.X. Vialard (MCF Dauphine
then Professeur Paris Est). The second paper is done with A. Natale (former post doc
student of mine now CR at Inria Lille) and G. Todeschi (former PhD student of mine
now Post-doc.)

Main contributions:

Cubic Splines:
e We propose a notion of relaxed cubic splines in the Wasserstein Space.

e We propose and implement three different numerical methods in order to com-
pute these cubic splines. Based on the one hand on entropic regularization and
on the other hand on Semi discrete Optimal Transport.
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Wasserstein extrapolation:

e We propose different notions of Wasserstein extrapolation for the quadratic
cost. We prove the well-posedness of these notions.

e We propose different numerical scheme in order to approximate these defini-
tions. We prove the convergence for a large class of scheme but not the one
used in the numerical section.

e We implement one of these scheme for which we give numerical evidence of
convergence.

Research directions: With A. Natale and G. Todeschi we are continuing our work
on the extrapolation of Wasserstein geodesics especially for the metric extrapolation
which seems to us to have the richest structure. We explore the different equivalent
definitions (primal, dual,..) and aim to fill the gap left in the previous paper on the
numerical implementation for this definition of Wasserstein extrapolation. On e ap-
plication would be to build another variational order two in time numerical scheme
for Wasserstein gradient flows see Section 2.2.2 for more details.




SECOND ORDER MODELS FOR OPTIMAL TRANSPORT AND CUBIC
SPLINES ON THE WASSERSTEIN SPACE

JEAN-DAVID BENAMOU, THOMAS O. GALLOUET, AND FRANCOIS-XAVIER VIALARD

ABSTRACT. On the space of probability densities, we extend the Wasserstein geodesics to the
case of higher-order interpolation such as cubic spline interpolation. After presenting the natural
extension of cubic splines to the Wasserstein space, we propose a simpler approach based on
the relaxation of the variational problem on the path space. We explore two different numerical
approaches, one based on multi-marginal optimal transport and entropic regularization and the
other based on semi-discrete optimal transport.

1. INTRODUCTION

We propose a variational method to generalize cubic splines on the space of densities using
multimarginal optimal transport. In short, the proposed method consists in minimizing, on the space
of measures on the path space, under marginal constraints, the norm squared of the acceleration.
In this setting, we show that two numerical approaches, classical in optimal transportation can be
applied. One is based on entropic regularization and the Sinkhorn Algorithm, the other relies on
the Semi-Discrete formulation of Optimal Transportation and the computation of Laguerre cells, a
classical problem in computationnal geometry. We showcase our methodology on 1D and 2D data.

In the past few years, higher-order interpolations methods have been investigated for applications
in computer vision or medical imaging, for time-sequence interpolation or regression. The most usual
setting is when data are modeled as shapes, which can be understood as objects embedded in the
Euclidean space with no preferred parametrization: space of unparametrized curves or surfaces, or
images are some of the most important examples. These examples are infinite dimensional but the
finite dimensional case of a Riemannian manifold was interesting for camera motion interpolation
as first introduced in [22] and further developed in [6, 8]. Motivated by different applications, the
problem of interpolation between two shapes is usually treated via the use of a Riemannian metric on
the space of shapes and computing a geodesic between the two shapes. From a mathematical point of
view, shape spaces are often infinite dimensional and thus, non-trivial analytical questions arise such
as existence of minimizing geodesics or global well-posedness of the initial value problem associated
with geodesics. A finite dimensional approximation is still possible such as in [29], in which spline
interpolation is proposed for a diffeomorphic group action on a finite dimensional manifold. It has
been extended for invariant higher-order lagrangians in [11, 12] on a group, still finite dimensional.
A numerical implementation of the variational and shooting splines has been developed in [26] with
applications to medical imaging. The question of existence of an extremum is not addressed in these
publications. An attempt is given in [28] where the exact relaxation of the problem is computed
in the case of the group of diffeomorphisms of the unit interval. In a similar direction, in [13],
the authors discuss the convergence of the discretization of cubic splines in some particular infinite
dimensional Riemannian context on the space of shapes.

As a shape space, we are interested in this article in probability measures endowed with the
Wasserstein metric. Since the Wasserstein metric shares some similarities with a Riemannian metric
on this space of probability densities, it is natural to study further higher-order models in this
context. Our motivation is to answer the following practical question of the extension of cubic
splines to the Wasserstein space and their numerical computation.

We present in Section 2 the notion of cubic splines on a Riemannian manifold and detail its
variational formulation in Hamiltonian coordinates. We then discuss independently in Section 3 a

1
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geometric approach to the Wasserstein space that will be useful for the introduction of our proposed
method detailed in Section 4. Finally in Sections 5 we present the numerical entropic relaxation
method and an alternative numerical method based on semi-discrete optimal transport. The reader
not interested in geometric interpretation can skip directly to Section 4.

To the best of our knowledge, this question has not been yet addressed in the literature on optimal
transport until very recently in two independant and simultaneous preprints : [31] and [14] (this
paper). Both work share the same idea of relaxing the cubic spline formulation in the space of
measure using multi-marginal optimal transport. Our paper however explores a larger hierarchy of
models and several numerical methods.

2. CUBIC SPLINES ON RIEMANNIAN MANIFOLDS

In this section, we present Riemannian cubics, which are the extension of variational splines to
a Riemannian manifold (M, g) where g is the Riemannian metric. Variational cubic splines on a
Riemannian manifold are the minimizers of the acceleration; that is, denoting 1% the covariant
derivative, minimization on the set of curves x : [0,7] — M of the functional

! D D
(2.1) E(x) —/0 g(x) <th, th) dt,
subject to constraints on the path such as constraints on the tangent space, (x(¢;),Z(¢;)) are pre-
scribed for a collection of times ¢; € [0, 1], or constraints on the positions such as x(t;) = z;.

Under mild conditions on the constraints, if M is complete, minimizers exist, for instance in the
case of constraints on the tangent space mentioned above. A pathological case where minimizers
might not exist is when the initial speed is not prescribed. Consider for instance the two dimensional
torus, where lines of irrational slopes are dense, it is possible to show that for any collection of points
which do not lie on a line, the infimum of £ is 0 while it is never reached, see [13]. The Euler-Lagrange
equation associated to the functional & is

3
(2.2) %x - R <i:, lix) =0,
where R is the curvature tensor of the Riemannian manifold M. Note that this equation is similar
to a Jacobi field equation.

We now formulate the variational problem in coordinates. In a coordinate chart around a point
x(t) € M, the geodesic equations are given by

D . . .

(2.3) D=1 +TI'(z)(2,2) =0,
where I' is a short notation for the Christoffel symbols associated with the Levi-Civita connection.
It is a second-order differential equation which is conveniently written as a first-order differential
equation, via the Hamiltonian formulation. Again in local coordinates on T™* M the cotangent bundle
of M, the geodesic equation can be written as

{p+mHo

2.4
24) i—0,H =0,

where H(z,p) = 1g(z)~*(p,p). Note that, the ODE (2.3) can be obtained from the Hamiltonian
system using @ = g(x)~'p. From these two equivalent formulations (2.3) and (2.4), it can be shown
that g~ 1(2)(p + 0, H) = %Jb. Therefore, it proves that the variational spline problem can be
rewritten in Hamiltonian coordinates as follows

1
inf/ g(x) " Ha,a)dt,
“ Jo

under the constraint
& —g(x)~'p=0
p+0:H(z,p)=a,
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with initial conditions z(0) = zo and p(0) = po. It is natural to ask whether such variational
problems carry over in infinite dimensional situations such as the Wasserstein space, which will be
discussed in the rest of the paper.

3. A FORMAL APPLICATION OF SPLINE INTERPOLATION TO THE WASSERSTEIN SPACE

It is well known that the Hamiltonian formulation of geodesics on the Wasserstein space, define
over a riemannian manifold M, are

(3.1) {/’)+V-(pv¢) =0

¢+ 3Vel* =0,
where p : M — Ryp and ¢ : M — R implicitly time dependant are respectively a probability

density and a function. Note that these equations are valid when working with smooth densities.
The Hamiltonian is the following,

1
(3.2) Hp.0) =5 [ [VoPpduo,
M
where g is a reference measure on M.

Remark 1. Taking the gradient of the equation governing ¢, and denoting v = V¢, we get Burger’s
equation:

(3.3) b+ (v, V)o =0,

where in coordinates, the operator (v, V) is defined as (v, V)w = >""_ , v;Vw; where v, w are vector
fields and n is the dimension of the M. In Lagrangian coordinates, this equation implies that

(3-4) ¢=0,

where ¢(t) : M — M is the Lagrangian flow associated with v (¢ = v o ¢), which is well-defined
under sufficient regularity conditions.

Remark 2. For the Wasserstein case, the operator is given by g(p)~1¢ = —V - [pV¢] so that the
(formal) computation of the covariant derivative % p on the Wasserstein space is:

D

Htp ==V [p+(v,V)v)],

where v = V¢ is the horizontal lift associated with p, that is p+ V- (pV¢) = 0. This result is proven
rigorously in [18].

(3.5)

From a control viewpoint, we aim at minimizing % fol H(p,a)dt for the control system:

{pw-(pvm =0

(36) 6+ LVoP =a,

where a is a time dependent function defined on M. Alternatively, in terms of the variables (p, ¢),
this amounts to minimize

1 o
(3.7 | v 5V ap at,

under the continuity equation constraint p+ V- (pV¢) = 0. It is a nonconvex optimization problem
in the couple (p, ¢). The key issue here is that the variational problem itself is a priori not well-posed
since our formulation is valid in a smooth setting and to make it rigorous on the space of measures,
the tight relaxation of this problem is needed. However, we do not address this issue in our work and
in the next section we turn our attention to a simple relaxation of the problem which is probably
not tight.
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4. A HIERARCHY OF RELAXED MODELS

4.1. Context. We recall the classical optimal transport setting. We have the following well known
equivalence [23, 30]

1 1
W) =int [ ePapar =it [ [ P apar
1 1
:inf/ inf/ lv|*> dpdt = inf/ / |Vo|* dpdt
pJo v Jum Ve Jo Jm

[o(t)] w0 = p(t) for t = 0,1

([o(t)]+ 1o is the image measure of o : [, f(y) dle(t)]«po(y) = [ f(T'(x)) du(z) for every measurable
function f: M — R)

and the continuity equation

(4.1)

Under constraints that

p+V-(pv)=p+V-(pVe) =0
with fixed initial and final conditions

p(0) = po and p(1) = p1.

Moreover, geodesics in the space of densities for the Wasserstein metric are given by
[o(t)]«po = p(t) and the associated displacement maps satisfy v o p = .

The last equality in (4.1) exactly says that the infimum inf,q) [,, [v(t)|* dp(t) among all v(t)
satisfying the continuity equation at each time ¢ is achieved when v(¢) is a gradient. This property
is a consequence of a Riemannian submersion and V¢ is called the horizontal lift of p. It is this last
formulation that formally gives a Riemannian structure on the space of probability measures. See
the remark 1 below for more details on the geometrical structure.

For higher-order variational problems, e.g. the minimization of the acceleration, the reduction in
the last inequality does not holds true in general, even if the Riemannian submersion structure is
present as shown in [12]. It means in the case of acceleration that, a priori, with the same constraint
as for (4.1) :

1 1
inf/ / 1|2 dpg dt zinf/ |0+ (v, V)v|* dpdt
v Jo JMm v Jo Jm

1
4 inf / 16+ (Vé, V)Vo[2 dpdt,
Vo Jo Jm

(4.2)

where we have used that g =00+ (vop,V)vop.

Remark 1. From a geometrical point of view, (4.1) says the Wasserstein space can be seen, at least
formally, as a homogeneous space as described in [15, Appendix 5] and originally in [23]. Consider
the group of (smooth) diffeomorphisms of M a closed manifold, Diff (M), and the space of (smooth)
probability densities Dens(M). The space of densities is endowed with a Diff (M) action defined by
the pushforward, that is to a given ¢ € Diff (M) and p € Dens(M), the pushforward of p by ¢ is
Jac(o™Ypop~!. By Moser’s lemma, this action is transitive, thus making the space of densities
as a homogeneous space. More importantly, there exists a compatible Riemannian structure between
Diff(M) and Dens(M). Once having chosen a reference density o, the L?(M, uo) metric on the
diffeomorphism group descends to the Wasserstein L? metric on the space of densities, or in other
words, the pushforward action ¢ — .o is a Riemannian submersion. An important property of
Riemannian submersion is that geodesics on Dens(M) are in correspondence with geodesics on the
group, given by horizontal lift. This property is actually contained in Brenier’s polar factorization
theorem, which shows that the horizontal lift is the gradient of a convex function.
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4.2. The Monge formulation. In Section 3 we used the formal Riemannian structure on the set
of probability measure to define an intrinsic notion of splines, (3.7) is indeed the RHS of inequality
(4.2). In this section we propose a simpler alternative definition of Wasserstein splines based on the
LHS of inequality (4.2).

Definition 1 (Monge formulation). Let 0 =ty < ... <t, =1,n > 2 and py, ..., pn be n probability
measures on M.
Minimize, among time dependent maps ¢(t) : M — M,

(4.3) //Iw\ dpo dt,

under the marginal constraints ¢(t;).«po = p;. This minimizing problem is denoted by (M .S).

It is a Monge formulation of the variational problem, similar to standard optimal transport. On
a Riemannian manifold M, the notation ¢ stands for %gb. By the change of variable with the map
, the problem can be written in Eulerian coordinates, that is using the vector field associated with
the Lagrangian map ¢, 9y = v 0 ¢, one aims at minimizing for (p,u)

1
(1.4) | [ wpdu i
0 M

under the constraints

p+div(pv) =0
(4:5) {1’1 + (v,V)v=u,

with the marginals constraints p(t;) = p;.

Remark 2. Remark that formally when v = V¢, this new model reduces to the formulation (3.7).
Therefore, it justifies the fact that Problem (4.3) is a relaxzation of (3.7). However, as already
mentioned, this relaxation is probably not tight.

Another formal geometric argument in the direction of proving that the two formulations are
different is that the Wasserstein space has nonnegative curvature if the underlying space M has
nonnegative curvature, but the space of maps in the Fuclidean space is flat. Therefore, the two
Euler-Lagrange equations (2.2) lead to a different evolution equations: for instance, if M is the
Euclidean space then the Euler-Lagrange equation for the second model is simply @ = 0, which is a
priori different from the splines Fuler-Lagrange equation in the Wasserstein case.

4.3. The Kantorovich relaxation. Since, as is well-known in standard optimal transport, the
Monge formulation is not well-posed for general given margins ps,..., p,, we propose instead to
solve yet another relaxation of the problem on the space of curves which takes the form:

Definition 2 (Kantorovich relaxation). Let 0 = ¢t; < ... < t, = 1, n > 3 and p1,...,p, be n
probability measures on M.

Minimize on the space of probability measures on the path space H2(]0,1], M) denoted by H in
short,

(4.6) min/ %2 dp(z)

woJn
which is a linear functional of du. The curves of densities is given by its marginals in time
(4.7) t= p(t)po = [ed«(u)

e is the evaluation function at time ¢ : if v € H?([0,1], M) C C°([0,1], M) then e;(y) = ~(¢,.) € M.
The notation [es].u is the image measure by the map e; defined by duality :
Jor F) dledsu(y) = [, flei(x)) du(z) for every measurable function f: M — R. Note that z is a
path on [0,1] x M while y is a pomt on M.

With these notations, the marginal constraint at given time t; are

(4.8) led]« (1) = pi o -
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By standard arguments, the Kantorovich relaxation admits minimizers under general hypothesis
on the manifold M, which we do not detail here. It is straightforward to check that existence of
minimizers holds when M = R?

As expected, the Kantorovich formulation is the relaxation of the Monge formulation in Definition
1.

Theorem 1. Let M =R%, 0=t, < ... <t,=1,n>3 and p1,...,pn € be n probability measures
on R? with compact support and py being atomless. Then, under the constraints (4.8), the infimums
of the variational problem (4.3) and (4.6) coincide, moreover, the infimum is attained for the latter.

Proof. See the proof of a more general result in Appendix A. O

First we remark that we can reformulate both the Monge and Kantorovich problems on the
set of cubic splines. It is the purpose of the following lemmas and corollaries, whose proofs are
straightforward.

Definition 3 (Cubic interpolant). Let (z1,...,2,) € R? be n given points and (t; < ... < t,) be
n timepoints. There exists a unique cubic spline minimizing the acceleration of the curve z(t) such
that x(t;) = ;. This unique curve is called cubic interpolant and is denoted by ¢, ... 4, , depending
implicitly on the timepoints.

Lemma 2. When the supports of the measures p; are compact on R?, the support of every minimizing
w in Definition 2 is included in the set the cubic interpolants ¢y, .. 5, for (x1,...,2,) € Supp(p1) X
... X Supp(pn)-

Proof. The constraints are the marginal constraints [e,]«(u) = p; for ¢ > 3 which implies that set
of paths charged by an optimal measures satisfies x(¢;) € Supp(p;). In particular, any path in this
set can be replaced by its minimal spline energy, the cubic interpolant c;, ... 4, - g

Corollary 3. As a consequence, the set of paths charged by an optimal plan are uniformly C? and
for every smooth function 1 : R +— R with compact support, the map t — {(u(t),n) is C2.

Proof. The set of cubic interpolants is compact since the map (z1,...,%n) = ¢4, 2, IS continuous
from R9" to the space of C? fonctions (solution of an invertible linear system) and Supp(p;) are
compact. Therefore, the set of maps are uniformly C'. The last point follows directly. ]

Corollary 4. The Kantorovich problem in Definition 2 on R¢ reduces to a multimarginal optimal
transport problem, as follows, let c(z1,...,2,) be the continuous cost of the cubic interpolant at
times t1, . ..,tn, the minimization of (4.6) reduces to the minimization of

(4.9) / nC($1,~~~,$n) dr(z1,...,2n) (K)

on the space of probability measures T € P(M™) and under the marginal constraints (p;).«(m) = p;
where p; is the projection of the i factor.

Proof. Direct consequence of Lemma 2. g
Similarly
Corollary 5. The Monge problem in Definition 1 on R¢ reduces to a Monge multimarginal optimal
transport problem, as follows, let c¢(x1,...,%,) be the continuous cost of the cubic interpolant at
times ty,...,t,, the minimization of (4.3) reduces to the minimization of
(410) [ et ) dpo(@),
M

on the space of path o € C%([0,1], M) (or even cubic splines) and under the marginal constraints
(@(t:))spo = pi-

The dual formulation of the minimization problem (K) is also well known [16, Theorem 2.1]
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Definition 4 (Kantorovich dual problem (KP)). Let Q = {¢; € L'(p; o) ,i = 1..n} be the space
of integrable n-uplet. Maximize on Q

(4.11) Z/ ®ip; 1o, under the constraint Zgbl(xl) < (T, ey Tn).
i=17M i=1

And the following duality results holds true:

Proposition 6. There ezists a n-uplet (¢;)i=1... € Q optimal for (KP). Moreover (K)=(KP) and
for any 7 optimal in (4.9) there holds Y 7 ¢i(z;) = c(x1,...,xn), ™ almost everywhere.

A natural question is whether the solution of the Kantorovich problem (K) is admissible in the
Monge formulation (M.S) (Definition 1). With the formulation reduced above the spline, given
by (4.9) and (4.10), one can try to apply existing theory to answer to this question, see [16, 24]
and references therein for precise criterion. However our cost does not satisfy any of those known
criterion. In fact, we have the following result which proves that the relaxation to plans are necessary
even in the context of Theorem 1.

Proposition 7. (Counter Example) Given the three-marginals problems of minimizing the acceler-
ation, there exist data (po, p1,p2) such that pg is atomless and such that the solution of (K) is not
a (measurable) Monge map.

Proof. Consider pg(z) = 1/_1,1 and the Dirac masses ¢ = 6; and b = 6_; and the maps T,,T}
that respectively pushforward pg onto a and b. These maps are uniquely determined and affine.
Consider now p2 = 2(T%).po+ 2 (T})+po = %+ %. Then, introducing (7%/2) = $(Id+T), we consider
p1 = %(T;/Q)*po + %(Tbl/z)*pg7 note that it is equal to pg since the maps ij/bQ are affine.

By construction, the minimization of the acceleration for (pg, p1, p2) is null since it is a mixture
of plans supported by straight lines. If there existed an optimal Monge solution it is necessarily
supported by only one map denoted by T" and since the cost is null, the map at time 1/2 is necessarily
T'/2 defined above. The preimage of 1 (resp. —1) by T is a measurable set A (resp. B). Then,
necessarily, p1 = (T%?).xa + (T"?).x5, and in fact, T4 = Ty and Tjp = Ty (since the image of
the map is known). Therefore, we have p; = 2y 4 o (Tal,/z)*1 +2xpo (Tbl/Q)*1 which is not equal to
the uniform Lebesgue measure on [—1,1]. O

Remark 3. It is an open question to prove or disprove a similar result when the final density po is
atomless. The counterexample explained above strongly uses the fact that the final density is a sum
of Dirac masses and it might not be robust when replacing the final density by a uniform density on
a small interval.

4.4. The corresponding interpolation problem on the tangent space. The relaxed problem
on the space of curves can be used to define variational interpolation problem on the phase space, or
more precisely on the tangent space TM. Since the space H2([0, T], M) is contained in C ([0, T], M),
one can formulate the optimal transport problem on phase space (identified with the tangent space)
for the acceleration cost.

Definition 5 (Optimal transport on phase space). Let gy, g1 be two probability measures on TM.
Minimize on the space of probability measures on H,

(4.12) min/ |22 dp(z)
H H
which is a linear functional of p under the marginal constraints

(4.13) [jol« (1) = po, and [ju]«(p) = p1,
where j; : H2([0,T], M) — TM is defined by ji(z) = (z(t),(t)).
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Ry

FIGURE 1. The inital density at time 0 is described with a mixture of two densities
colored in red and blue which are evolving indepently along straight lines in time.
The blue density is mapped onto —1 and the red density is mapped onto 1. The
acceleration cost is null and the proof of Proposition 7 shows that it is not possible
to reproduce the density at time 1/2 by a map.

Proposition 8 (Optimal interpolation on phase space). The support of every optimal solution is
contained in the set of cubic splines interpolating between (x,v) € Supp(py) and (y,w) € Supp(p1).
Moreover if M = R® and if po has density with respect to the Lebesque measure, then the unique
solution to Problem (4.12) is characterized by a map ¢ : TM — TM.

Remark that the optimal solution in the last part of Proposition 8 provides an interpolation on
the phase space using [j¢]« ().

Proof. The proof of the first part is similar to Lemma 2 and the second part follows by application of
Brenier’s theorem since the total cost of the cubic splines between (x,v) and (y, w) can be explicitly
computed as

(4.14) epn((2,0), (y,w)) = 120 — y|* + 4(jv]* + |w]* + (v,w) + 3(v + w,z — y))
and satisfies the twisted condition, so [30, Theorem 10.28] applies. O

Note that this problem is very different from using the Wasserstein distance on P(T'M) where
the tangent space T'M is endowed with the direct product metric. Indeed, the cost c¢,; does not
vanish on the diagonal (z,v) = (y,v) contrarily to the quadratic cost on T M.

Interestingly, let us remark that the multimarginal problem can be recast as the minimization

problem on II € P(T'M x ... x TM), denoting II;, ;,,, the pushforward on TM x TM at times
—_————

n times
(tistit1),
n—1
(4'15) Hlﬂin Z<Hti7ti+1 ’ Cph((xh vi)v (1’,’+1, UiJrl)))
=1

under the constraints that [e,]«(IL;;41) = p;. From the numerical point of view, this rewriting
might be useful since the cost used on the multimarginal problem is now separable in time. This
relaxation to the tangent space is used in the semidiscrete algorithm in Section 5.3.1. Obviously, up
to the minimization on the variables v;, we retrieve the minimization problem (K) since one has a
cost ¢ which is defined on M™

n—1
(4.16) C(xo, e ,xn) = min Z cph((x,;, ’Ui), (.%1‘,_;,_1, 1)1‘_:,_1))

V0., Un =
i=1
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where the index ¢ runs over the marginals.

5. NUMERICAL STUDY

We have discussed several variational relaxation of the classical definition of splines, applied
to the Wasserstein space of densities. At least two different numerical techniques from Optimal
Transportation can be used in this setting. We apply the Entropic regularisation and Sinkhorn
(briefly recalled in appendix B first to a simple Hermite interpolation problem (section 5.1) and
then in section to the multimarginal problem (4.9). In section 5.3, we use the semi-discrete Optimal
Transportation approach in the spirit of [21] directly to problem (4.6) without the time discretisation
in (4.9).

5.1. Hermite interpolation. In this section, we are interested in the problem of interpolation on
the phase space described in the previous. The marginals [e;]. (1) are densities defined on the tangent
space TM. If we only specify the marginals at time 0 and 1 as empirical measures: [eg].(1) =
Zle @; 0z,0,, and [e1]«(pn) = Zle Bj dy,0w,;, as explained in Section 4.4, we can simplify the
Kantorovich using the exact L? norm of the acceleration of the spline between (z,) and (y,w),
whose cost is given in Formula (4.14). Again, let us underline that this cost is not a Riemannian
cost on the tangent space of R¢ since if v = w and xz,y are close, the cost is dominated by the
term 4(|v|? + |w|? + (v, w)) which need not be zero. Then, the Kantorovich problem reduces to the
minimization of

k.l
(5.1) > mige(@ivi), (g, wy)

3,j=1

under the constraints

k
(5.2) Z;‘:l Tij = Bj
Zj:l Tri,j = Q.

Tt is straightforward to apply entropic regularization/Sinkhorn in this case which amounts to add,
for a positive parameter ¢, € ZZ ; Tij log(7;,;) to the previous linear functional and to numerically
solve the corresponding variational problem with the Sinkhorn algorithm [27, 9] (See also appendix
B where Sinkhorn algorithm is detailed in the more general multimarginal case). It is interesting to
note that the choice of € is more delicate than in the standard case of a quadratic distance cost.

In Figure 2, we present the convergence rate of this method with respect to two different values
of ¢ and the most likely deterministic plan given the optimal plan 7°. Note that this entropic
regularization method scales with the number of points as N? and is valid in every dimension.

5.2. MultiMarginal formulation. This is the direct discretization of (4.6) which avoids working
in phase space with the cost (4.16) thus enabling fast computations in 2D. In what follows, the time
cylinder [0,1] x M is discretized in time as @),_, 5 M;, the product space of N + 1 copies of M at
each of the N +1 time steps. We will use a regular time step discretization 7; = i dr where dr = +

N-
Using a classic finite difference approach, the time discretization of (4.6) is

Hdr

(5.3) min/® Car(@1y ey on) Appar (X1, oy TN )

i=0,N M;

where /14, now spans the space of probability measures on §),_, 5 M; representing the space of
piecewise linear curves passing through g, z1, ..., xny at times 7, ..., 7n.

A straighforward computation gives

(5.4) Car(T1, .., TN) = Z

i=1,N—1

zig1 + @it — 224
dr3
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0o

FIGURE 2. Convergence (left) and Hermite interpolation problem between Two
empirical measure in phase space (right). We represent the most likely splines in
the position space.

For all times, marginals (4.7) are computed as :
(55) Tj = / dud-r(llfl, ..:L'N)
Rz Mi

In order to simplify the presentation we will assume that the marginal constraints (4.8) are set
at times 1, ..t, which coincide with times steps of the discretization (of course n < N, meaning the
number of constraint is not the same as the number of time steps).

In short, there exist (j1,..jn) € [0, N] such that

(tl, 7tn) = (le, ceey Tjn)'
The constraint (4.8) becomes for all k =1,..n
(5.6) L deaonan) = piuas)
®i¢jk M;

where pj, is the prescribed density to interpolate at time 7;, = tj.
The time discretized problem is the multimarginal problem (5.3 -5.6).

The simplest space discretization strategy is to use a regular cartesian grid. In dimension 2 and
for M = [0,1] and at time ¢;, the grid will be denoted z,, g, = (v h, B;h) for (a;, 3;) € [0, N;] and
h= NLm, a={a;} and b = {f;} will be the vectors of indices.

The time and space discretization of the problem then becomes

(57) m'llnzb Ca7b Ta,b

Where T is the N x N, x N, tensor of grid values par(Tay 8, Tay,sy) and
(5.8) Cap = Cdr (xoc1,[31 r ey iaNsBN)

The marginals (5.5) at all times 7; are given by

(5.9) > T
a\{as 1, b\ (85}
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The constraints (5.6) therfore becomes for all k

(5.10) Yo Tap=ri(Tay,5,)
a\{ajk }x b\{ﬂjk}

a\ {a;,} denotes the set of indices ¢ minus «;, .

The Entropic regularized problem is

(5.11) min D ACup Tsy + €Ty, log(Ty )}

a,b

and easier to solve. See Appendix B for a description of Sinkhorn algorithm.

Numerical Simulations.
1D case: We present, figures 3 and 4, a 1D test case to highlight some of the qualitative properties
of the cubic splines interpolation on the space of densities.

We consider four interpolation time points and the corresponding data are mixture of Gaussians
of different standard deviations. We use a discretization of 140 points on the interval [0, 1] with
16 time steps. The doted line represent the reconstructed density curve in time. This experiment
shows that the mass can concentrate or diffuse in some situation.

Another important point here is that the entropic regularization parameter has an important
impact on this concentration/diffusion effects: we show the simulations for e = 0.002 and ¢ = 8.10~°.
In the simulation with a large €, the concentration effect is not present and it is due to the diffusion
on the path space.
2D case: We present a 2D test case which computes a Wasserstein spline in the sense of (5.7) inter-
polating four Gaussian identical densities at time 1, 5, 13, and 17, see figure 5. We use a time step
dr =1 and 17 N = 17 time steps. The space discretization is Nx = 50. The entropic regularization
parameter is € = 0.002, note that the stability of the method depends on this parameter. It also
generates artificial diffusion as it becomes more costly top concentrate the available mass on fewer
Euclidean splines between the points of the support of the four Gaussians. We can compute the
interpolating densities at intermediate times using (5.9) but is more interesting to represent in figure
6 the contour line of the third quartile, i.e. the highest values of the densities representing 1/4 of the
total mass. Comparing with figure 7, it seems clear that the Entropy diffusion spreading pollutes
the solution of the original problem (without entropic regularization).

We compare this solution with the classical Quadratic cost Optimal Transport interpolation, i.e.
with the speed instead of the acceleration in the cost. More precisely taking :

_ g1 — ai)?
(5.12) Car(1, .y TN) = > —
i=0,N—1

As expected the mass follows respectively the linear interpolation or the Euclidean spline inter-
polation of the center of the Gaussians which are represented as thick red lines in figure 5.

Finally we show the convergence of the Sinkhorn iterate for both simulations in figure 6. The
convergence is much slower for the speed case but we did not optimize the implementation which
does not need tensors and instead just used a degraded version of the acceleration code. This may
be the reason for this strange difference.

5.3. Semi-Discrete approach. We propose another numerical scheme based on the semi-discrete
approach introduced by Mérigot in [19] in dimension 2 and developed by Levy [17] in dimension 3.
Here we approximate the optimal plan 7 in the formulation (4.9) by a sum of N tensor product of

diracs masses. That is 7 = Z;\Ll (®;L:1 %5)(;;) = Zjvzl %5()(; x2)-
gty
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0.0 0.2 0.4 0.6 0.8 1.0

Initial time data and targets

FI1GURE 3. Four interpolation timepoints, 1,6, 11,16 and representation of the four
density configurations, as well as 6 intermediate times. The doted line represent
the reconstructed density curve in time. This experiment underlines that the spline
curve has more smoothness in time and can present some concentration or diffusion
effects depending on the data which would not be present for the usual Wassertein
geodesic. The entropic regularization parameter is ¢ = 8.107°.

Remark 4. Since there is a unique corresponds between n points (X;,...,XJ”) and the spline
CX1,XT passing through these points at time (t1,....t,) the measure wn can also be seen as N
N ié

direct masses defined over the set of splines: mny = ijl NOex1, xn-

We then have to relax the constraint (p;)«(w) = p; since (p;)«(7n) = Z;\;l +0x: cannot be
J

absolutely continuous. It leads to the following variational problem.

Definition 6 (Semi-discrete variational problem). Let € > 0,0 = < ... <t, =1, n > 3 and
(pi)i=1..n be n absolutely continuous measures. Recall that ¢(Y7,...,Y;,) is the cost of the cubic
spline passing through the points (Y1,...,Y,) at time (¢1,....t,). Let

N
1 n
Qv =1> N x) |(Xi)i=1 v €M

Jj=1
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FI1GURE 4. The same experiment with a larger entropic regularization parameter
€ = 0.002. As expected, we observe less concentration of mass.

13

0.8 0.9

FIGURE 5. Spline interpolation of Four Gaussians with 17 times steps. Left : the
data and the linear and classic cubic spline interpolation of the of Gaussian center
point. Right : the level curve of the third quartile of the density every 2 time
steps, in solid line for our Spline Wasserstein interpolation and in dashed line for
the classic quadratic cost (speed) interpolation.

Then the semi-discrete variational problem, (SDV), is given by

N n N

1 n 1 1
(5.13) (SDV) = min = > e X) LX)+ ﬁwg > :Néxj@,pi ,
=1

Jj=1 Jj=1
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FIGURE 6. Convergence, i.e. Infinity norm of the difference of the Dual unknown
between to Sinkhorn iteration. This is computed every 10 iterations. Left :for the

acceleration cost, right : for the speed cost .
where Ws is the classical Wasserstein distance given by the quadratic cost.

The main drawback of this method is that, as illustrated in the numerical simulations below, the
problem (SDV) is not convex.

5.3.1. Implementation. In order to solve numerically the minimization problem (SDV') we use the
reformulation of the spline cost in the phase space, that is in R?, with tiv1 —t; = 0

n—1
. 1
(514) c (Y17 s 7Y’ﬂ) = (Vl,..\I/ilirel(]Rd)" ; ??CP’L [(}/Za 51‘/;) ) (Y;H-la 51‘/;+1)]
where
(5.15) eonl(@,0), (y,w)) = 12|z — yI* + 4(|v]? + |w]? + (v, w) + 3(v + w,z — y)).

The advantage of the formulation (5.14) is that the cost is separable in the phase space and the
gradient with respect to speeds and positions is easy to compute.

We thus implement a gradient descent in the phase space using the lbfgs function in python.
We compute the gradient by automatic differentiation. The Wasserstein terms in the minimization
problem (5.13) depends only on the positions and are computed thanks to Mérigot Library [1] in

dimension 2. To do simulations in dimension 3 one has to use Lévy Library [2]. The density
constraints p; are given trough linear functions on a triangulation.

Remark 5. Other problems can be addressed using similar optimization problem as in Definition 6.
For instance the quadratic cost in (5.13) leads to Wasserstein interpolation. We can also interpolate

with curves as smooth as we want, using for instance the L? norm of the derivative of order m of
the curve or even other classical interpolating curves.

5.3.2. Numerical simulations. We propose three numerical simulations, one to compare the qualita-
tive results with respect to the multi marginal approach and especially Figure 5. A second one in
order to illustrate the non-convexity issue and a third one for applications in images.

The rotation case: Figure 7. In this case we compute Wasserstein splines passing through four
gaussians with variance 15 and center of masses respectively (0,2), (10,0), (10, 6), (0,4) with con-
straint parameter ¢ = 1073. The number of points is 2000. In this case the result is a global
minimizer and is not sensible to initialization. The lack of convexity is not an issue. Compare to
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spline at time 0.5
spline at time 1.5
spline at time 2.5
spline at time 1.25
spline at time 1.75

FIGURE 7. Spline interpolation for gaussians with 2000 Dirac masses for each mea-
sure, ¢ = 1073, Left: sample of each density constraints p;, i=1,2,3,4. Right:
Some trajectory of diracs masses randomly chosen, marginals at the constrained
time 0,1, 2,3 and marginals at time 0.5,1.2,1.5,1.7,2.5. Second Line : the same
configuration as in figure 5.

Figure 5, this approach gives a better a approximation of the intermediate densities especially with
less diffusion.

The crossing case: Figure 8, 9. Here we compute Wasserstein splines starting from a mixture
of two gaussians with centrer (0,—1),(0,1) and variance 15 then passing through a gaussian with
center (0,0) and variance 15 and finishing at a translation of the initial mixture. The number of
points is 2000, € will value 1 or 1000.

We expect the global minimizer to be straight lines crossing around the middle constraint and
with a low cost. Numerically depending on the initial conditions, we can recover different local
minimizers, the local minimum which is reached is extremely correlated with the initial coupling.
In Figure 8 we observe that changing € but keeping a similar initial coupling, all points are given
by a quantization of the middle density with a random enumeration and 0 initial speed, yields to a
similar local minimum.

Finding a good initial coupling is the hard part in order reach the global maximum. One solution
is to initialize with points close to each other and a very large €. Then one as to add some noise
in the gradient and decreases slowly e. Unfortunately we didn’t find a systematic approach for this
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FIGURE 8. Spline interpolation for a mixture of gaussians with 2000 Dirac masses.
Same initial coupling for both figure. Left: ¢ = 1. Right: ¢ = 1000.

random multi-scale method and one as to fit the parameters case by case. In Figure 9 the global
minimizer is achieved by first computing the spline with a relaxed constraint, i.e. large €, only for
the final time ( in pratice e = [1000, 1000, 1]. Then we use this result, which has the good initial
coupling, as and initial condition and set ¢ = 1000 for all the constraints. We also compare this
results with the interpolation with a different initial condition and the Wasserstein geodesics. In
all these simulations we clearly observe that particles can cross along the dynamic appart from the
optimal transport inthis situation.

Note that this spline approach is related to the problem of finding minimal geodesics along
volume preserving maps done by Mérigot and Mirebeau [20] : in their work the constraints p; are
the Lebesgue measure, the cost is changed by the quadratic cost between two points and they have
a coupling constraint. Therefore their minimization problem is also non convex but the coupling is
given as a constraint so the non convexity issue didn’t rise as clearly as in this spline problem.
Image interpolation: pour 'instant c’est pas presentable, ca passe vraiment au milieu. Je vais
relancer dans la semaine mais je propose de faire une version sans.

Remark 6 (Extrapolation). The minimization of the acceleration can be used to provide time
extrapolation of Wasserstein geodesic in a natural way: particles follow straight lines. This can
be implemented in a 3-marginal problem with the acceleration cost c(x1,x2,x3) = /\—12\303 — 2x9 +
x]? + §|x2 — x1|? under marginal constraints at time 1 and 2. Note that, in the spline model, the
formulation we proposed does not prevent particles from crossing each other. They are completely
independent. Therefore, the particles following simply geodesic lines and after a shock, the evolution
is not geodesic in the Wasserstein sense (since shocks do not occur but at initial and final times).
The implementation of time extrapolation using entropic regularization is straightforward. Figures 10
and 11 show some experiments on [0, 1] discretized with 100 points and € = 0.015. The translation
experiment recovers what is expected however the effect of the diffusion can be seen with a twice
larger €. We also show two other simulations, one is a splitting simulation and the last one is a
merging of two "bumps” into a single one. The extrapolation shows an other bimodal distribution
which is explained by particle crossings. Note that this extrapolation scheme may proven useful in
the development of higher-order schemes for the JKO algorithm.

6. PERSPECTIVES

In this paper, we presented natural approaches to define cubic splines on the space of probability
measures. We have presented a Monge formulation and its Kantorovich relaxation on the path space
as well as their corresponding reduction on minimal cubic spline interpolation. We leave for future
work theoretical questions such as the study of conditions under which the existence of a Monge
map as a minimizer occurs, as well as the relaxation of cubic spline in the Wasserstein metric. Our
main contributions focus on the numerical feasibility of the minimization of the acceleration on the
path space with marginal constraints. We have developed the entropic regularization scheme for the
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FIGURE 9. Spline interpolation for a mixture of gaussians with 2000 Dirac masses
for each measure. € = 1000. Top Left: Initialization with a good coupling, total
cost = 302. Top Right: Initialization with a quantization of the middle density
and no speed, total cost = 804 (local minima). Bottom: Interpolation with the
Wasserstein geodesic. € = 1000, cost = 930.
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0.04 0.04
0.02 0.02
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10

acceleration and shown simulations in 1D and 2D. Future work will address the 3D case which is
out of reach with the methods presented in the first sections of this paper but possibly tackled with
the semi-discrete method presented en Section 5.3. In a similar direction, the application of this

FiGURE 10. Extrapolation of a translation with two different ¢ = 0.015 and ¢ = 0.03
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FIGURE 11. On the left, a splitting experiment and on the right, a merging experiment.

approach to the unbalanced case in the spirit of [7] seems challenging due to the this dimensionality
constraint and could be achieved within the semi-discrete setting.

In the Lagrangian setting, i.e. semi-discrete method, the extrapolation of a Wasserstein geodesic
between py and p; is obtained using three positions with the following formulation : let

N

1 n
QN = Zﬁé(x;,xf,xﬁ') (Xj)j=1,..N € M" 5,
j=1
then
1L 2 1Y 2 N
(61) (SDextra) = min Nzg(x;,xfwNzc(x;,xj,xfnzﬁwg Zﬁéx;,m ,
j=1 j=1 i=1 j=1

where d is the distance on M and ¢(X}], X7, X7) the cost of the cubic spline. In particular this
formulation forces the curve to be a Wasserstein geodesic between p; and ps, using the quadratic
cost, and let free the final marginal. The implementation is completely similar as in Section 5.3 and
the trajectory of each dirac masses is a straight line.

APPENDIX A. PROOF OF THEOREM 1

The proof is a rewriting of the proof of [25, Theorem 1.33] when the initial and final spaces do not
have the same dimension. In particular we prove that transport plans concentrated on a graph of a
map T : R — RP are dense into transport plans in R? x RP and deduce, taking p = (n—1)d, that for
any continuous cost the multimarginal Kantorovich problem is the relaxation of the multimarginal
Monge problem.

Theorem 9. Let M = R% and ¢ : M™ — R be a continuous cost fonction. Let (pi)ie1,..n ben
probability measures on M. We define the Monge Problem (M.) as

(M) = inf/Mc(x,TQ(z), L Ta(@) i

over the set of map Il = {T M= MY x e (Ti()) o, o|(Ti). (p1) = piy ,i =2,... ,n}. The
Kantorovich problem (K.) is defined by

(K.) = inf c(xy, ..., xn)w(T1,. .0 20)
M'Vl
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over the set of plan II = {m € P(M™)|(p;)«(7) = pi, i =1,...,n}, where p; is the projection of the
i™ factor. Then, if all (p;)ic1,...n have compact support and py is atomless there holds (M.) = (K.).

In order to prove Theorem 9 we first remark that [25, Corrollary 1.29 and Theorem 1.32 ] have
their multimarginal counterpart.

Lemma 10. Let i € P(R?) be atomless measure and v € P(RP), then there exists a transport map
T : R — R? such that Tipp=v.

Proof of Lemma 10. Let o4 : R* — R (resp op : R — R) be an injective Borel map with Borel
inverse (see [25, Lemma 1.28] for instance for a very simple proof of existence in this case). Since
w is atomless (04).«p is also atomless. Let ¢ : R — R be the optimal transport map from (o4).u to
(0p)«v for the quadratic cost. t. ((0a)«p) = (o), v. Thus T = 0, ' ot ooy is a map pushing forward
W to v. g

Theorem 11. With the notation of Theorem 9, if the support of all p; are included in a compact
domain then the set of plans Il induced by a transport is dense, for the weak topology, in the set of
plans II whenever py is atomless.

Remark 7. Theorem 11 is in fact very general, one can consider M N be only Polish spaces for
instance. Then there exists invertible Borel maps from M (resp N) to [0,1]. This is enough to obtain
Lemma 10. Then one just need to consider a uniformly small partition of Q to prove the density
Theorem 11.

Proof of Theorem 11. Again the proof is based on [25, Theorem 1.32]. In particular the strategy
of the proof is to approach a transport plan by transport maps defined on small sets on which the
measure is preserved.

We consider a compact domain Q = Q4 x Q, € (R? x RP) and 7 € P(Qq x ) such that
(pra)«(m) = p is atomless. For any m set a partition of 2, (resp §24) into (disjoint) sets K; n, (resp
L; ) with diameter smaller than 1/2m. Then C; ; m = K; m X Lj n is a partition of € into sets with
diameter smaller than 1/m. Let 7, ,,, be the restriction of m on K ,,, x €, and pt; mm, = (Pra)«(Tim)
and v = (pra)«(Tim). Since p is atomless ji;m = ik, ,, is also atomless and thanks to Lemma
10 there exists t; ,,, such that (¢ )«ftim = Vim. By definition
(A1)

7[Cjom] = T [Cogn] = i [ Vs L] = (1, ) (i) (o)) = (1, ) () [Cag:

where t,, is define on Q by t|x, . = tim. In particular (¢,,).(u) = v. Equation (A.1) and the
definition of the partition sets C; ; ., implies that (Id, tm).(u) weakly converges toward = as m + oo
(they give same masses to any set of the partition). See [Theorem 1.31]santambrogio20150ptimal
for instance. To finish the proof let us remark that we can set p = d(n — 1) then pu = p; is atomless
and t,, : RY — R¥ "1 defines (t2ms -oes tym)- O

Proof of Theorem 9 . The continuity of the cost ¢ and the density Theorem 11 implies that (K.) <
(M,). Since the converse is always true we have (M.) = (K,). O

Remark 8. Theorem 1 is a consequence of Theorem A since both the Monge and the Kantorovich
(Definition 1 and 2) problems reduces on M™ with the spline cost which is continuous (see Corollary
4 and 5.

APPENDIX B. ENTROPIC REGULARISATION AND SINKHORN

B.1. Entropic regularization and Sinkhorn algorithm. The linear programming problems
(5.7-5.10) is extremely costly to solve numerically and a natural strategy, which has received a
lot of attention recently following the pionneering works of [10] and [9] is to approximate these
problems by strictly convex ones by adding an entropic penalization. It has been used with good
results on a number of multi-marginal optimal transport problems [3] [4] [5]. Here is a rapid and
simplified description, see the references above for more details.
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The regularized problem is

(B.1) H%l Zb{ca,b Toy+eTy, log(Ty,)}

It is strictly convex. Denoting uloch,ﬁjk the Lagrange multipliers of the k constraints (5.10), we
obtain the optimality conditions:

(B.2) Tsy = Kap H{jlefk

a

where

1,k
Yo

U]]‘Ck =€ ik Pk K{z b= eiéca,b
Equation (B.2) caracterize the optimal tensor as a scaling of the Kernel K depending on the dual
unknown U*. Inserting this factorization into the constrains (5.10) the dual problem takes the form
of the set of equations ( Vk € [1,n])

(B.3) Uy = pi(Tay, 8;,)( Z Koo Myeqt,mpn Uy,) 7"
a\{a]k},b\{ﬁjk}

Sinkhorn algorithm simply amounts to perform a Gauss-Seidel type iterative resolution of the
system (B.3) and therefore consists in computing the sums on the right-hand side and then perform
the (grid) point wise division.

B.2. Implementation. In dimension 2, each unknown Uy has dimension N%, the cost of one full
Gauss Seidel cycle, i.e. on Sinkhorn iteration on all unknowns, will therefore be n x N2 x the cost to
compute the tensor matrix products in the denominator of (B.3). Remember that n is the number
of time steps with constraints and N the total number of time steps. The given tensor Kernel
K, is a priori a large N x N, x N, tensor with indices a,b = aq,..an, f1, .., Bn. It can however
advantageously be tensorized both along dimensions and also margins. First, using (5.4-5.8) we see
that the Kernel is the product of smaller tensors

_ 0 . 0 o ——za . +x.'.72z..2
Kap = Hi:lvalK'—l,i,i+17 with Ki—l,i,i+1 = o e 1Taia 81t e 184 ag il

Moreover as we chose to work on a cartesian grid at all time steps, K9 tensorize again into
2
—sllip1+ai—1 =20

0 o a B . o L __h%
Kz;l,murl = K>1,m‘+1 K¢71,i,i+1 with K'71,i,i+1 =€ ed

Finally our large kernel K, ; can be represented a the product of 2 (N — 2) identical tensors of size
N, x N, x N,. Assuming a cubic cost n3 for the multiplication of two (n x n) matrix, we see oru
algorithm is of order O(N N2) in dimension 2.
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FROM GEODESIC EXTRAPOLATION TO A VARIATIONAL BDF2
SCHEME FOR WASSERSTEIN GRADIENT FLOWS

THOMAS O. GALLOUET, ANDREA NATALE, AND GABRIELE TODESCHI

ABSTRACT. We introduce a time discretization for Wasserstein gradient flows based on the
classical Backward Differentiation Formula of order two. The main building block of the
scheme is the notion of geodesic extrapolation in the Wasserstein space, which in general is
not uniquely defined. We propose several possible definitions for such an operation, and we
prove convergence of the resulting scheme to the limit PDE, in the case of the Fokker-Planck
equation. For a specific choice of extrapolation we also prove a more general result, that is
convergence towards EVI flows. Finally, we propose a variational finite volume discretization
of the scheme which numerically achieves second order accuracy in both space and time.

Keywords: Optimal transport, Wasserstein extrapolation, Wasserstein gradient flows, BDF2

MSC(2020): 49Q22, 35A15, 65M08

1. INTRODUCTION

In this paper we are concerned with the construction of second-order in time discretizations
for the following system of PDEs, describing the time evolution of a density ¢ : [0, 7] xQ — R
on a convex compact domain € and over the time interval [0, T']:

(1.1) Oro — div (QV?Z(Q)) =0 on (0,7) xQ,
with initial and boundary conditions:

o0&
(1.2) 0(0,) = po, gv%(g) ‘ngn =0 on (0,T) x 09,

for a given initial density pg, and where nyq denotes the outward pointing normal to 9€). In
equation (1.1), £ : LY(Q; Ry ) — R is a functional of the density and describes the energy of the
system. Different choices for £ yield different equations modeling a wide range of phenomena.

Typical examples are the Fokker-Planck equation [22], the porous medium equation [32] or
the Keller-Segel equation [6], but also more complex cases such as multiphase flows [10, 24, 11]
or crowd motion models [36] can be considered.

Since the density satisfies the continuity equation with zero boundary flux, its total mass
is conserved. Moreover, the energy decreases along the evolution:

Sl ) <0,

This behaviour is a consequence of the fact that system (1.1), under suitable assumptions
on the energy, can be interpreted as a gradient flow in the space of probability measures
P(Q) equipped with the Wasserstein distance Ws. This interpretation is well-known since
the pioneering work of Jordan, Kinderlehrer and Otto [22], who showed that one recovers the

Date: October 18, 2023.
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Fokker-Planck equation when following the steepest descent curve of an entropy functional
with respect to the Wasserstein metric. Such result is best explained in the time-discrete
setting: given a uniform decomposition 0 =ty < t; < ... <ty =T of the interval [0, T] with
time step T := t,4+1 — tp, consider the sequence (py, ), defined for 1 <n < N by

2
(1.3) pn, = argmin Wy (pspn-1) +&(p),

pEP(R) 27

where the energy is given by

(1.4) 5(/))—/QVP+plogp,

with V : © — R being a Lipschitz function, if p is absolutely continuous with respect to the
Lebesgue measure and +o0o otherwise. Then, one can show that the discrete curve ¢ — p(t),
defined by o(t,:) = pp—1 for t € (t,—1,t,] and 1 < n < N, converges uniformly in the Wy
distance to the unique solution of the Fokker-Planck equation

(1.5) 0o —div(oVV) —Ap=0 on (0,7) x Q,

satisfying (1.2).

The numerical scheme defined in equation (1.3) is known as JKO scheme and it allows
one to interpret many different models as Wasserstein gradient flows. It also provides a
convenient framework both for the analysis of such models (e.g., to prove existence of solutions
or exponential convergence towards steady states) [2, 35], and for the design of numerical
discretizations [5, 15, 12, 26, 14]. In fact, reproducing the JKO scheme at the discrete level
generally implies energy stability even in very degenerate settings. Moreover in the case of
convex energies one can use robust convex optimization tools that, e.g., can easily take into
account the positivity constraint on the density or even other type of strong constraints (as
in the case of incompressible immiscible multiphase flows in porous media, see Section 7.3).

Since the JKO scheme is a variational version of the implicit Euler scheme, it is an order one
method. Recently, several higher-order alternatives to the JKO scheme have been proposed,
but it is not trivial to translate them into a fully-discrete setting (see [29, 27], and Section 1.2
below for a detailed description of such approaches). In fact, to the best of our knowledge,
there exists no viable fully-discrete approach able to compute with second order accuracy
general Wasserstein gradient flows while preserving (to some extent) the underlying variational
structure.

In this paper we contribute to this quest by reformulating the classical multi-step scheme
based on the Backward Differentiation Formula of order two (BDF2) as the composition of
two inner steps: a geodesic extrapolation step, and a standard JKO step. We refer to the
resulting scheme as Extrapolated Variational BDF2 (EVBDF2) scheme. As the extrapolation
step is not uniquely defined (since Wasserstein geodesics may not be globally defined in
time), we provide several natural notions of extrapolation and for some of these we provide
convergence guarantees for the resulting scheme. For a particular choice of extrapolation,
which unfortunately is not covered by our theory, we also propose a simple and efficient
(space-time) discretization. Importantly, we find numerically that this does indeed produce
second-order accurate solutions both in space and time.

1.1. Description of the BDF2 approach and main results. In the Euclidean setting,
the gradient flow associated to a smooth real-valued convex function F' : RY — R and a
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FIGURE 1. A graphical representation of the time intervals involved in the
definition of the EVBDF2 scheme.

starting point zg € R%, is the unique solution to the Cauchy problem

(1.6) o' (t) = -VF(x(t)), Vt>0,
' x(0) =xg.

The BDF2 scheme applied to such a system, with time step 7 > 0, can be written as follows:

given zg,z1 € RY, for n > 2 find z,, € R? satisfying

3 4 1
(1.7) 77 (mn — giﬂn—l + gxn_2> = —VF(x,).

This can be interpreted as an implicit Euler step, with starting point
ngl = T2+ a(ry1 — xn—?) =Tp-1+ ﬁ(xn—l - xn—?) )

where @ = 4/3 and f = o — 1 = 1/3, and with time step (1 — )7 = 27/3. In turn, =&,
coincides with the Euclidean extrapolation at time «, from z,_o (at time 0) to x,_; (at time
1), with respect to a fictitious time variable (see Figure 1 for a graphical representation of the
time intervals involved in the scheme).

In order to define a counterpart to the BDF2 scheme (1.7) for Wasserstein gradient flows,
one needs to replace the Euclidean extrapolation at time o > 1 by an analogous operation
in the space of probability measures equipped with the W5 metric. In this paper, we will
represent such an operation by a map E, : P2(R?) x Pa(R?) — Po(R?) (where Pa(R?) is the
set of probability measures on R¢ with finite second moments), which we will refer to as an
a-extrapolation operator. Given such a map, we define the EVBDF2 scheme as follows: given
po, p1 € P(Q), for n > 2 find p,, € P(Q) satisfying

. Wg(papzfl) «
(1.8) pn € ireggl(lfl;)l 20— f)r +&(p)s a1 =Ealpn—2,pn-1),
where here £ : P(2) — R is defined on the whole space P(£2).

The extrapolation operator E, plays a crucial role in the scheme, but it is not trivial to
propose an appropriate definition for it due to the structure of Wy geodesics on Py (R%). To
clarify this, recall that a (globally length-minimizing) geodesic with respect to the W5 metric
is a curve w : [to, t1] — P2(R%) such that

_ [s1— 50
(1.9) Wa(w(s0),w(s1)) = sz(w(tO),w(tl)),
for all sg,s1 € (to,t1). Given two measures pg, 1 € P2(R?) there always exists a geodesic
connecting the two. Furthermore, due to Brenier’s theorem, supposing that pg is absolutely
continuous with respect to the Lebesgue measure, there exists a unique geodesic w : [0, 1] —
Po(RY) such that w(0) = po and w(1) = p1, and this has a very simple expression:

(1.10) w(t) = ((1 —t)Id + tVu)gpo,
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where Id is the identity map on R? and v : R — R is a convex function. This means that
particles travel on straight lines along the interpolation, without colliding into each other.
However, for a given a > 1, there may exist no geodesic defined on [0, ] that coincide on [0, 1]
with w. This is because following their straight trajectories particles may collide immediately
after time ¢ = 1, even if both pg and w1 have smooth and strictly positive densities. This
means that one cannot use such geodesic extensions to define the extrapolation operator E,
in a unique way. Therefore, instead of focusing on a particular definition, we only require a
uniform stability bound on the extrapolation which we will need to prove the convergence of
the scheme. In particular, we will focus on extrapolation operators that are dissipative in the
following sense:

Definition 1.1 (Dissipative extrapolations). An extrapolation operator E, is #-dissipative if
it satisfies

(1.11) Wa(pa, Ba(po, p1)) < 0Wa (o, p1)

for any po, 1 € P2(R?) and for a constant 6 > 0.

Note that by equation (1.9), if the extrapolation is consistent with the geodesic extension
when this exists, then we must have 8§ > o« — 1 = 5. Upon adding a further consistency
assumption on the extrapolation given in equation (1.12) below (see Remark 3.6 for more
comments on the role of our main assumptions), we can establish the following convergence
result:

Theorem 1.2. Let py € P(Q) and € given by (1.4). For any given N > 1, let (p,)Y_, be the
discrete solution defined by the scheme (1.8) for given p; € P(Q) (dependent on N ), with time
step T =T /N, and with E,, being a 0-dissipative extrapolation operator with0 < f=a—1<1
and 0 < 1/2, and such that for all po, 1 € P(Q) and ¢ € CX(RY) verifying Vo -noga = 0 on
00,

(1.12)

[ Calho, ) = i -+ B1o)| < CoW3. ),

where C, > 0 only depends on o, ¢ and 2. Suppose that W2 (po, p1) < Ct, for a constant
C > 0 independent of T, and that E(p1) < E(po). Then, the curve t — p.(t) defined by
pr(t) == pn—1 for allt € (tn—1,tn] and 1 < n < N, converges as N — oo, uniformly in the Wy
distance, to a distributional solution to the Fokker-Planck equation on [0,T] x £ and initial
conditions given by pg.

Of course, in order to achieve second order accuracy, we must set o = 4/3 and require
in addition that, if there exists a geodesic w : [0,a] — P(£2) such that wlj ) is a geodesic
from po to p1, then E, (1o, 1) must coincide with w(a). Importantly, we will show that there
exist several different ways to define such an operator, providing therefore different convergent
approaches. We highlight that there is no inconsistency between the scheme (1.8), defined
on P(Q), and an extrapolation operator E, valued in Po(R%). In fact, both for theoretical or
numerical reasons, one may be led to define an extrapolation operator on the whole space to
avoid issues with the boundary of Q. Nevertheless, scheme (1.8) is well-defined and, as long
as the consistency assumption (1.12) is satisfied, the convergence result of Theorem 1.2 holds.

One approach for producing an operator E,, which enjoys a particularly rich structure,
consists in reproducing the variational characterization of the linear extrapolation in the
metric setting. Given two points zg, z; € R%, the Euclidean extrapolation at time o from



FROM GEODESIC EXTRAPOLATION TO A BDF2 SCHEME FOR WASSERSTEIN GRADIENT FLOWS 5

to x1 is the point x, = ax1 — Sxg with 8 = a— 1. This can be obtained as the unique solution
to
(1.13) T = argmin alz — z1]? — Blz — 20]*.

z€ER
Similarly, we define the metric extrapolation in the Wasserstein space as follows:
(1.14) Ea(po, ) = argmin aWs (p, 1) — BW3(p, o) -

peP2(RY)

Problem (1.14) is not a convex optimization problem in the classical sense. To see this,
consider the following simple counterexample. In dimension d = 1, take

po=(6-1+61)/2, p1 =20, w=46b_1, v =7d.

Along the interpolation v(t) = (1 — t)vy + tvq, the first term of the functional in (1.14) is
constant whereas the second one is concave. Nonetheless, we will show that problem (1.14)
always admits a unique solution (see Proposition 4.10) and it also satisfies the assumptions
in Theorem 1.2. Furthermore, exploiting the variational formulation of the metric extrapola-
tion (1.14), we can prove a more general convergence result using the Evolution Variational
Inequality (EVI) characterization of gradient flows in metric spaces. More precisely, we prove
the following result:

Theorem 1.3. Let po € P(2) and € : P(2) — R being a A-convex energy in the generalized
geodesic sense, for A € Ry. For any given N > 1, let (pn),]yzo be the discrete solution defined
by the scheme (1.8) for given p1 € P(Q?) (dependent on N ), with time step 7 =T /N, and with
E. being the metric extrapolation (1.14) with B = a— 1. Suppose that W2 (po, p1) < Ct, for a
constant C > 0 independent of T, and that E(p1) < E(po). Then, the curve t — p-(t) defined
by pr(t) = pp—1 fort € (tn—1,t,] and 1 < n < N, converges as N — oo, uniformly in the Wy
distance, to the unique absolutely continuous curve g : [0,T] — P(Q) satisfying 0(0) = po and
such that for any v € P(Q) it holds

£ SWRelt)v) < £() ~ Elolt) ~ 5

Remarkably, problem (1.14) admits a convex dual formulation, see Remark 4.14.

W3 (o(t),v), Vte(0,T).

1.2. Relation with previous works and numerical implementation issues. Going
back to the discretization of system (1.6), each step of the BDF2 scheme (1.7) can also be
obtained as the optimality conditions of the following problem:

et | N e b
1.15 T, = argmin o
( ) ZeR4 2(1 - )7 2(1 - p)r

This suggests defining a similar formulation in Wasserstein space as follows

- B + F(z).

. W2(pa Pnfl) WQQ(pa pn72)
1.16 pn € argmin a—= - B +E(p).
(110 e - P a—pr Y
This approach has been proposed by Matthes and Plazotta [29, 33], who proved equivalent

versions of Theorem 1.2 and 1.3. Even if in the Euclidean setting the analogue problems
to (1.16) and (1.8) yield the same solutions, one can check that this is not the case in the
Wasserstein space (see, e.g., the example in Figure 2). However, just as for the metric extrap-
olation problem (1.14), (1.16) is not a convex optimization problem in the classical sense. For
this reason, it is not easy to provide a numerical implementation of (1.16) when d > 2. The
same is true for the EVBDF2 scheme (1.8) when using the metric extrapolation. Nonetheless,
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- Pn-2

sy
>
7

FIGURE 2. An example for which the schemes (1.8) and (1.16) provide differ-
ent results, e.g., for the energy given by the convex indicator function of the
set {p : w(R4\ {x = 0}) = 0}. In the figure p,_2, p,—1 and p%_, are uniformly
distributed on the segments (¢, —t), (¢,(1 — B)t/a) and (¢,t) for t € [—1,1],
respectively (in this case the geodesic from p,_2 to p,—1 on the time interval
[0,1] can be extendend up to time «, yielding p%_;). For the scheme (1.8)
the measure p,, is uniformly distributed on the segment (0,¢) for t € [—1,1],
whereas for the scheme (1.16) the measure p,, can be obtained as the extrapo-
lation of the projections of p,_s and p,—_1 on the axis y, and can be shown to
have a strictly smaller support.

the advantage of using the EVBDF2 scheme is that one has some freedom in choosing the
extrapolation operator, which makes it more amenable to computations.

Another second-order variation of the JKO scheme was proposed by Legendre and Turinici
[27], and it is based on the implicit midpoint rule, which applied to system (1.6) leads to the
scheme: for n > 1 find z,, € R satisfying

which can be obtained as the optimality conditions of the problem

2

(1.17) 2 = argmin 2= 2n=1l op (Tt ki ).

zERA T 2
Translating such a scheme to the Wasserstein setting yields the Variational Implicit Midpoint
(VIM) scheme proposed in [27]: for n > 1 find p,, € P(Q) satisfying

W3 (p, pn—

(1.18) pn, € argmin 2(p—pl) +2E(pp—-1/2)

pEP(R) 27

where p,_1/, is the midpoint of the (not necessarily unique) geodesic between p and p,_1.
Also in this case, it is not evident how to implement such a scheme, as it requires an explicit
formula for the midpoint given the initial and final measures. This may also lead to convexity
issues. Notice however that in the same spirit of our formulation of the BDF2 scheme, the
implicit midpoint scheme can be formulated in the following alternative way: for n > 1 find
pn € P(Q) satisfying
2
(1.19) Pn = E2(pn—1,pn-1/2), Pn_1/2 € argmin Wipon1) | Ep),
pEP(Q) T

where Ez(pn—1, p—1/2) denotes the extrapolation at time o = 2 of a geodesic from p,—1 (at
time 0) to p,_1/2 (at time 1). In general, this leads to a different discrete solution than the
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one obtained with (1.18), although the two schemes coincide if there exists a unique geodesic
extension from pp_1 to p,_1/2 which stays globally length-minimizing up to time 2 for all n.
Nevertheless, the behavior of scheme (1.19) is radically different from that of the EVBDF2
(1.8), due to the different way JKO steps and extrapolations are performed. Namely, the order
of the operations as well as the length of the steps play a crucial role. We will investigate this
phenomenon numerically by considering a fully-discrete version of the VIM scheme and show
that in general this approach may lead to persistent oscillations in the solution (Section 7.1).

Providing a fully discrete version of problem (1.1), via the EVBDF2 scheme (1.8), comes
with an additional challenge since the chosen space discretization should also be second-order
accurate in space, in order to exploit the increased accuracy of the time discretization. We
propose a discretization in the Eulerian framework of finite volumes. Specifically, we imple-
ment Two Point Flux Approximation (TPFA) finite volumes, which have been extensively
analyzed lately for the discretization of optimal transport and Wasserstein gradient flows
[21, 17, 31, 12, 30]. Following these last two works in particular, we propose a scheme in
which the Wasserstein distance is locally linearized, at each step of the scheme, in order to
decrease the computational complexity of the approach, without dropping the second-order
accuracy in time. In addition, we propose one possible discrete version of the extrapolation
in this setting, which can be implemented in a robust way, and we verify numerically the
second-order accuracy of the resulting approach.

We stress that the space discretization of the EVBDF2 scheme that we propose, even
if maintaining its variational structure, relies on substantial simplifications of the original
problem. As a consequence, our theoretical results do not apply directly, and further work is
required for a fully discrete convergence proof. Given this, the numerical results presented in
Section 7 are only preliminary and they are mainly meant to demonstrate the feasibility of
the approach.

2. PRELIMINARIES AND NOTATION

Let P2 (R?) be the space of probability measures with finite second moments. Given pg, 11 €
Po(RY), we denote by Wa(jug, p1) the L2-Wasserstein distance between po and p; (see, e.g.,
Chapter 5 in [34]). This can be defined via the following minimization problem:

(2.1) W3 (o, 1) == min /|xy|2d'y(x,y),
YEIl(po,11)

where II(j0, pt1) is the set of probability measures on R% x R? with marginals o and g;. This
problem always admits a solution v*, although it is not necessarily unique, which we refer to
as an optimal transport plan from pg to p1. By linearity of the constraint and of the function
minimized in (2.1), one can easily check that the function W2 is jointly convex with respect
to its arguments (with respect to the linear structure of Po(R%)). We will refer to the space
of probability measures PQ(Rd) equipped with the metric W5 as the Wasserstein space.

Problem (2.1) admits an alternative dynamical formulation, which was introduced by Be-

namou and Brenier in [1], and which reads as follows:
5]

2:2) W, ) = (6~ o) muin [ dt [ w®lofe, )P
(ww)€eC Jy,

where C is the set of curves (w,v) with finite total kinetic energy, with w : [to, 1] — P2(R?)
and v : [t,t1] — L?(w(t);R?), satisfying weakly the continuity equation

(2.3) Oww + div(wv) =0
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with zero flux boundary conditions (i.e. wv-ngg = 0), and initial and final conditions w(tg) =
to, w(t1) = p1. The minimum in (2.2) is always achieved although there might be multiple
minimizers. In particular, one can use formula (2.2) to deduce that the Wasserstein space is
a geodesic space and the minimizers w are geodesics.

By the optimality conditions of problem (2.2), a curve w is a geodesic if and only if there
exists a potential ¢ : [tg, t1] x R? — R that verifies:

(1) é(to,-) is a continuous (—(t; — tg)~!)-convex function, i.e. such that the so-called
Brenier potential

2

. z — u(x) = (t1 — tg)p(to,x) + —— is convex;

2.4 [ 5 i
(2) the potential ¢ is the unique viscosity solution of the Hamilton-Jacobi equation
\V4 2
(2.5) Ot + | ;ﬂ =0,
or equivalently, it verifies the Hopf-Lax representation formula,
o eyl

2.6 t,x) = inf ———— + ¢(to,y);
(26) o(t.a) = inf b 4 olto.v)

(3) Vo(t,-) € L*(w(t); R?) for a.e. t € [tg,t1] and (w, Ve) € C.

We say that a function ¢ verifying these condition is an optimal potential from ug to p; on
the time interval [tg,t1]. Furthermore, for any optimal potential ¢, it holds:

W /1’07 ,ul / /
2. 2o (t (t
( 7) 2(t1—t0) (b 1, /1’1 ¢ 05 -
Because of the semi-convexity of ¢(to,-), the maps X (¢,-), defined a.e. by
(2.8) X(t,-) =1d + (t — o) Vo(to, )

are injective for all t € [to,t1) (as the gradient of a strongly convex function), and the resulting
curve of maps X : [tg, t1] x R? — R? is the Lagrangian flow of the time-dependent vector field
Vo(t,-), ie., for a.e. x € R, X(-,x) solves the flow equation

d
dt X(t,z) =Vo(t,X(t,2)), X(to,z)==x.

If pg is absolutely continuous, given an optimal potential ¢ and the associated Lagrangian
flow X defined by (2.8), one can easily verify that the curve

(2.9) w(t) = X (8, )t
solves the continuity equation with velocity V¢ and boundary conditions w(0) = po and
w(l) = w1 (in distributional sense), and therefore it is a geodesic. Moreover, using the

absolute continuity of g, one can also show that the initial potential ¢(to,-) is uniquely
defined pp-a.e., and no other geodesic curve exists connecting po and 1. Note also that from
(2.9), one can recover Brenier’s result (1.10) with the Brenier potential u as in (2.4), and also
verify the equivalence with formulation (2.1). As a matter of fact, in this case the optimal
transport plan is also unique and is given by v* = (Id, Vu)gpo, where the map Vu is the
so-called optimal transport map from pg to p1. On the other hand, for any convex function
u, setting ¢(0, -) via (2.4), the curve w defined in (2.9) is a geodesic between 9 and (V)4 o
(and the unique one, if g is absolutely continuous).
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3. ANALYSIS OF THE EVBDF2 SCHEME

In this section we collect the main properties of the EVBDF2 discretization (1.8), and
in particular we prove Theorem 1.2, which establishes the convergence of the discrete flow
generated by the scheme to the linear Fokker-Planck equation. Throughout the section, (p,)n
denotes a sequence of measures generated by the EVBDF2 scheme (1.8), where E, is a 6-
dissipative extrapolation, with 6 < 1/2.

3.1. Well-posedness and classical estimate. We start by stating some a priori bounds,
which are valid for a general class of energies. In particular, in this paragraph, we only assume
that & is lower semi-continuous with respect to the weak-* topology. Since P(f2) is compact
for this topology (we recall that we assume € compact) this also implies that £ is bounded
from below. Problem (1.8) therefore admits a minimizer at each step n.

Lemma 3.1. At each step n, the solution p, satisfies the following inequality

W22 (pn; pn—l) W22 (pn—la pn—Q)
2(1—-p)r 201 - p)r
Proof. Due to the optimality of p, and using (1.11), we can write
WQQ(Pna Pr—1) W22(Pn—1, Pr-1)
2(1 - p)r 2(1 - p)r
92
 —
—2(1-p0)r
If & = 0 this coincides with (3.1). If § > 0, observe that by the triangular and Young’s
inequalities, for any ¢ > 0,

1
W3 (pny pn—1) < (1 + E)Wf(pn, po_1) + (1 + c)W3(pp—1,05_1) -

Setting ¢ = #~! —1 in this last inequality and using again (1.11), we can estimate the left-hand
side from below using

W3 (pn,pa) o 1 ( c

(3‘1) (1 *0) +8(pn) <0 +g(pn—1)'

+E(pn-1)

W2(pn—1, pn—2) + E(pn_1) -

W22(pna pnfl) - CW22 (pnfla pg—l))

20—B)r ~201—pB)r \c+1
1-6 9 (1-0)0 _ ,
D T -1) = 577 o\ n—1,Pn—-2) -
- 2(1 — B)TWQ (pvmpn 1) 2(1 — B)TWQ (p 1,pP 2)
Rearranging, we obtain (3.1). O

Note that if we take g = 0, i.e. we remove the extrapolation step, we can take 6 = 0 in
(3.1) and recover the standard dissipation estimate for the JKO scheme.

Lemma 3.2. Let C; > 0 be a constant such that W2(p1, po) < Ci7 and E(p1) < E(po). Then,
it holds:

N
1 T

(3.2) =D Wionpn1) C
n=0

for a constant C' > 0 depending only on C1, 3, 8, £ and pg.

Proof. Summing over n the inequality (3.1) we obtain
N

— 920 0
S W paspant) < E(o1) — £l + W),
—0

O wier 2
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Then, since # < 1/2 and thanks to the lower bound on the energy and the assumption
E(p1) < E(po), we have

N
1 ) 2(1 - B) . 20
N w, e - .
T 2(Pns p=1) S 55 (g(p()) mf5>+1f2901

0

Remark 3.3. For a given pg, one can always choose p1 so that the constant Cy above is
independent of T and E(p1) < E(po), which are also the assumptions in the statements of
Theorems 1.2 and 1.3. For example, it is sufficient to take p1 as the solution obtained after
a finite number Ny € N of JKO steps with time step 7/Ng and initial condition given by po,
with E(pp) < 0o. In fact, in this case, by the same proof as for Lemma 3.2 (with B =60 =0),
one can take C1 = 2(E(po) — inf £).

3.2. Convergence towards the Fokker-Planck equation. Given a Lipschitz continuous
exterior potential V € W1 (), the Fokker-Planck equation is given by

(3.4) 0o = Ap+div(pVV) in (0,T) x Q,

complemented with no-flux boundary conditions (Vo + oVV) - ngg = 0 on 99 and an initial
condition ¢(0,:) = pg € P(Q). Equation (3.4) can be interpreted as a Wasserstein gradient
flow with respect to the energy functional £ : P(2) — R given by

(3.5) E(p) = U(p) + /Q oV,

where the internal energy U : P(©2) — R (the entropy) is defined by

dp .
log <>d if pdelQ,
(3.6) Ulp) = /Q dz )P NP

+o00o otherwise ,

where dz L Q denotes the restriction of the Lebesgue measure to the domain 2. Since the
function x — xlogx is strictly convex and superlinear, the energy £ is also strictly convex
on its domain (with respect to the linear structure of P(2)) and lower semi-continuous (with
respect to the weak-* topology: see, e.g., Proposition 7.7 in [34]). Since W2 is continuous and
convex in its arguments, there exists a unique solution p,, to problem (1.8) at each step n, and
this is furthermore absolutely continuous with respect to dzL 2. Moreover, both Lemmas 3.1
and 3.2 apply.

As in the previous paragraph, we assume that E, is a #-dissipative extrapolation with
6 < 1/2, and (pn)n denotes a sequence of measures generated by the associated EVBDF2
scheme (1.8). Although the discrete flow does not move by strictly minimizing the energy at
each step (see Lemma 3.1), we will show that it converges to the maximal slope curve of £.
For this, we will rely on the same arguments as in the original work of Jordan, Kinderlehrer,
and Otto [22] for the JKO scheme.
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Relying on the estimate (3.2), the compactness arguments for obtaining a limit curve are
rather standard. We introduce two density curves on the interval [0, 7], given by

N
= Z pn—l]l(tn_l,tn] ) pT(O) = P0,

n=1

(3.7) -
=> a4, 1> #7(0) = po,

n=1

with ¢ — 0,(t) being the geodesic curve between p,_1 and p, on the time interval [t,_1,t,]
(i.e. the minimizer of problem (2.2) on this interval). Let o, be the associated optimal vector
field as in problem (2.2) for all 1 < n < N. By definition of ¢,, we have that

815@7’ + le(éT/aT) =0

in the distributional sense on (0, T') x §2, where @ is the vector field defined by o7, _, t,] = Un
for all 1 <n < N. Moreover, on each interval [t,,_1,%,] it holds:

tn
W3 (pns pr—1 —T/ /@TIUTI
tn 1

The curve g, is a piecewise constant measure-valued curve whereas g, is a (absolutely) con-
tinuous one, interpolating the discrete densities.

Proposition 3.4. For a given py and any given N > 1, let p; be the curve defined as in
equation (3.7), with p1 being such that W(pg, p1) < CT, for a constant C > 0 independent
of T, and E(p1) < E(po). Then, the sequence (o:)r converges uniformly in the Wy distance to
an absolutely continuous curve o : [0,T] — P(£).

Proof. The sequence of curves (9;)rer, , defined from [0,7] to the (compact) space P(f2)
equipped with the Wasserstein distance, is uniformly Hoélder continuous. Indeed, for any
r,s € (0,T],s > r, denote N,, Ny the two integers such that r € (tn,,tn,+1],5 € (tNS,tN +1]-
By the dynamical formulation of the Wasserstein distance (2.2), it holds

s i N, tnal %
~ ~ 1 o~ 2)2 1 nt ~ 1~ 12
Wa(G, (s), 6, (r)) < |s — |3 (/ /mm) < s —rf} (Z/ /wf|>
r Q n=N, tn Q

1
2

Ns
1 1 1
- |S_T|2 < Z TWZQ(pnvpn-l-l)) < C’|3_T|2

n=N,

(3.8)

where in the last inequality we used the estimate (3.2). By the generalized Ascoli-Arzela
theorem, the sequence converges uniformly in W5, up to a subsequence, to a limit curve o. As
the inequality (3.8) passes to the limit, g is also an absolutely continuous curve with respect
to the Wasserstein metric. Finally, for any r € [0, 77,

— 1/2
Wa(or(r), 07 (1)) = Wa(o-(tn, ), 0-(r)) < VT (/t /Qéflﬁrl2> < CVT,

by the same computations. Therefore, the piecewise continuous curve g, converges uniformly
with order /7 to the same limit curve p.
O
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To characterize the limit curve ¢ we will rely on the optimality conditions of the mini-
mization problem in (1.8), which is equivalent to a single JKO step. Consider an absolutely
continuous measure p and a smooth vector field £ tangent to the boundary of 2. We define
w as the absolutely continuous curve solution to

(3.9) Osw +div(wé) =0, in (—0,0) x 2, w(0)=p,
for § > 0. The variations of the energy and the Wasserstein distance along curves defined in

this way can be computed explicitly as follows.

Lemma 3.5. Consider two measures p € P(Q), v € P2(R?), with p absolutely continuous,
and denote by v the optimal transport plan from p to v. For any ¢ € CX(R%R?) with
& -nga =0 on 09, let w be the curve of measures defined by (3.9) with w(0) = p. It holds:

2 1%
(3.10) % T 2/Rded(:v —y)-&(z) dy(z,y),
(3.11) L~ [ avtetandpto) + [ TV() - e)ipta).
Proof. See [2, Corollary 10.2.7] and [38, Theorem 5.30]. O

We are now ready to prove Theorem 1.2 which states the convergence of the sequence of
curves (o;), towards a distributional solution of equation (3.4). Specifically, we need to prove
that, for all o € C°([0,T) x RY) such that Vi - ngg = 0 on 952, the limit curve o satisfies:

PRSI L Yy T PR L R

Proof of Theorem 1.2. Let us define for all p € P(9),

W3 (p, p_1)
2(1-p)r
which is minimized by p,,, by the definition of the scheme (1.8). Consider a smooth function
@ € C([0,T) x RY) such that Vi -ngg = 0 on 9. We define the sequence (¢,,), C C°(R?)
as ©n = @(tn, ). Consider then a curve w defined as in (3.9) with w(0) = p,, and £ = V,,_s.
Denoting by 4, the optimal transport plan from p, to p%_;, and using (3.10)-(3.11) as well

as the optimality of p,, we obtain

dG(pn—1, pn—2;w(s))
ds

(3.13) G(pn—1,pn—2;p) = +&(p),

1
s=0 N (1 - B) \/I\deRd(x B .fa) ' V(Pn—Q(LU)d’yn(;p’ :Ua)

/Ason 2(2)dpn( /vv  Vn_a(2)dpn(z) = 0.

Thanks to Proposition 3.4 and the regularity of ¢, we immediately have
N

T T
S (= [ avwant [V Toran) - (< [ [ avor [ [ v-veo)
Q Q 0 Q 0 Q

n=2

(3.14)

— 0,

for 7 — 0. In order to prove that the measure g is a distributional solution of equation (3.4)
we need to show that
N

S (oc—:ca>-wnz<x>dfyn<a:,a:a>—(— / ' [ oo | ¢<o>g<o>) ‘ —0,

Il =
£ 1= B Jraxpd
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as well. We can bound the latter quantity as Iy < Iy + I3, where Is = 2522 I3 with

1 1
Ig = m Rded(m - xoe) ’ v@an(x)d'Yn(xaxa) - 1-8 /Rd(pn — Qpp-1+ BPH*Q)(PH*Q ’
and
13 = i 1/ (pn — OpPp—1 +ﬁpn—2)§0n—2 - (_ /T/ 815()0@_ / QO(O)Q((D) :
o 1-— B Rd 0 Q Q

Integrating by parts the discrete derivative in this last term,

N
§ / (on — apn—1 + Bpn—2)pn—2 =
1 _— ,8 Rd
n=2
N

= nz:; 1—1ﬁ /Rd(tpn2 — (pn—1 — Bn))pn + 1_15 /]Rd Bopo + (Be1 — ao)pr -

Then, since @ = 1 + 3, and thanks to the smoothness of the function ¢ and Proposition 3.4,
we obtain I3 < C7 for some constant C' independent of 7.

Let us focus then on the term I5. Adding and subtracting (1 —8)"" [pa(pn — p%_1)n—2 at
each step n, we obtain

1
1-5

1
1-5

(3.15) o<

/ (= 2a) - Vopa(z)dyn(z, a) — / (on — Pr—1)Pn—2
RaxRd Rd

+

1-5

/Rd(ap”_l — Bpn—2 = Pp_1)Pn—2 (5 +13) -

Rewriting

/ (pn - pgfl)@n—Q = / (@n—Q(m) - L:071—2(1'0())(:1771(1'7 SL’a) s
Rd R xRd

we can bound I} as

/ SOH—Q(‘I) - Qpn—Q(xa) - (x - xa) : VQOn_Q(LIJ)d’)/n(iU, iva)
Rd x R4
1
< glitessten Dl ([ lo = aPra(ozn) )
Rdx R4

1
= 5 I1Hess (o)l W3 (01 1)
HHeSS((pTL—2>HOO (WQQ(pn, pn—l) + W22(pn—17 pgfl))
< |[Hess(ou-2)l oo (W3 (s pa1) + W3 (o1, pu-2) )

where we used the dissipation estimate (1.11). Similarly by the consistency assumption (1.12)
on the extrapolation, there exists a constant Cy, only depending on ¢ and €2 such that

Ig < CL,DWZQ(pn—la pn—2) .

IN

Using the bound (3.2), the estimates above imply that there exists a constant C' > 0 such that
I, < C7. The whole term I is therefore converging to zero and p satisfies equation (3.12).
O
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Remark 3.6. The 0-dissipativity and consistency assumptions play different roles in our proof
of convergence. One the one hand, 0-dissipativity is essentially used to get a stable scheme
(Lemma 3.1) and obtain compactness (Lemma 3.2). On the other hand, the consistency
assumption is necessary to obtain a consistent discretization of the time derivative (appearing
in I in (3.15)) and recover the correct PDE in the limit.

4. EXTRAPOLATION IN WASSERSTEIN SPACE

In this section we consider the issue of defining geodesic extrapolations in the Wasserstein
space. In particular, we propose several notions of extrapolation operators E,, which in some
cases verify the assumptions of Theorem 1.2, and discuss their relationship. We consider the
extrapolation problem on the whole space P2(R%). This allows us to be more general and to
simplify the exposition, in particular avoiding issues with the boundary. On the other hand,
some of the proposed definitions may be adapted so that the extrapolation of two measures
in P(Q) stays in P(£2) (see Remark 4.7). We stress that this last property is not required in
our definition of the EVBDF2 scheme (1.8), but it can be useful to produce a fully-discrete
scheme (see Section 6.3) or an intrinsic formulation. See Section 4.4 for more considerations
on this issue.

As recalled in the introduction, a globally-minimizing geodesic with respect to the Wy
metric is a curve w : [to, t1] — Pa(RY) such that

_ \81 - 80’

(4.1) Wa(w(so),w(s1)) = TR

Wa(w(to), w(t1)),

for all sg,s1 € (to,t1). We say that w : [to, t1] — P2(R?) is a locally-minimizing geodesic if for
all t € (to,t1) there exists an open interval J > ¢ such that (4.1) holds for all sq, s1 € JN(to,t1).
From the discussion in Section 2, given two measures pg, u1 € Pa(RY), if pg is absolutely
continuous there exists a unique globally length-minimizing geodesic connecting the two,
which is given by

(4.2) w(t) = (1 —t)Id + tVu) 4o

for t € [0, 1], where u is a uniquely defined convex function pp-a.e. (up to an additive constant).
As a matter of fact, we have for all sg,s1 € (0,1),

(43) W%(w(so),w(sl)) < /Rd (1= s0)x+ soVu(z) — (1 —s1)z — 31Vu(m)|2d,u0(x)

= ‘81 - 80‘2W22(:U’07M1>7
where for the first inequality we used as competitor the plan ((1 — so)Id 4 soVu, (1 — s1)Id +

s1Vu) 4o, and for the second equality the optimality of the plan (Id, V)4 g for the transport
problem from pg to p1. On the other hand, for s; > s, by the triangular inequality and (4.3)

Wa (o, 1) < Wa (o, w(so)) + Wa(w(so),w(s1)) + Wa(w(s1), 1)
< (s0+ 1= s1)Wa(po, 1) + Wa(w(so), w(s1)) ,

and therefore the inequality in (4.3) is an equality. Moreover, by similar calculations one can
verify that for any o > 1 the curve t € [0,a] — w(t), still defined as in (4.2), is a globally
length-minimizing geodesic if and only if u is 5/a-convex, i.e. the function

[

(4.4) x — au(x) — 5

is convex,
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with 8 = a — 1. However, in general, there is no guarantee that u is strongly-convex even if
po and g1 have smooth and strictly positive densities and for arbitrarily small 3, as shown
by the following example.

Example 4.1 (Contraction flow). Take u = %| 12, for a > 1 and 8 = a — 1. Then, for
any absolutely continuous pp € P2(R?) and u; = (Vu)gpo, there exists a unique globally
length-minimizing geodesic on (—oo, @] such that w(0) = po and w(l) = p1, which is given
by (4.2). On the other hand, since all trajectories cross at time « (i.e. (1 — a)ld + aVu = 0),
there exists no geodesic on (—oo, /] (either local or global) with o/ > « satisfying the same

property.

In general, globally length-minimizing geodesic extensions may not exist even if particle
trajectories do not cross. In this case, however, locally length-minimizing extensions may still
exist as shown in the next example.

Example 4.2 (Shear flow). For d = 2, let

1 1
Ho = 5(52 + 5—z) y M1 = 5(5Z—v + 5—Z+v)

where z = (1,1) and v = (1,0). In this case, there exists a unique geodesic w : R — Po(R?)
which is locally length-minimizing, and such that w(0) = pg and w(1) = w1, which is given by
1

(45) W(t) = 5(6271611 + 572+tv)-

However, w is globally length-minimizing only when restricted on (—oo, 2].

In order to define our scheme, we need an extrapolation operator which is well-defined even
when the geodesic extension (either globally or locally length-minimizing) does not exist. In
the following we will introduce different possible definitions and describe their properties.

4.1. Free-flow extrapolations. One possible strategy for defining an extrapolation consists
in disregarding the convexity condition on the Brenier potential in (4.4), and allowing particles
to cross each other while keeping their straight trajectories at constant speed. If pg € Po(R?)
is absolutely continuous, this amounts to defining, for any pu; € P2(R?%) and a > 1,

(4.6) Ea(po, 1) = (1~ 0)Id + aVu) gpio

where u is a Brenier potential from g to 1 (uniquely defined po-a.e.). If pg is not absolutely
continuous, there may exist multiple geodesics and optimal transport plans from pg to 1. In
general, we say that an extrapolation operator E,, yields a free-flow extrapolation if, denoting
by I'(p0, p1) the set of optimal plans from pg to uq, one has:

(4.7) Yo, 1 € Po(RY), 37" € T(po, p11) : Ealpo, 1) = (Ta) 7™,

where 7, : R xR? — R? is the map defined by 74 (z,y) = 2+a(y—2z). By construction, when
the geodesic induced by +* in (4.7) admits a locally (or globally) length-minimizing geodesic
extension, the resulting free-flow extrapolation is always consistent with it (for example, free-
flow extrapolations yield the curve (4.5) in the case of Example 4.2). Furthermore, such
extrapolation operators are admissible for our scheme in the sense of Theorem 1.2, as shown
by the following proposition.

Proposition 4.3. Any free-flow extrapolation operator Eo : Pa(R?) x Po(RY) — Py(R?),
i.e. any map satisfying (4.7), is B-dissipative with f = o — 1, and in addition it verifies the
consistency assumption (1.12) for all ¢ € CL(RY).



16 T. O. GALLOUET, A. NATALE, AND G. TODESCHI

Proof. For simplicity, we only consider the case where g is absolutely continuous. Let Vu
the optimal transport map from g to 1. To prove the dissipativity, let ¥ = (Vu, (1 — a)Id +
aVu)gupo. Then 4 € II(p1, Ea(po, #1)) and by equation (2.1),

W3, EaCpio ) < [ o= yPds(og) = (1= o) [ 1= Vulpr = W o)
For the consistency, let ¢ € C°(R?) and observe that, by the definition of pushforward,

[ ¢ Catianm) = am + o) = [ [o((1 = @)z + aVu(@)) - ap(Vu(a)) + 54(@)] dpo(a).

Using the Taylor expansion of ¢ around the point x in the integral on the right-hand side, we
find

o
< % |Hess () oW (110, 1)

/ﬁp (Ea(po, p1) — apar + Bo)

In the general case where pg is not absolutely continuous, the proof is analogous replacing
transport maps by optimal plans. O

4.2. Extrapolation with collisions. Free-flow extrapolations are the simplest way to ex-
tend geodesics after their maximal time of existence, but they are purely Lagrangian and they
cannot be easily implemented in an Eulerian setting. Here we describe an alternative route
to construct an extrapolation operator which prevents particles to cross, and which is based
on viscosity solutions of the Hamilton-Jacobi equation. The resulting operator can be imple-
mented in a robust way, but unfortunately it falls outside the hypotheses of the convergence
results presented in this work. In Section 6, we will describe a possible implementation (in the
case of a compact domain 2) and verify numerically that it leads to a second-order scheme.

Given pg, 11 € Po(R?), let us suppose that the optimal potential ¢ for the transport from
o to a given measure p; on the time interval [0, 1], is such that

(4.8) ¢(0, -) is globally Lipschitz.

Then, the curve w : [0,00) — Pa(RY) satisfying
-2

4s) o= [reo (a0l )] o

where u = | - |2/2 + ¢(0,-) is a Brenier potential from g to u1, and where co denotes the
convex hull, is well-defined. We remark that (4.9) coincides at time ¢ = « with the free-flow
extrapolation (4.6) as long as the convexity condition (4.4) holds. On the other hand, if such
condition is not verified, taking the convex envelope in (4.9) guarantees that the flow stays
monotone and particles cannot cross.

If (4.8) holds, one also has that the Hamilton-Jacobi equation (2.5) with initial condition
¢(0,-) has a unique viscosity solution, which is given by the Hopf-Lax formula
_ e e =yl
(4'10) ¢(ta ) - Ht(¢<07 ))7 Ht(¢(0? ))(x) = inf

yER 2t

Note that the evolution of the density transported by the velocity field Vé(t,-) (via the
continuity equation) is also well-defined since so is its Lagragian flow [23, 7]. In the following
lemma we show that equations (4.10) and (4.9) are closely related.

+¢(0,y) .

Lemma 4.4. Let ¢ : [0,00) x R? — R be the unique viscosity solution to the Hamilton-Jacobi
equation, or equivalently verifying (4.10) for t > 0, with ¢(0,-) being a Lipschitz function,
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and denote u = ¢(0,) + % Let o € P2(R?) be an absolutely continuous measure and
w : [0,00) — Pa2(R?) be the curve defined by (4.9) for all t > 0. Then,

(1) for allt >0, w(t) solves
(4.11) min ,uo, /¢

MGPQ(Rd)
(2) if d =1, w is a weak solution to the continuity equation with velocity V¢(t,-).

Proof. Concerning the first point, by the optimality conditions of problem (4.11) [34, Example
7.21] one can verify that:

Wy (o ) b ot [l

Therefore, the optimal transport map from pg to the optimal measure p is the gradient of
2 2
% —tH(—(t, ")) = % — tHi(—H((0,-))). Noting that for any function v it holds

2 2 2
WE @) = 25—t 20 )
(4.12)

2 12 *
—supy-o— (L5 p ) = (L v w0) @, w.
x 2 2
we conclude by applying twice (4.12).

For the second part, we refer to Proposition 4.1 in [3], where an explicit expression for the

measure transported by the flow is provided. O

Remark 4.5. For d > 1, the curve (4.9) does not coincide in general with the solution of
the continuity equation with velocity Vo(t,-). This is because (4.9) completely disregards the
dynamics of mass within the shocks, which may be non-trivial [3, 7].

There are two main problems with using (4.9) to define an extrapolation operator, i.e.
setting Eq (10, 1) = w(a). First, the initial potential ¢(0,-) is uniquely defined only pp-a.e.,
however the value of the potential outside the support of 1o does affect the final measure w(a)
for « > 1. Second, because of the same reason one can easily construct solutions that are not
dissipative in the sense of Definition 1.1: for example, one can take pug = p1 with compact
support and select an initial potential outside the support in such a way that w(a) (defined
as in the previous lemma) is different from .

Remark 4.6 (Extrapolation via pressureless fluids). With the same notation as above, one
could construct geodesic continuations also by looking for solutions w : [0,00) — Po(RY),
v : [0,00) = L%(w(t);RY), of the following system of PDEs:

Oyw + div(wv) =0,
(413) { 8,5((.«}7}) 4+ div (wv ® ’U) =0,

with initial conditions given by

W(O) = Mo, U(Ov ) = V¢(O, ) .

System (4.13) describes the evolution of a pressureless fluid with given initial density and
velocity. In fact, any sufficiently reqular solution (w,v) of problem (2.2) on the time interval
[0,1] also solves (4.13), since the absence of shocks implies that the Hamilton-Jacobi equation
is equivalent to the conservation of momentum, i.e. the second equation in (4.13). Moreover,
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dissipative solutions to such system, i.e. for which the kinetic energy K : [0,00) — R4 given
by

K(t) = / w(t)o(t)?

is nonincreasing, provide a dissipative notion of extrapolation, since by equation (2.2), for any
a=14+>1

@ 1
W2 (1, w(a) < 8 /1 at / w(t)u(t)]? < B2 /0 dat / o)) = FWE (o, 1)

Such solutions can be constructed by requiring a sticky collision condition, which enforces
particles to share the same position after their collision. In dimension higher than one, few
results exist on the well-posedness of system (4.13), so we will not consider this case in detail.
On the other hand, in dimension one, sticky solutions to system (4.13) have been widely
studied in the literature. In particular, Brenier and Grenier [3] showed that one can construct
solutions to (4.13) wusing the unique entropy solution of a scalar conservation law, and in
particular a solution to (4.13) is given by the curve

w(t) = X(t,-)gho,

with

S
(4.14) Xt 2) = (Ducots(t, ) o Folx), w(t,s) = / X(t, FI V() ds |

0
where X is defined as in (2.9), and Fo[fl] : [0,1] — R is the quantile function of po, i.e. the
pseudo-inverse of its cumulative distribution function Fy : x — ffoo dupo(x). Note that as
long as the geodesic can be extended 1(t,-) stays convex (as it is the integral of a monotone
function) and therefore the definitions for X (t,-) and X (t,-), respectively in (2.9) and (4.14),
coincide. We will show that in this case the resulting notion of extrapolation coincides with
that provided by the metric extrapolation, which is discussed in detail in the next section.

4.3. Metric extrapolation. In analogy with the Euclidean case (see equation (1.13)), one
can adopt a variational definition for the extrapolation, which we refer to as metric extrapo-
lation, and which is defined for all & > 1 and for all pg, 1 € P2(RY) by

(4.15)  Ealpo, ) = argmin F(uo, u1;p),  Flpo, i p) = aW3(p, 1) — BW5 (p, o) ,
pEP2(RY)

where § = a—1. In Proposition 4.10 we will show that problem (4.15) admits indeed a unique
solution, which justifies the definition of the metric extrapolation.

Remark 4.7. Alternatively, one can define the metric extrapolation as in equation (4.15)
via a minimization on probability measures in P(Q) over a given compact domain Q. In
this case, differently from the free-flow case (4.6), the support of the extrapolated measures
18 always contained in ). The results of this section hold also in this case without major
changes.

First of all, we observe that by the triangular and Young’s inequalities, for any p, uo, u1 €
P (RY)

W2 (o, 10) < (1 + ;) W2(p 1) + (1 + B)W2 (0, 1)

and therefore
(4.16) F(po, p1; p) > —afW3 (0, pa).
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FIGURE 3. Metric extrapolation in the setting of Example 4.2. The black solid
line connecting the support of the three measures represents the trajectory
followed by the extrapolated measure for different values of the parameter «.

Then, if there exists a unique geodesic (4.2) from g to p; and this can be continued up
to time «, i.e. if the associated Brenier potential u is §/a-convex, then the lower bound is
attained only by p = w(«) with

w(a) = (1 — a)Id + aVu)4 o,
since by equation (1.9)
W3 (no,w(a)) = Wi ko, ), Wi, w(a)) = B2W3 (o, 1) -

Remark 4.8. Note that if the geodesic extension is only locally (but not globally) minimizing,
then it may not be recovered as a solution of problem (4.15): for instance, this is the case for
the shear flow example 4.2, in which case one can compute the explicit solution to the metric
extrapolation problem, which is represented in Figure 3.

Existence and uniqueness for minimizers of problem (4.15) actually hold in general due to
the fact that the functional F is strongly convex along particular curves known as generalized
geodesics. To describe such curves, consider three measures v, vy,vs € Pg(Rd), let v,1 €
Pa(R? x RY) and 72 € Po(R? x R?) optimal transport plans from v to v; and from vy to va,
respectively. A generalized geodesic from v1 to vy with base g is a curve w : [0, 1] — Po(R%)
satisfying, for all ¢ € CP(RY),

/(pw(t) = /(p(:rl(l —t) + xot)dy(xo, 21, x2)

where v € Py(R? x R? x R?) is a plan verifying

/lﬁ(ﬂio,m)dv(iﬂo,th) = /¢($0,x1)d70,1($0,$1),
(4.17)

/¢($07$2)d7($0,9€1,$2) = /Wﬂco,wz)d’)’o,z(ﬁﬁo,m%

for all ¢ € CZ?(Rd X Rd). The existence of such a plan is a consequence of the so-called gluing
lemma (Lemma 5.3.2 in [2]). In the case where 1y is absolutely continuous, denoting by Tp 1
and Tp o the optimal transport plans from vy to vy and from 14 to vo respectively, there exists
a unique generalized geodesic from v to v5 with base 1y which is given by

(4.18) w(t) = ((1 — t)TOJ + tT072)#l/0 .
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A functional J : Po(R?) — R is A-convex along generalized geodesics based in vy, if for all vy
to vy and for all generalized geodesics w : [0,1] — Po(RY) from v1 to vy with base vy,

t(1

(4.19) T(@(t) < (1= T () + T (v2) — A

—t
5 )/!$1$2\2d7(9007$1,$2)

with ~ satisfying equation (4.17). We say that the functional 7 is A-convex along generalized
geodesics if the previous definition holds true for any vy € Pa(R%).

The following result was proven in [29] and provides the strong convexity of the functional
F along generalized geodesics.

Lemma 4.9 (Theorem 3.4 in [29]). For any po, 1 € P2(RY), the functional F(uo, p1;-)
Po(R?Y) — R defined in (4.15) is 2-convex along generalized geodesics based in py. In partic-
ular, for any pg, 3z € P2(RY) there exists a curve w : [0,1] = Po(R?),w(0) = po,w(1) = us,
such that for all t € [0,1], it holds:

(4.20) Fpo, p;w(t)) < (1= )F (po, pua; p2) + tF (po, ps pr3) — (1 — )W (a2, p13).
Lemma 4.9 is the main ingredient to prove the following proposition.

Proposition 4.10. The metric extrapolation problem (4.15) admits a unique solution .
Moreover, the metric extrapolation is B-dissipative, i.e.

(421) WQ(Ml? MOL) S ﬁWQ(:U’O? Ml) y
and for all p € Pa(RY),
(4.22) W3 (1, o) + F o, 15 ) < F(po, g 1) -

Proof. The functional F is strongly convex along generalized geodesics by Lemma 4.9, which
implies uniqueness of the solution. Regarding existence, let (1), be a minimizing sequence.
We denote m = inf,cp, (ray F (10, p11; 1), which is finite due to (4.16), and we introduce G(u) =
F (o, po1; ) —m. Consider two measures p"!, u"2? of the sequence and the generalized geodesic
w based in p; connecting them, as in Lemma 4.9. The inequality (4.20) for t = % provides

1 1
W (™ ) < 56 + F9W™),

N | =

which implies that the sequence is Cauchy in the Wasserstein space (P2 (R%), W5). The Wasser-
stein space being complete [2, Proposition 7.1.5], the sequence converges to a measure i,
which is the minimizer since F is continuous.

Inequality (4.22) derives again from Lemma 4.9. For a given yu € Po(R?), consider a
generalized geodesic w as in Lemma 4.9, with w(0) = u, and w(1) = p. By optimality of p,
it holds

0 < F(po, pa;w(t)) — F(po, #15 pa)

< t(F(po, 15 1) — F(pos 15 pa)) — t(L = 6)W3 (15 pa)

which, dividing by ¢ and taking the limit ¢ — 0, gives (4.22). Using (4.16) on the left-hand
side of (4.22) and then taking i = p;, we obtain the estimate (4.21).
([

In order to prove the consistency assumption we will use the following optimality conditions
for problem (4.15).
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Lemma 4.11. Let puo be the unique solution to problem (4.15). There exist two optimal
transport plans vo,o and Y1, from po to po and from py to jia, respectively, such that

(4.23) a/(xa —z1) - {(za) dy1,0(®1, Ta) — B/(:ra —20) - (@) dyo,a(z0,2a) =0,
for any € € C(R4RY).

Proof. Note that we cannot use directly Lemma 3.5 because p, is not necessarily absolutely
continuous. Therefore, in order to prove the result we construct a sequence of approximated
smooth variational problems and pass to the limit in the optimality conditions. Let us define
for € > 0,

(4.24) Fe(pos pas p) = F(po, pa; p) +eU(plv)
where U(- |v) denotes the relative entropy
dp
1 — | dp if
(4.25) U(ulv) = /Og(dv> BBy,
400 otherwise,

and v = (27)~ %2 exp(—|z|?/2)dz € P2(RY). We introduce the regularized problem

(4.26) e %‘j(fRd) Fe(po, pa; 1) -

Let (u™), be a minimizing sequence for (4.26). Due to Jensen’s inequality the relative
entropy is positive. Furthermore, it is convex along generalized geodesics [2, Theorem 9.4.11].
Hence, reasoning as in Proposition 4.10, we obtain convergence in Wy of u” to a measure
15, The relative entropy is lower semi-continuous on the Wasserstein space (Po(R%), W2) [1,
Theorem 15.4] and therefore 1, is the unique minimizer.

Note that

DY 0~ e (Y s [ e 1 @
/log <d1/> d,u—/log (dx)du—i_/ 5 du($)+210g(27r), for p < v.

Therefore, by applying Lemma 3.5 (adapted to the case where 2 = Rd), we can write down
the necessary optimality conditions of problem (4.26):

dF(po, p1;w(s))

(4.27) L

—20 [ (@0~ 21) - €lz)dr] (o1, 20)

s=0
_ 26/(:5& —x0) - g(xa)d’yaa(:vo,:va) + 5/ (xa &(xg) — div(f(ma)))duZ(xa) =0,

for any £ € C°(R%;RY), where w : (—§,8) — Pa(RY) is the curve of measures defined by (3.9)
with w(0) = p1a, and where we denote now by 75 , and 7{ , the optimal transport plans from
to to uf, and from py to uf,, respectively.

We want to show that the regularized functionals F¢(uo, i1;-), interpreted as functionals
on the Wasserstein space (Po(R%), W3), T'-converges towards F(uo, f11;-), in order to pass to
the limit in the optimality conditions of problem (4.26). Since F is continuous with respect
to Wy convergence and U is positive, the I'-liminf is obvious,

F(po, p; p) < liminf F(puo, pa; pre) < Himiinf o (pio, pas poe)

for any p. — p in the Wasserstein sense. Concerning the I'-limsup, if U(ulr) < co we can
take pu. = p as recovery sequence. Otherwise, since the set of absolutely continuous measures
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is dense in Po(R?), we can take a sequence of absolutely continuous measures j. converging
to p with respect to the Wasserstein metric. Since U(u|v) = oo, up to a reparametrization
we can assume that the relative entropy is increasing and that

C
u(,,L5|I/) S \ﬁ ’

for a constant C' independent of €. Then it holds:

lim sup Fz (o, p1; pe) = liglfa(ﬂo,m;ﬂs) = F (o, p1; ) -
g

Therefore Fe (o, p11; +) T-converges to F(po, pi1; ). Let us show that the sequence of minimizer
(15,)e is Cauchy. For this we observe that (Fe(po, p1;145))e is monotonically decreasing as
e — 0 since, for g9 > €1:

(4.28) Fey (b0, pas pe?) = (g2 — e)U (g [v) + Fey (o, pas 1e?) = Fey (Hos 15 Hg')-

Since F.(uo, pt1; ) are uniformly bounded from below, F.(uo, p1; ps,) converges to a value m
as ¢ — 0. Hence, we can define G.(-) = F-(po, p1;-) — m > 0. By the same arguments as in
the proof of Proposition 4.10 and the strong convexity of G, along generalized geodesics, for
any €2 > €1,

1 1 1 1 1
TV 1E) < 5o, (HE) + 500 (1452) < 5Ge, (HED) + 5Tes(142)

where the second inequality is a consequence of (4.28). Since G.(u§,) — 0 as ¢ — 0 we can
conclude that (u5,). is Cauchy and by the I'-convergence showed above, us, — o in W.

Finally, by the stability of optimal transport plans [39, Theorem 5.20], there exist optimal
plans 70 and 71, from po to pe and from pq to i, respectively, such that (up to the
extraction of a subsequence)

(1 £
P)/O,a - 70706 9 71704 - 71,01 )

weakly, i.e. in duality with continuous bounded functions (and also in the Wasserstein sense;
in fact, the second moments of 5 , and 7{ , converge to those of 79, and 71,4 since pg, = pa
in the Wasserstein sense). As the vector field ¢ is smooth, passing to the limit in (4.27) we
obtain (4.23).

O

Proposition 4.12. The metric extrapolation defined via (4.15) verifies the consistency as-
sumption (1.12) for all p € C°(R?).

Proof. Using the same notation as in the statement of Lemma 4.11, we have that for all
p € CERY

/ ¢ (tta — v + Bio) = @ / (1) — 9(2a)) 1.0 (@1, 20) — B / ((0) — 9(2a))d10.0 (20, Za) -

Using the Taylor expansion of ¢ at x, in both integrals on the right-hand side, Lemma 4.11
and the dissipation property (4.21), we obtain

1
< §|\Hesswlloo(aW22(u17ua) + BW3 (1o, pa))

/w (fha — 1 + Bpio)

< af||[Hesspl| oo W5 (10, 111)-
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Remark 4.13 (Relation with pressureless fluids). In dimension one, the Wasserstein distance
Wo coincides with the L? distance between the quantile functions. In particular, the metric
extrapolation [, 1S given by
. -1 -1
fo = (Ga)pdaly, Go= argmin aflG — F 5. - 8IG - £,
GeL?([0,1],R)
monotone
where FO[_H and Fl[_l} are the quantiles of po and p1, respectively. The solution to this problem

coincides with the sticky particle model described in Remark 4.6, i.e. G, = X(a, -) with X as
in (4.14).

Remark 4.14 (Dual formulation of the metric extrapolation). Let us recall that the optimal
transport problem (2.1) admits the following dual formulation [ , Theorem 5.10]:

W2(po, .
(4.29) (M; ) _ Sup {/Hl Po)p1 — /¢0M0 - +<f>0() is CO”U&T} ,
and if po is absolutely continuous, this admits a unique mazximiser ¢o, and u(-) = % +¢o(-)

is the Brenier potential from pg to pi. However, the associated geodesic from ug to pu1 can be
extended up to time o > 1 only if (4.4) holds, or equivalently if

|z|? .
(4.30) T + apo(x) is conver.

Therefore, in order to construct an extmpolatz’on one can instead consider the problem

(4.31) sup{/?—[l o)1 — /(Z)oug T — +a¢0() is convex},

and, if po is absolutely continuous, set
Ea(po, 1) = (Vua) 10,

where uq(-) = || + apo(-) and ¢ solves (4.31). This extrapolation is well defined and it
turns out to be a dual formulation for the metric extrapolation in the spirit of [13]. However,
even if very natural, this dual point of view was not needed for the results presented here, and
therefore it will be developed in a future work.

4.4. Extrapolation on bounded domains. So far we only discussed the extrapolation
problem on the whole space PQ(Rd). However, even if the EVBDF2 scheme is well-defined
using such extrapolations, it can be convenient for numerical reasons to use an extrapolation
operator mapping two measures on P(£2) to an extrapolated one still in P(2). As mentioned
in Remark 4.7, this can be achieved easily in the case of the metric extrapolation, since one
can simply perform the minimization problem (4.15) over P(2) rather than Py(R?). It is not
difficult to check that all the properties discussed in the previous section hold also with this
modification.

In general, a straightforward way of defining an extrapolation operator E : P(Q) x P(Q) —
P(Q) is to compose with a W projection. Specifically, given an operator E, and g, 11 € P(2)
we can define:

ES (ko, 1) = argmin W3 (p, Ea (pt0, 1)) = PgEa (o, 1) ,
PEP(Q)

where P : R? — Q is the Euclidean projection on the convex set Q. Then, if E, is 6-
dissipative and satisfies the consistency assumption (1.12), also Eg does. In fact, denoting by
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v* the optimal plan from g1 to Eq(po, p1), (Id, P)gv* € H(p1, EX (1o, 111)), and therefore one

has
W22(:u1) ES(MO’ Ml)) S /

R4 x

|z — P(y)|*dy*(z,y)
Rd

< / & — y2dy (2, ) = W21, Ealjion 1))
R x R4

which implies that E is -dissipative if so is E,. Moreover, Yo € C°(R?) with Vi -ngq = 0
on 0f2

'/Rdso (ES (po, 1) — Ea(/io,m))‘ = ‘/Rd((’DOP_(p)Ea(Moaﬂl)

1
< §HHGSS(SD)H00W22(E2<M07Ml)a Ea(po, 1))

1
S §HHGSS(¢)H00W22(M17 EDZ(/J’Oa ,ul)) )

where to pass from the first to the second line we used a Taylor expansion of ¢ together with
the fact that Vi(P(x)) - (P(z) — ) = 0 on R%. Hence, using the #-dissipativity property, we
find that if E, verifies the consistency assumption for all p € C°(R%), then ES also verifies it
for all ¢ € C(RY) such that Vi - ngg = 0 on dQ. As a consequence, the convergence result
of Theorem 1.2 holds also when the operator Eg is used in the extrapolation step.

5. CONVERGENCE IN THE EVI SENSE

In this section, we make a further assumption on the energy functional £. Besides lower
semi-continuity, which ensures well-posedness of the scheme (see Section 3) we assume that £
is A\-convex in the generalized geodesic sense on P(2), for A € Ry (see equation (4.19), and
recall that € is supposed to be convex, so generalized geodesics with endpoints in P(Q) are
well-defined as curves on P(£2)). We recall that a curve g : [0,7] — P(22), 0(0) = po, is a
Wasserstein gradient flow in the EVI sense if for any v € P(£) it holds

d1

(5.1 S AWRol1),v) < E() — E(lt) ~ JW3elt)v), Ve (0.1),

or, equivalently, if for all r,s € (0,T) with r < s it holds

5:2) G WRels)r) — sWE (e <€) =) — [ (Elelw) + W (e.0) ) dr.

In this section, we show that the limit curve extracted from the time discretization (1.8) using
the metric extrapolation (4.15) (defined on either P(Q) or Pa(R?)) satisfies the inequality
(5.2).

We first show that for scheme (1.8)-(4.15) a discrete version of the inequality (5.2) holds.
As the Wasserstein distance W2(-, p%_;) is 2-convex along any generalized geodesic based in
p_ (see, e.g., the proof of Lemma 4.9), the overall functional

WQQ(pa ngl)
2(1-p)r

is ﬁ + A > 0 convex along any generalized geodesic on P(f2) based in p&_;. Note that in

(5.3) G(pn—1, pn—2;p) = +&(p),

order to consider the case A < 0 one should explicitly add a restriction on the time step 7 so

1
thatm+>\>0
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Lemma 5.1. At each step n, for all v € P(R2), the following inequality holds:
WQQ(V> pn72)
2(1=p)r
(pn 1»pn2) W22(pn7p7o’:—1)
2(1-p8)r 2(1-p8)r

Proof. By the discussion above, considering the generalized geodesic w between v and p,, with
base p&_;, and using the optimality of p,, we obtain

0 < G(pn-1, pn-2;w(t)) — G(pn—1, Pr—2: Pn)
1 1
< UG (Pn—1,pn—2;v) = G(pn—1, Pn—2: pn)) — 5(@ + )\>t(1 — W3 (pn, v)-

Dividing by ¢ and taking the limit ¢ — 0, this yields
1 A 2 W3 (v, pp_1) W3 (pns 1)
- - .= _ _2\inml) - _ _ =Ml
(2(1 — B " 2)W2 (pns ) 20— f)yr = E(v) = Elpn) 21— B)r
Adding on both side the term — F(pn—1,pn—2;p5%_1), using (4.22) on the left-hand side,
we obtain

1
2(1=pB)r

(v n—1
)WQ (pn,v) — O‘V[;Q(i ;pﬁ)T) +

< &) =E&(pn) +ap

(5.4) (

1
2(1-8)1

1 A WQ(V» Pn—l) WQ(V) Pn—2)
(2(1—5)7 >W2 (bon )~ 22(1—6)7 ’ 22(1—5)7

1 W2 ny ?:_
< E0) ~ E(n) — g Flonorspucai 1) — o)

Finally, using (4.16) on the right-hand side we conclude. O

Proof of Theorem 1.3. We recall that thanks to the classical estimate (3.2) (Lemma 3.2), the
piecewise constant curve

N
= Z pn—l]l(tn_l,tn] P pT<0) = P0o

converges uniformly in the Wy distance to an absolutely continuous limit curve o : [0,7] —
P(Q) (see Proposition 3.4). In order to prove convergence of the scheme in the EVI sense, we
show that this curve satisfies inequality (5.2). Thanks to the uniform convergence in time,
the procedure is the same as in [29, Theorem 5.1].

For simplicity, assume that given r,s € (0,7),r < s, there exist N, M, € N, N, < M,
such that r = N;7,s = M,7, V7. We multiply by 7 inequality (5.4) and sum over n from N,
to M to obtain the discrete integral form of the EVI:

M,
(5.5) 2<11—5>§ (W2(pn, ) — W2 (W, pu_1) + BWEW, pn )
M- A
<EWt-5)- > r(sw + SWE(pa0))
n=Nr

MT
Z aﬁWQ Pn—1s Pn— 2) W;(pnapgfl))
n:NT



26 T. O. GALLOUET, A. NATALE, AND G. TODESCHI

By canceling out terms, the left-hand side is equal to

1

(5.6) 07 (

—aW3 (v, pn,-1) + BW3 (v, pn,—2) + BW3 (v, pr, 1)

W5 (par,—1,v) + W3 (par, , v) — aW3 (v, par, 1))

and thanks to the uniform convergence in the Wasserstein distance, (5.6) converges to

%Wg(g(s), V) — %WQQ(Q(T% V) )

for 7 — 0, where we recall « — 8 = 1. Concerning the right-hand side, thanks again to the
uniform convergence in the Wasserstein distance, the lower semi-continuity of £ and Fatou’s
lemma, we have

M-

lim sup — Z T(é’(pn) + %Wg(pn,u)> <- /TS <5(g(t)) + %W;(g(t),u))dt.

n—oo n=N.
Finally, owing to bound (3.2), we estimate the last contribution of (5.5) as

> aBW3(pn-1,pn-2) = Wi (pn, 1) < Y afW3(pn-1,pn-2) < CT,

which converges to zero. As a consequence, we recover the continuous inequality (5.2).
O

6. FINITE VOLUME DISCRETIZATION

In this section we describe a space-time discretization of the proposed approach which yields
numerically second-order accuracy both in space and time. We consider a discretization in
the Eulerian framework of finite volumes. In this setting, neither the free-flow extrapolation
nor the metric one have a straightforward implementation. For this reason, we will construct
a discrete extrapolation operator based on formula (4.11): in this way the extrapolation step
is cast in a variational way allowing for a robust implementation. Although not satisfying
the hypotheses of theorem (1.2), this choice leads to a convergent and second order accurate
scheme, as we will show numerically. As explained in Remark 4.5, the variational step (4.11)
differs from the direct forward integration of the continuity equation. This latter is a viable
alternative to define a discrete extrapolation and leads to second order accuracy as well (see
[37]), but it is not clear how to discretize this in a robust way.

The fundamental tool is the solution of JKO steps, which requires the expensive problem
of computing the Wasserstein distance. Following [12, 30], we linearize the Wasserstein dis-
tance obtaining LJKO steps, a more affordable problem to solve. Remarkably, this approach
preserves the second order accuracy in time of our time discretization. The discretization
in space is based instead on Two-Point Flux Approximation (TPFA) finite volumes with a
centered choice for the mobility, which leads to simple and flexible schemes which are second
order accurate in space.

6.1. Discrete setting. TPFA finite volumes require a sufficiently regular partitioning of the
domain Q, according to [18, Definition 9.1]. For simplicity, we describe the methodology in
two dimensions only, although generalizations to arbitrary dimensions are possible, and for
Q) C R? being a polygonal domain. The discretization of ) consists of three sets: the set

of cells K € T; the set of edges o € 3, which is composed of the two subsets of internal
edges ¥ and external edges ¥ \ X; the set of cell centers (xg)ycr- We will denote the
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finite volume mesh as (7', 3, (xk) KGT)' The fundamental regularity hypothesis we need to
construct TPFA schemes is the orthogonality between each internal edge 0 = K|L € ¥ and
the segment xj, — xx. Typical example of meshes that can be used to this end are Cartesian
grids, Voronoi tessellations and Delaunay triangulations, by taking the circumcenters of the
polygonal cells as cell centers.

For each cell K € T, we denote X and Yx the subsets of edges and internal edges
belonging to K, and by mx the measure of the cell. The mesh size h is the largest among all
cells’ diameters, h := maxge7 diam(K), and characterizes the refinement of the mesh. For
every internal edge, the diamond cell A, is the quadrilateral with vertices given by the cell
centers, Xx and xz, and the vertices of the edge. Denoting by d, := |x; — xx| and m, the
measure of the edge, the measure of the diamond cell is equal to ma, = m"Td”, where d stands
for the space dimension. Finally, we denote by dx , the Euclidean distance between the cell
center xx and the midpoint of the edge ¢ € Y, and by n K,o the outward unit normal of the
cell K on the edge o.

The finite volume methodology introduces two levels of discretization, on cells and edges.
The first one is used to discretize scalar quantities whereas the second one for vectorial ones.
To this end, we introduce three discrete inner product spaces (R7,(-,-)7), (R, (-,")x) and
(Fr,(-,-)r,;). The scalar products (:,-)7 and (-,-)s are defined as

<‘,'>7' : (a, b) S [RT]Z — Z aKmeK,
KeT

<'7 ‘>E : (’LL,’U) € [RZ]Z = Z uovamoda-
o€y

The space F is the space of conservative fluxes, it is defined by
Fr={F = (Fx,Fro)oes € R* : Fi o + Fp 5 = 0},
and its scalar product is

Medy
B

<'> '>IFT : (Fv G) € [FT]z = Z(FK,UGK,U + FL,UGL,U)
oex

Note that the space Fy is defined on internal edges only. This is sufficient, since we are
dealing with no flux boundary value problems, and therefore we can neglect the flux variables
on the boundary. We denote F, = |Fk | = |FL | the modulus of the flux on each internal
edge 0 = K|L € ¥ and, by convention, |F| = (F,)sex € R* and |F|? = (F2),ex € R, for
F eFr.

According to finite volumes, the discrete divergence operator divy : F+ — R7 is defined in
an integral sense as

(divy F) g = divg F := L Z Fromg,
mr TEX K

that is, for each cell, the discrete divergence is computed as the sum of the fluxes across
its boundary. The discrete gradient Vs : R7 — Fy is defined by duality, requiring that
(Vsa, F)p, = —(a,divy F)r, for all @ € R7 and F € Fy. Then, it holds
ap — Gk

do
Both the discrete divergence and gradient operators automatically inherit the zero flux bound-
ary condition from the definition of F.

(Vrsa)ko = Vigesa =
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The space (R*, (-,-)x) is introduced in order to match the two different discretizations on
cells and edges. In order to reconstruct variables defined on cells to the edges, and vice-versa,
we need two reconstruction operators. We use a centered reconstruction for the mobility in
order to attain the second order accuracy in space. To this end, we use the weighted arithmetic
average operator Ly, : R7 — R* and its adjoint LS, : R* — R7 (with respect to the two scalar
products):

U'do'
(6.1) (Lxa)s = Ak oax + AL oar, (Lyu)g = Z )\Kpugm ,

m
oEX K K

for a € R7T and u € RE, with A, + A, = 1,Vo = K|L € 3. Two possible choices for
the weights are (Mg, ALs) = (dK", d;;") r (3,3), both leading to second order accurate
schemes in space [30]. The former choice is possible only if x5 € K, which may not be always

the case for arbitrary admissible meshes.

Remark 6.1. The definition of the reconstruction operators and the choice of weights may
be delicate in general for the discretization of dynamical optimal transport, depending on the
discretization chosen for Q. See [21, 31| for details. Notice in particular that the choice
(Ak,os ALo) = (3,3) may lead to convergence failure in very simple settings [21, Section 5].
Nevertheless, in the context of the discretization of Wasserstein gradient flows the definition
of the reconstruction is more flexible, see [12, 20].

6.2. Discrete H ! norm. As suggested in [25, 17, 31], a convenient choice for the time
discretization of the Wasserstein distance (2.2) is to use a staggered time discretization for
the velocity and the density on subintervals of the time interval [0,1], and reconstruct the
density on intermediate steps via arithmetic average. It has been shown numerically in [12, 30]
that a single step discretization on the whole interval is sufficient in order to preserve the first-
order accuracy of the JKO scheme (1.3). Following the same ideas, here we approximate the
Wasserstein distance between two measures pu, v € P(Q2) as

(6.2) ;W§(M,V)%Sgp/9¢(u—l/)—;/Q(/HV)IVW

Formula (6.2) is obtained by discretizing in one step problem (2.2) and by applying a duality
result thanks to the change of variables (w,v) — (w,wv). For more details on this construction
see [12, 30]. This approximation consists in replacing the Wasserstein distance with the
weighted dual norm || —v/| it The choice of the arithmetic average of the two measures

as weight is fundamental in ordei to achieve second order accuracy in time for the scheme we
will propose in the following.

Using the finite volume discretization introduced above we can provide a discrete analogous
of the weighted norm. Given the discrete measures p, v € RI and for any h € R7 | the discrete

counterpart of the weighted H~! norm squared is

(6.3) Ar (M5 Ym) = sup (h. )7 - %<£2(“+V> Vol .

A few remarks are in order about such a discretization.

e For any p € ]RI, the function A7 (p; ) is proper, convex and lower semi-continuous as
supremum of convex and lower semi-continuous functions.

e The supremum is unbounded if the condition (h,1)7 = 0 is not satisfied. On other
hand, if (h,1)7 = 0, there exists a maximizer ¢, which is however not uniquely
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defined, since the function maximised in (6.2) is invariant with respect to addition of
a global constant or perturbations sufficiently far from the support of h, u, and v.

e Setting h = v — p in (6.3), with g and v being a discrete approximation of two mea-
sures 4 and v, we obtain a discrete version of W3 (u,v)/2. In this case the optimal
potential ¢ can be interpreted as a discrete counterpart of a continuous optimal po-
tential ¢, satisfying the Hamilton-Jacobi equation on the time interval [0, 1], evaluated
at time 1/2.

e The total kinetic energy is discretized on the diamond cells. Notice that due to the
definition of the scalar product (-,-)s;, the measure of each diamond cell is taken
meds = dma,, i.e. d times the actual measure. This is done in order to compensate
for the unidirectional discretization, since each term |V g ,¢| is meant as an approxi-
mation of the quantity |V¢ - ng |, and have a consistent discretization. See [31] for
more details on this construction.

6.3. Discrete extrapolation. We now construct a discrete version of the extrapolation op-
erator E, at time «, by discretizing the procedure described in Section 4.2, and in particular
of equation (4.11). The proposed strategy requires three subsequent steps: i) compute the
interpolation between the two measures; ii) integrate forward in time the optimal potential;
and finally iii) solve a JKO step.

Let us consider two discrete densities p, v € RI with the same total discrete mass (u, 1) =
(v,1)7. The first step requires to solve problem (6.3) for h = v — p in order to find an optimal
potential ¢, which approximates the continuous one, solution to the Hamilton-Jacobi equation
(2.5), at the midpoint of the time interval [0, 1].

In the second step, we evolve the optimal potential according to the Hamilton-Jacobi equa-

tion until the final time «, that is considering a temporal step of length % + B = O‘—;ﬂ This
can be done with an explicit Euler step as follows:
2 1
6.4 Y= - ———L%|Vso|®.
(6.4) ¢ =6~ 55 LHVedl

Note that we use the operator L, to reconstruct the square of the gradient of the poten-
tial. However, as this step is not variational, it is not mandatory to use the adjoint of the
reconstruction Ly and any other (second order) strategy can be adopted.

Finally, for the third step, we approximate problem (4.11) using again the discrete weighted
H~! norm. Specifically, we define a discrete extrapolation operator as a map EZ: : RI X RI —
RI verifying

1
(6.5) E (p,v) € argmin — Ay
a

(p+ﬂ
pERT

5 ;u—p) — (%, )7,

for all p,v € RI and where ¢ is given by equation (6.4). Due to the definition of A7, any
solution p satisfies (p,1)7 = (v,1)7. However, since ¢ is in general not unique, in order to
specify a discrete extrapolation operator one needs to select a specific optimal potential for
any u,v € RI.

6.4. A space-time discrete EVBDF2 scheme. We can finally formulate our second order
finite volume scheme. Consider a convex discrete energy function &7 : R7 — R and the two
initial densities pgy, p; € ]RI, with the same total discrete mass. We define the subspace of
discrete probability measures P C R7 as

Pr={peR]: (p,1)7 = (po, 1)7}.
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For the time step 7 > 0, we compute the sequence of densities (p,)n>2 C P defined by the
following recursive scheme:

Pr_1= E;—(pn—Qa Pn_1):
(6.6) 1 + p&_
P € argmin — AT<p 5” SToRE p) +&7(p).
pGRI T( - ﬂ)

The LJKO step in (6.6) is a well posed convex optimization problem. Uniqueness of the
solution at each step is guaranteed if £ is strictly convex. Moreover, due to the definition of
A7, any solution p belongs to Pr.

Remark 6.2 (Efficient implementation via the interior method). Problem (6.5) and the LIKO
step in (6.6) can be solved efficiently thanks to an interior point algorithm, as suggested in [30)]
(see also [31, 19]). This implies that the density will be always strictly greater than zero, up
to the tolerance set for the solver. Hence, one can compute the solution ¢, required to define
ET, solving directly the linear system given by the optimality condition of problem (6.3):

)©ve) =0,

where @ denotes the component-wise product, which has then a unique solution defined up to
a global additive constant.

n+v

(6.7) v—p+ divT(ﬁ(

6.5. Other implementations. We now propose a discrete version of the extrapolation-based
version of the VIM scheme (1.19) and the BDF2 scheme (1.16) within the same TPFA finite
volume setting introduced above. We will study these numerically in Section 7.2.1 by com-
paring their solutions to the solutions provided by scheme (6.6) on one-dimensional test cases.

Our formulation of the VIM scheme (1.19) requires solving a JKO step with time step &
and then computing the 2-extrapolation. Using the tools introduced above, in the discrete
setting this can be formulated as follows. Given the initial density p, € Py and a time step
T > 0, construct the sequence of densities (p,,)n>1 C P by solving at each step n

(p + Pp1

.2
P 1 € argmin —Ar
(6.8) per] T

Pn = E;(pn—lv pn_%) .

As before, the discrete LJKO steps can be computed thanks to an interior point algorithm.
From a computational point of view, this scheme is cheaper to compute than (6.6), as in this
case the value of the optimal potential in the discrete weighted H~! norm from p,_; to p,_1

2

is already known from the LJKO step and does not need to be computed. However, in the
next section, we will show numerically that the solutions produced by the VIM scheme (6.8)
are much more oscillatory than those obtained with the EVBDF2 scheme.

We can also propose a naive discretization of the BDF2 scheme (1.16) by replacing the
Wasserstein distances with discrete weighted H~! norms. Consider two initial conditions
Po, P1 € Pr and the time parameter 7 > 0. At each step n, compute p,, as solution to

. « p+ Pn—1 /8 p+ Pn—2
6.9) inf A7-< S P — )— AT( $ Pp_o — )—1—57- )
( ) pGRI (1 _ B)T 2 P 1 P (1 _ ,8)7' 9 P 2 P (p)
Problem (6.9) is not a convex optimization problem. Notice that it is not even bounded from

below in general. Indeed, the function A7-('a+g"’2 ;i Pp_o — P) is not bounded from above if
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the density p,,_, is not supported everywhere. We can nevertheless try to compute stationary
points of the objective function in (6.9) using again an interior point algorithm. Despite not
being a robust and completely meaningful strategy, in some cases it is possible to solve the
problem, which enables us to compare it to our implementation.

Remark 6.3. In one dimension, as pointed out in Remark 4.13, both the metric extrapolation
(1.14) and the BDF2 scheme (1.16) can be recast as convex optimization problems. In this
case it is possible then to design effective discretizations for these (as originally done in [29]).
Nevertheless, this approach requires, at least in the Eulerian framework, to be able to switch
between discrete densities and discrete quantile functions, and it does not appear obvious how
to achieve this while preserving the second order accuracy of the space discretization.

7. NUMERICAL VALIDATION OF THE EVBDF2 SCHEME

The objective of this section is to validate our numerical scheme (6.6). We will first show
qualitatively its behavior with simple one-dimensional examples and compare it to the schemes
(6.8) and (6.9). We then show that all these three approaches lead to a second order accurate
discretization in both time and space. We consider for these purposes two specific problems
that exhibit a gradient flow structure in the Wasserstein space: the Fokker-Planck equation
we presented in Section 3.2 and the porous medium equation. This latter writes

(7.1) dr0 = Ag’ + div(eVV),

and it is a Wasserstein gradient flow with respect to the energy
1
(12) &)= [ 5oy0 oV
00—

for a given § > 1 and with V' € W1>°(Q) a Lipschitz continuous exterior potential [32]. The
energy functionals (3.5) and (7.2) are both of the form £(p) = [, E(p)dx for a strictly convex
function £ : Ry — R. They can be straightforwardly discretized as &7 = Y~ e E(pr)mi.
Finally, we will test scheme (6.6) on a more challenging application in order to show its
flexibility and robustness, that is an incompressible immiscible multiphase flow in a porous
medium.

We remark that when two initial conditions p, p; are needed, we compute first p; from
po via an LJKO step:

<P+Po,

1
py = argmin — Ay (= pg — p) +&r(p).

pERT T
In the ODE setting, computing the second initial condition via a first step of implicit Euler
scheme ensures the overall second order accuracy [16]. This strategy reveals to be numerically
effective also in this setting.

7.1. Comparison of the three approaches. We compare the three different approaches
on simple one dimensional tests for the diffusion equation and the porous medium equation.
For both system we set Q = [0, 1], discretized in subintervals of equal length my = 0.02.

We first consider the diffusion equation, which is problem (3.4) with zero external potential

V. We take as initial condition
152
m=e(-(e- 1))

which we discretize as py = (po(XK))keT, and the time step 7 = 0.01. In Figure 4, we show
the density obtained with the three schemes at three different times. Using the VIM scheme
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4 2 2
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4 2 2
= "Pn-1 = =Pn—1 - =Pp—1
3.5
=Pt =Pt —=Pn_i
15 —Pn

0 0

FI1GURE 4. Comparison between the three schemes for the diffusion equation.
From top to bottom, the BDF2 scheme (6.9), the VIM scheme (6.8) and the
EVBDEF2 scheme (6.6). From left to right, three different time steps: ¢t =
0.02,0.04, 0.06.

(6.8), spurious oscillations appear in the solution and these persist along the integration in
time. Such oscillations can be explained as the result of the interaction of the extrapolation
step, causing the mass to exit the domain, and the boundary conditions, forcing the mass to
stay within Q. Neither the EVBDF2 scheme (6.6) nor the BDF2 scheme (6.9) suffer from this
problem. However, notice that in both cases the dynamics slightly differ from pure diffusion
due to the presence of bumps in the solution.

Consider now the porous medium equation (7.1) with 6 = 2 and the external potential
V(xz) = —x, which causes the mass to drift towards the positive direction. We take as initial
condition

po(x) = ]l;zj<% I

discretized again as py = (po(xK))keT, and the time step 7 = 0.002. In this case, the naive
implementation we proposed for the BDF2 scheme does not converge, which is not surprising
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6 = “Pn-1
_"pnf%

—Pn

FiGure 5. Comparison between the VIM scheme (6.8) (top row) and the
EVBDF2 scheme (6.6) (bottom row) for the porous medium equation. The
BDF2 scheme (6.9) does not converge in this case. From left to right, three
different time steps: ¢ = 0.004, 0.008, 0.020.

since the objective function in (6.9) is unbounded from below. The results for the VIM
scheme (6.8) and the EVBDF2 scheme (6.6) are shown in Figure 5. Again, the VIM scheme
is unstable whereas the EVBDF2 scheme controls and smooths the oscillations generated by
the extrapolation step. Note that in this case the oscillations are due to the compact support
of the density and the explicit integration in time of the Hamilton-Jacobi equation: in the
extrapolation step the mass cannot flow outside the support, which acts then like a boundary.

Finally, we observe that, as in the continuous setting, we cannot expect any regularity on
the measure obtained after the extrapolation, and the JKO step is the only source of regularity
for both the EVBDF2 and the VIM scheme. One may argue that the two schemes perform
the same operations up to a temporal shift, which should contradict the different behavior
shown in Figure 4. However, notice that scheme (6.6) performs a smaller extrapolation and
a bigger JKO step with respect to scheme (6.8). Furthermore, in (6.6) one needs to compute
an extrapolation between two minimizers of the JKO step, whereas in (6.8) the extrapolation
is between an extrapolated measure and a JKO minimizer.

7.2. Convergence tests. We now compare the three schemes in terms of order of conver-
gence with respect to an exact one-dimensional solution of the Fokker-Planck equation (3.4).
For the EVBDF2 scheme (6.6), we will also perform two dimensional tests using the porous
medium equation (7.1). For all tests, we consider a sequence of meshes (Tm, Y, (XK)KeTm)
with decreasing meshsize h,, and a sequence of decreasing time steps 7,, such that hﬁ—f =

Tm+1

= We solve the discrete problem for each couple (hy,, 7,) and evaluate the convergence
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TABLE 1. Errors and convergence rates for the three schemes for the Fokker-
Planck equation in one dimension. Integration time [0, 0.25] for the first three
cases, [0.05,0.25] for the last one.

BDF2 (6.9) EVBDF?2 (6.6) VIM (6.8) VIM (6.8)
hm, Tm €m, rate €m, rate €m, rate €m, rate

0.100 0.050 2.091e-02 / 2.217e-02 / 5.895e-02 / 4.667e-03 /

0.050 0.025 6.376e-03 1.713 7.016e-03 1.660 3.615e-02 0.706 1.024e-03 2.188
0.025 0.013 1.791e-03 1.832 2.044e-03 1.779 2.294e-02 0.656 2.517e-04 2.025
0.013 0.006 4.849e-04 1.885 b5.653e-04 1.854 1.468e-02 0.644 6.264e-05 2.007
0.006 0.003 1.280e-04 1.922 1.508e-04 1.906 1.234e-02 0.251 1.562e-05 2.003
0.003 0.002 3.324e-05 1.945 3.933e-05 1.939 9.983e-03 0.306 3.901e-06 2.002

with respect to the discrete L((0,7); L*()) error:
€m = ZT Z lpr.n — 0(XK,nT)|mK .
n  KeTn,
We compute the rate of convergence as:
log(€m—1) — log(€em)
log(Tm—1) — log(Tm)

7.2.1. One-dimensional tests. On the domain = [0, 1] and for the external potential V (z) =
—gz, we consider the following exact solution to the Fokker-Planck equation (3.4):

2
(7.3)  o(t,z) =exp (— (772 + gz)t + gm) (71’ cos(mzx) + %sin(mc)) + mexp (g (:I: — %))
We consider the value ¢ = 1. For each mesh (Tm,im, (XK)KeTm) and time step 7,,, we
compute then the discrete solution using the three schemes, starting from the initial condition
po = (0(0,xx))ker. The results are presented in Table 1. Both the BDF2 and the EVBDF2
schemes are second order accurate, whereas the order of convergence is less than one for the
VIM scheme. This is due to the presence of oscillations in the solutions obtained with the
VIM scheme, which are however only present at the beginning of the time interval [0, 0.25].
Repeating the test on the interval [0.05,0.25], the convergence significantly improves and
attains second order accuracy as well.

7.2.2. Two-dimensional tests. We now estimate the order of convergence of the EVBDF2
scheme on two-dimensional test cases. Here, we set = [0,1]? and use the same sequence
of grids that have been used in [12, 30], which allows for a direct comparison of the results
therein.

We repeat first the test on the Fokker-Planck equation in two dimensions using the same
solution (7.3) on the domain Q = [0,1]2. The results are shown in Table 2 and confirm the
second order accuracy of the scheme.

We also perform a convergence test with respect to an explicit solution of the porous
medium equation (7.1) with zero exterior potential V. This equation admits a solution called
Barenblatt profile [32]:

e =) e (e
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TABLE 2. Errors and convergence rate for the EVBDF2 scheme (6.6) for the
Fokker-Planck equation in two dimensions.

hom Tm, €Em rate

0.2986 0.0500 2.111e-02 /

0.1493 0.0250 6.800e-03 1.634
0.0747 0.0125 2.017e-03 1.754
0.0373 0.0063 5.669e-04 1.831
0.0187 0.0031 1.535e-04 1.884

TABLE 3. Errors and convergence rates for the EVBDF2 scheme (6.6) for the
porous medium equation.

hom Tm €m, rate €m, rate €m, rate

0.2986 2.000e-04 5.139e-04 / 7.515e-04 / 9.537e-04 /

0.1493 1.000e-04 1.999e-04 1.363 2.780e-04 1.435 3.085e-04 1.628
0.0747 5.000e-05 6.429e-05 1.636 4.630e-05 2.586 1.103e-04 1.485
0.0373 2.500e-05 1.471e-05 2.127 2.903e-05 0.674 3.847e-05 1.519
0.0187 1.250e-05 4.129e-06 1.833 7.521e-06 1.949 1.340e-05 1.522

where \ = d standing for the space dimension, and x( is the point where the mass

1
do—1)+2°
is centered. The parameter M can be chosen to fix the total mass. The value

1

M= <5i1>_5(27r(()5\5— 1))5

sets it equal to one. The function (7.4) solves (7.1) on the domain Q = [0,1], with xq
in the interior of €2, starting from tg > 0 and for a sufficiently small time horizon T, such
that the mass does not reach the boundary of the domain. We consider the two-dimensional
case and g = (0.5,0.5). We solve the problem for 6 = 2,3,4, with initial condition p, =
(o(to,XK))KeT, starting respectively from tg = 107%,107°,107% and up to time 7' = tq+1073.
The results are presented in Table 3. The convergence profile is not clean, probably due to
the low precision of the discretization in space. We can nevertheless notice that in the case
6 = 2 the rate of convergence is approaching order two with refinement. In the cases § = 3,4,
where the solution is less regular, the order tends to 1.5.

7.3. Incompressible immiscible multiphase flows in porous media. Incompressible
immiscible multiphase flows in porous media can be described as Wasserstein gradient flows,
as shown in [10]. We recall quickly the model problem in a simplified way. In the porous
medium 2, N + 1 phases are flowing and we denote by s = (s, ..., si) the saturations of each
phase, i.e. the portion of volume occupied by each phase in each point. The evolution of each
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saturation obeys the following equations:

68? + div(s;v;) =0,

1
(7.5) v = —;(Vpi - pig)

(]
pi —po = mi(s, ),
i € {0,...,N} for the first two equations, i € {1,..., N} for the third one, plus the total
saturation condition Zi]\io si(t,x) = 1 and the no-flux boundary conditions. The densities p;
and the viscosities u;, both constant in the whole domain, are characteristic of each phase. In
(7.5) the porosity of the medium is considered constant and neglected. The term p;g reflects
the influence of the potential energy on the motion (g is the gravitational acceleration), but
other types of potential energy could be considered. The model is completed specifying the
N capillary pressure relations, described by the functions ;.
We introduce the probability spaces

Pi={si € P(Q): (@) =ci}, i€{0,.., N},

with the constant ¢; denoting the total mass of each phase. Each space P; is endowed with
the following quadratic Wasserstein distance,

W3,(s{,s7) = min /Mw—yﬁh@w%
’YGH(S%,S?

for 31,512 € P; and we can define the global quadratic Wasserstein distance Wy on P =

Po X ... X Py by setting

W3(s', s?) meﬁ Vst s? e P.

1

Problem (7.5) can then be represented as the gradient flow in the space P with respect to
the (strictly convex) energy functional

(7.6) &ﬁ—/@e+/ﬂ@@+w@,
Q Q
where ¥ = (U, ..., Uy) is the exterior gravitational potential given by
\Ijl({[;):—ngm’ V$€Q,
II(s, ) is a strictly convex potential such that
Oll(s, x)
—_— e{l
6si ’ ! { ’

and ig is the indicator function of the set

N
S = {SE'PZZSZ‘(.T) =1, for a.e. xEQ}.
=0

When applying the EVBDF2 scheme to such gradient flow, the extrapolation may be taken
in each space P; independently, i.e. we define the extrapolation in the space P as

Ea(s',s?) == (Ea(s],s}))i o

1%

'7N}7

mi(s,z) =

for all s',s2 € P. This does not guarantee at all that at each step n of the scheme the

extrapolation is a feasible point for £(s), that is E,(s!,s%) ¢ S in general even though
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FIGURE 6. Evolution of the saturation of the oil phase in the hourglass. The
evolution of the water is complementary. As expected, the water, the denser
phase, flows down the hourglass under the effect of gravity up until reaching
the bottom.

s', 82 € 8. Nevertheless, the resulting scheme is well defined as well as the numerical approach

(6.6). In our implementation, we linearize each Wasserstein distances independently. The
energy functional can be discretized straightforwardly.

As a specific instance of problem (7.5), we consider a two-phase flow, where water (sg) and
oil (s1) are competing in the porous medium. We choose the classical Brooks-Corey capillary
pressure model,

1
p1—po=mi(s1) = A1 —s1)"2,
and take g acting along the negative direction of the y axis, |g| = 9.81. We set the model
parameter A = 0.05. The densities and the viscosities of the two fluids are, respectively,
po =1 and p; = 0.87, uyp = 1 and p; = 100. We consider a non convex domain ) shaped as
an hourglass and set an initial condition where the water is distributed uniformly in a layer in
the upper part, whereas the oil takes the complementary space (see Figure 6a). The evolution
of the oil saturation s; is presented in Figure 6.

8. CONCLUSION

In this work we proposed and analyzed different notions of extrapolation in the Wasserstein
space. We showed how these can be used to construct a second-order time discretization of
Wasserstein gradient flows, based on a two-step reformulation of the classical BDF2 scheme.
According to the specific notion considered, we could prove different types of convergence
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TABLE 4. Summary of the different types of extrapolation proposed in the
present work.

Free-flow Viscosity Metric
extrapolation extrapolation extrapolation
(4.7) (4.9) (4.15)
Fokker-Planck conv. v ? v
EVI conv. ? ? v
Implementation ? v ?
Second order ? v ?

guarantees for the scheme. We also proposed a fully-discrete version of the method, and
demonstrated numerically its second-order accuracy in space and time. The possibility to
provide an implementable scheme is in fact the main advantage of our approach compared
to previous works also based on the BDF2 scheme [29], or on the midpoint rule [27]. The
different type of extrapolations and their properties are summarized in Table 4.

In order to provide our fully discrete scheme, we worked in the framework of Eulerian
discretizations and considered an extrapolation based on viscosity solutions of the Hamilton-
Jacobi equation. The resulting scheme is robust and allows to achieve second order of accu-
racy both in space and time, but it does not verify the hypotheses of our convergence results.
The free-flow extrapolation could be implemented straightforwardly in the framework of La-
grangian discretizations (see, e.g., [28, 9] for Lagrangian discretizations of Wasserstein gradient
flows), although in this setting it would be challenging to achieve second order accuracy in
space. The metric extrapolation enjoys the nicest mathematical structure, and in principle
one could exploit its dual formulation (4.31), which is a convex optimization problem, to im-
plement it numerically. However, dealing with the strong-convexity constraint on the Brenier
potential requires the development of dedicated tools. We will investigate this direction in a
future work.
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Abstract

We show that the widely used model governing the motion of two incompressible immiscible fluids in a possibly
heterogeneous porous medium has a formal gradient flow structure. More precisely, the fluid composition is
governed by the gradient flow of some non-smooth energy. Starting from this energy together with a dissipation
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La structure de flot gradient pour les écoulements incompressibles immiscible en milieux poreux.
Nous montrons qu’un modele treés couramment utilisé dans l'industrie pour décrire un écoulement diphasique
incompressible et immiscible dans un milieux poreux possiblement hétérogéne posséde une structure de flot gra-
dient. Plus précisément, la composition du fluide est gouvernée par flot gradient d’une énergie singuliere. En
partant de cette énergie et d’un potentiel de dissipation, nous retrouvons les lois de Darcy-Muskat et de pression
capillaire gouvernant ’écoulement & ’aide d’un principe de moindre dissipation de I’énergie. Notre interprétation
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1. Introduction
1.1. General motivations

The models for multiphase porous media flows have been widely studied in the last decades since they
are of great interest in several fields of applications, like e.g. oil-engineering, carbon dioxide sequestration,
or nuclear waste repository management. We refer to the monographs [5,6] for an extensive discussion
on the derivation of models for porous media flows, and to [4,11,3,13] for numerical and mathematical
studies.

More recently, F. Otto showed in his seminal work [17] that the so-called porous medium equation:
op—Apm =0 for (x,t) e RY x Ry and m > 1,

which is a very simplified model corresponding to the case of an isentropic gas flowing within a porous
medium, can be reinterpreted in a physically relevant way as the gradient flow of the free energy with
respect to some Wasserstein metric in the space of Borel probability measures. Extensions to more general
degenerate parabolic equations were then proposed for example in [1,15].

In this note, we will focus on the model governing the motion of an incompressible immiscible two-phase
flow in a possibly heterogeneous porous medium, that will appear in the sequel as (3) and (11)—(13). This
model is relevant for instance for describing the flow of oil and water, whence the subscripts o and w
appearing in the sequel of this note, within a rock that is possibly made of several rock-types. Our goal
is to show that, at least formally, this model can be reinterpreted as the gradient flow of some singular
energy. This will motivate the use of structure-preserving numerical methods inspired from [9] to this
model in the future.

Our approach is inspired from the one of A. Mielke [16] and, more closely, to the one of M. A.
Peletier [18]. The basic recipe for variational modeling is recalled in §1.2, then its ingredients are identified
in §2. This approach is purely formal, but it can be made rigorous under some unphysical strict positivity
assumption on the phase mobilities 7,, 7, defined below. We will remain sloppy about regularity issues
all along this note.

1.2. The recipe of getting formal variational models

Here we recall very briefly the main ingredients needed for defining a formal gradient flow.
i. The state space M is the set where the solution of the gradient flow can evolve.

ii. At a point s € M, the tangent space Ts M, to whom would belong 9;s, is identified in a non-unique
way with a so-called process space Z5 (that might depend on s). More precisely, we assume that for
each s € M there exists an onto linear application P(s) : Z5 — T M.

iii. The energy functional € : M — R U {+o00} admits a (local) sub-differential 95€(s) C (TsM)™ at
seM.

iv. The dissipation potential D is such that, for all s € M and all V € Z;, one has D(s; V) > 0. It is
supposed to be convex and coercive w.r.t. to its second variable.

v. The initial data s" belongs to M.
All these ingredient being defined, we obtain from the steepest descent condition that s : Ry — M is the
gradient flow of the energy £ for the dissipation D if

2



0;s =P(s)V  where V e a%gen;n (hergfgis) (D(S(t)év(t)) + <h, P<3)V>(TSM)*,TSM>) ()

The formula (1) means that a gradient flow is lazy and smart: the motion aims to minimize the dissipation
while maximizing the decay of the energy. We refer to [16,18] for additional material on such a formal
modeling and to [2] for an extensive (and rigorous) discussion on gradient flows in metric spaces.

2. Variational modeling for two-phase flows in porous media
2.1. State space and process space

Let © be an open subset of RY representing a (possibly heterogeneous) porous medium, let ¢ : 2 — (0,1)
be a measurable function (called porosity) such that ¢ < ¢(x) < ¢ for a.e. € Q for some constants

9,5 € (0,1), and let s,,s,, : 2 — [0,1) be two measurable functions (so-called residual saturations) such

207 2w

that s,(x) + s,,(x) < 1 for a.e. € Q. In what follows, we denote by
So(x) =1—s,(x), Sp(x) =1-s,(x), for a.e. x € Q.
For almost all € €2, we denote by

Ay = {s = (80, 5w) € R? ‘ So + Suw = 1 with s, () < 5o <Fo(x) for o € {o,w}}.

Let s' = (sY,5%) be a given initial saturation profile, we denote by m, (o € {o,w}) the volume

o’ “w

occupied by the phase « in the porous medium, i.e.,

mo = | ¢(x)so(x)dz, and m, = | ¢(x)s,(x)da.
Q Q

For simplicity, we restrict our attention to the case where the volume of each phase is preserved: no source
term and no-flux boundary conditions (otherwise, non-autonomous gradient flows should be considered).
Hence the saturation profile lies at each time in the so-called state space M, defined by

M = {s = (80,5w) | Sa : Q2 — Ry with / d(x)sq(x)de = m, for a € {o,w}} .
Q

Let us now describe the processes that allow to transform the saturation profile. We denote by

Zs:{V:('uo,'uw) ‘UQ:Q—HRN Withva-n:Oonaﬂ}

the process space of the admissible processes for modifying a saturation profile s € M. The identification
between V = (v,,v,,) € Z5 and § = ($,,8,) € TsM is made through the onto operator P(s) : Z5 —
TsM defined by

P(s)V = (;V ‘U, —éV . vw) , YV € Z,. (2)

Since Ors € Ts M, the relation (2) yields the existence of some phase filtration speeds (v,,vy) € Zs
such that the following continuity equations hold:

0080 + V - v, =0, a € {o,w}. (3)

The relation (3) must be understood as the local volume conservation of each phase o € {0, w}. Finally,
the duality bracket (-, )1, m)= 7,0 1S given by

(hy 8) (T, M) oM = Z /Q<bha8'a:— Z /QhaV-va: Z /Vha-va.

acf{ow} acf{ow} acf{ow} a
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2.2. About the energy

For a.e. € (), we assume the capillary pressure graph w(-, ) : [s,(%),5,(x)] — 2% to be a maximal
monotone graph whose restriction w1, _ (-, @) to the open interval (s,(z), 5,(x)) is an increasing (single-
valued) function belonging to L!(s,(x),3,(x)). In particular, 7=1(-,z) : R — [s,(x),3,(x)] is a single
valued function.

We denote by IT: R x @ — R U {400} the (strictly convex w.r.t. its first variable) function defined by

/ m(a,x)da — (po — pw)sgz if s, € [s,(x),S0(x)],
(s0,2) = § Jo(@)
400 otherwise,

where, denoting by e, the downward unit normal vector of RY, we have set z = x - e,, and where g
and p, denote the gravity constant and the density of the phase « respectively, and where o is such that
x> m(o(x), ) — (po — puw)g? is constant. Since m) . _ (-, x) € L'(s,(x),3,(x)), we get that II(s,(z), )
and II(3,(x), ) are finite for a.e. € Q.

The volume energy function E : R? x  — R U {+oc} is defined by

E(S m) _ O(so, ) if 8 = (50, 50) € Ag,
" 400 otherwise.

(4)

The function E(-, ) is convex and finite on A, for a.e. & € Q. Its sub-differential is given by

{(ho,hw) e R? ‘ ho — hw + (po — Pw)gz € W(so,m)} if s €Ay,

0 otherwise.

0sE(s,x) = {
Finally, we can define the so-called global energy £ : M — R U {+o0} by

/ o(x ,x)dx, Vs = (S0, 8w) € M. (5)

The saturation profile s € M is of finite energy £(s) < oo if and only if s(z) € A, for a.e. © € Q. For
s € M with finite energy one can check that the local sub-differential 9;€(s) of £ at s is given by

9, (s) = {h = (hoyhy) : Q — R

(po — pw)gz € (8o, x) for ae. x € Q} (6)
2.3. About the dissipation

The permeability tensor field A € L>°(Q; RY*Y) is assumed to be such that A(z) is a symmetric and
positive matrix for a.e. € Q. Moreover, we assume that there exist A, \* € R% such that

Meul? < A(z)u-u < N |ul?, for all w € RY and a.e. ¢ € Q.

This ensures that A(z) is invertible for a.e. & € Q. Its inverse is denoted by A ™' (z).

We also need the two Carathéodory functions 7,,7, : R x @ — R, — the so-called phase mobilities
— such that 7, (-, ) are Lipschitz continuous and nondecreasing on Ry for a.e. € Q and a € {o,w}.
Moreover, we assume that n,(s,z) = 0if s < s, (x) and that n4(s,z) > 0 if s > 5, ().

Given s = (84, 84) € M and V = (v,,v,,) € Z4, we define the dissipation potential D by

Z /A Yo Yo gy Vs e M, YV € Z,.

aE{o w} 77(1 Sa

The finiteness of the dissipation, i.e., D(s, V) < oo, implies v, = 0 a.e. on {z € Q| so(x) < s, (x)}.
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2.4. Steepest descent condtition and resulting equations

Let us consider the gradient flow governed by the energy &, the continuity equation (3), and the
dissipation D. Let s € M be a finite energy saturation profile, then because of the steepest descent
condition (1) and of the definition (2) of the operator P(s) : Zs — TsM, the process V = (v,,vy) € Zs
and the hydrostatic phase pressures h = (h,, hy,) must be chosen so that (V, h) is the min — max saddle-
point of the functional

(V.h) = D(s, V)= Y [ 7V Tada. (7)
acf{ow} a2

One can first fix h € 9,&(s) and minimize w.r.t. V. This provides

argmin | D(s, V) — Z /ﬁaV-ﬁadw = (—no(so)AVEO,—nw(sw)AVEw>. (8)
Vez acf{o,w} Q

Injecting this expression in (7) and maximizing w.r.t. h € 0,€ (s), that is minimizing
1 N .
h = argmin (/ N (Sa)AVhg - Vha> 9)
hedE(s) Q
among all elements h in the subdifferential 95&(s), yields
-V (vo + 'uw> =0, Vo = —Na(Sa) AV hg. (10)

In (10) the first condition follows from the constraint h € 9s&(s) in (9), and the second one from (8).
Define the phase pressures p = (po, pw) by pa(®) = ho(x) + pagz, for a.e. x € Q and « € {o,w}, then
we recover the classical Darcy-Muskat law:

Vo = —Na(8a)AV (o — pagz), o€ {o,w}. (11)
Moreover, it follows from (6) that the following capillary pressure relation holds:
Do(®) — puw(x) € T(so(x),z) a.e. in Q. (12)

We recover here the multivalued capillary pressure relation proposed in [19,7,8,10].
Combining (3) and (10) easily gives 9¢(s, + $u) = 0, so that the condition
So+ sy =1 ae. inQ, (13)
is preserved along time and the whole pore volume remains saturated by the two fluids.

Gathering (3), (11), (12) and (13) gives the usual system of equations governing immiscible incom-
pressible two-phase flows in porous media [5,11,3,12,10].

Remark 1 By similarity with the classical Wasserstein distance used in optimal mass transport [17] one
could here endow the tangent space TsM at s € M with a weighted H ~-scalar product

(317 '-32)TEM = Z / na(SQ)AVhl,a ' VhZ,adw;
acf{ow} Q
where, fori € {1,2} and « € {0, w}, we have set 8; = (4,0, $iw) and where h; o solves
—V - (Ma(8a)AVhi o) = $iq in Q, Na(Sa)AVh; o -1 =0 on 0.

Under some conditions on the functions n, (see [14]), this should allow us to consider M as a metric space
endowed with the corresponding distance, but £ is not locally A-convez for this Riemannian structure. The
minimization (9) then consists in the selection of the subgradient with minimal norm.
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INCOMPRESSIBLE IMMISCIBLE MULTIPHASE FLOWS IN
POROUS MEDIA: A VARIATIONAL APPROACH

CLEMENT CANCES, THOMAS O. GALLOUET, AND LEONARD MONSAINGEON

ABSTRACT. We describe the competitive motion of (N + 1) incompressible
immiscible phases within a porous medium as the gradient flow of a singu-
lar energy in the space of non-negative measures with prescribed masses, en-
dowed with some tensorial Wasserstein distance. We show the convergence of
the approximation obtained by a minimization scheme & la [R. Jordan, D.
Kinderlehrer & F. Otto, SIAM J. Math. Anal, 29(1):1-17, 1998]. This allow
to obtain a new existence result for a physically well-established system of
PDEsSs consisting in the Darcy-Muskat law for each phase, N capillary pressure
relations, and a constraint on the volume occupied by the fluid. Our study
does not require the introduction of any global or complementary pressure.
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2 CLEMENT CANCES, THOMAS O. GALLOUET, AND LEONARD MONSAINGEON

1. INTRODUCTION

1.1. Equations for multiphase flows in porous media. We consider a convex
open bounded set © C R¢ representing a porous medium. N +1 incompressible and
immiscible phases, labeled by subscripts i € {0, ..., N} are supposed to flow within
the pores. Let us present now some classical equations that describe the motion
of such a mixture. The physical justification of these equations can be found for
instance in [10, Chapter 5]. We denote by s; : 2x (0,7T) =: @ — [0, 1] the content of
the phase 4, i.e., the volume ratio of the phase i compared to all the phases and the
solid matrix, and by wv; the filtration speed of the phase i. Then the conservation
of the volume of each phase writes

(1) Btsl+V(sva):0 inQ, VZ'G{O,...,N},

where T > 0 is an arbitrary finite time horizon. The filtration speed of each phase
is assumed to be given by Darcy’s law

1 . .
(2) vi:f;K(Vpifpig) in Q, Vie{0,...,N}.

3
In the above relation, g is the gravity vector, u; denotes the constant viscosity of
the phase i, p; its pressure, and p; its density. The intrinsic permeability tensor

K : Q — R is supposed to be smooth, symmetric K = K7, and uniformly
positive definite: there exist k4, x* > 0 such that:

(3) re€)? < K(z)€-€ < k™ €]?,  VEERY Ve

The pore volume is supposed to be saturated by the fluid mixture
N

4) o= Z si=w(x) ae. inQ,
i=0

where the porosity w : Q — (0,1) of the surrounding porous matrix is assumed to
be smooth. In particular, there exists 0 < w, < w* such that w, < w(x) < w* for
all € Q. In what follows, we denote by s = (sg,...,Sn), by

N
Zsi =w(w)},

A(z) = {5 e (Ry)NVH
=0

and by
X={se LY RYT | s(x) € A(x) a.e. in Q.

There is an obvious one-to-one mapping between the sets A(x) and

A*(x) = {s* = (s1,...,5n) € (RN Zsi < w(w)}7

and consequently also between X and
X" ={s" € L'(GRY) | s*(z) € A% () ae. in Q}.
In what follows, we denote by ¥ = |J A*(z) x {x}.

z€Q
In order to close the system, we impose N capillary pressure relations

(5) pi—po=m(s", @) aein@, Vie{l,...,N},
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where the capillary pressure functions 7; : ¥ — R are assumed to be continuously
differentiable and to derive from a strictly convex potential IT : ¥ — R,:

85(5*,w) Vie{l,...,N}.

We assume that II is uniformly convex w.r.t. its first variable. More precisely, we

assume that there exist two positive constants w, and w* such that, for all & € Q
and all s*,8" € A*(x), one has

mi(s" x) =

*

(6) S5 —s 2 UG 2) -~ U(s"2) —m(s", @) - (3" —s7) = 5" — 57,
where we introduced the notation

Jr—RrY

(st ) o (st ) = (i (s*, @), ..., TN (sF, ).

The relation (6) implies that 7 is monotone and injective w.r.t. its first variable.
Denoting by

Z = (]5(2,%) = (¢1(Z7w)a e 'a¢N(z?w)) € A*(m)
the inverse of « (-, ), it follows from (6) that

1 1 _
(1) 0< = <J:0(z,2) < — for all z € Q and all z € w(A*(x), z),
w w.

*
where J, stands for the Jacobian with respect to z and the above inequality should
be understood in the sense of positive definite matrices. Moreover, due to the
regularity of 7w w.r.t. the space variable, there exists Mg > 0 such that

(8) |Vad(z,2)| < My  forall z € Q and all z € w(A*(z),z),
where V, denote the gradient w.r.t. to the second variable only.
The problem is complemented with no-flux boundary conditions
(9) v;i-n=0 on N x(0,T), Vie{0,...,N},
and by the initial content profile s° = (38, ceey s(}\,) e X:

N
Vi e {0,...,N}, with Zs?:wa.e. in Q.
i=0

(10) 5i(-,0) = s?

7

Since we did not consider sources, and since we imposed no-flux boundary con-
ditions, the volume of each phase is conserved along time

(11) /Qsi(w,t)d:c = /Qs?(ac)dw =:m,; > 0, vi e {0,...,N}.

We can now give a proper definition of what we call a weak solution to the
problem (1)—(2), (4)-(5), and (9)—(10).

Definition 1.1 (Weak solution). A measurable function s : Q — (R )NT! is
said to be a weak solution if s € A a.e. in Q, if there exists p = (po,...,pN) €
L2((0,T); HY(Q))N*! such that the relations (5) hold, and such that, for all ¢ €
Cx(Qx[0,T)) and alli € {0,...,N}, one has

(12) //Q si8t¢da:dt+/ﬂs?¢(~,0)d:c//Q %K(Vpﬁpig).vmxdt:o.

1.2. Wasserstein gradient flow of the energy.
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1.2.1. Energy of a configuration. First, we extend the convex function II : ¥ —
[0,400], called capillary energy density, to a convex function (still denoted by)
II: RY+L % Q — [0, +00] by setting

. _ . N1
(s, z) = H(w%,w) =11 (w,... w2 z) ifseRY™ and o <w(x),
400 otherwise,

o being defined by (4). The extension of II by 400 where o > w is natural because
of the incompressibility of the fluid mixture. The extension to {o < w} URY ™ is
designed so that the energy density only depends on the relative composition of the
fluid mixture. However, this extension is somehow arbitrary, and, as it will appear
in the sequel, it has no influence on the flow since the solution s remains in X (i-e
Zi]io s; = w). In our previous note [15] the appearance of void o < w was directly
prohibited by a penalization in the energy.

The second part in the energy comes from the gravity. In order to lighten the
notations, we introduce the functions

\1/{9 - Ry, Vi€ {0,...,N},
T = —pg-a,

and
_ { Q — RYTY
z — (¥o(z),...,Un(x)).
The fact that ¥; can be supposed to be positive come from the fact that Q is
bounded. Even though the physically relevant potentials are indeed the gravita-
tional ¥,;(x) = —p;g - @, the subsequent analysis allows for a broader class of ex-

ternal potentials and for the sake of generality we shall therefore consider arbitrary
U; € CY(Q) in the sequel.

We can now define the convex energy functional £ : L*(Q,RV*1) — RU {+oc}
by adding the capillary energy to the gravitational one:
(13) E(s) = / ((s,z) +s-¥)dx >0, Vs € L' (Q; RN T,
Q

Note moreover that £(s) < oo iff s > 0 and 0 < w a.e. in Q. It follows from the
mass conservation (11) that

/Qa(w)dw = gmi = /Qw(w)da:.

Assume that there exists a non-negligible subset A of Q such that ¢ < w on A, then
necessarily, there must be a non-negligible subset B of 2 such that ¢ > w so that
the above equation holds, hence £(s) = +o0. Therefore,

(14) E(s)<oo & scEX.

Let p = (po,...,pn) : @ — RY*L be such that p € 9,I1(s, ) for a.e. x in €,
then, defining h; = p; + U;(x) for all i € {0,..., N} and h = (hi)0§i§N7 h belongs
to the subdifferential 0,€(s) of £ at s, i.e.,

N
5(3) > 5(8) + Z/ hl(é\l — Si)d:ll, Vs S Ll(Q;RNJrl).
=074
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The reverse inclusion also holds, hence
(15) 9sE(s) = {h: Q= RN | h; — Uy(x) € 9,11(s,z) for a.e. T €Q}.

Thanks to (14), we know that a configuration s has finite energy iff s € X.
Since we are interested in finite energy configurations, it is relevant to consider the
restriction of £ to X. Then using the one-to-one mapping between X and X™, we
define the energy of a configuration s* € X™, that we denote by £(s*) by setting
E(s*) = £(s) where s is the unique element of X corresponding to s* € X*.

1.2.2. Geometry of Q@ and Wasserstein distance. Inspired by the paper of Lisini [36],
where heterogeneous anisotropic degenerate parabolic equations are studied from
a variational point of view, we introduce (N 4 1) distances on Q that take into
account the permeability of the porous medium and the phase viscosities. Given
two points x,y in 2, we denote by

P(z,y)={v € ([0, 1]; ‘7(0 =z and v(1) =y}

the set of the smooth paths joining « to y, and we introduce distances d;, i €
{0,..., N} between elements on ) by setting

1 1/2
(16) diz.y)= inf ( | o) (r)df) . ey en.
YEP(z,y)
It follows from (3) that
7 7 -2
(7) Sle—yl<dey) < [Tl -yl V@) e

For i € {0,..., N} we define

A = {sZ e LY Ry)

Q

Given s;,5; € A;, the set of admissible transport plans between s; and s; is given

by
Ti(s4,5) = { s

where M4 (2 x Q) stands for the set of Borel measures on 2 x  and ng) is the
k'™ marginal of the measure #;. We define the quadratic Wasserstein distance W;
on A; by setting

(18) Wi(si,8;) = ( inf // di(m,y)Zdei(m,y)>
0,€I'(s;,8:) QOxQ

Due to the permeability tensor K(x), the porous medium 2 might be heterogeneous
and anisotropic. Therefore, some directions and areas might me privileged by the
fluid motions. This is encoded in the distances d; we put on 2. Moreover, the
more viscous the phase is, the more costly are its displacements, hence the pu; in
the definition (16) of d;. But it follows from (17) that

19 \( Wref 31751) < W 327 z H Wl’ef(slvsl) vs'ugz S Aiv

0,(2 x Q) = my, 01 = s; and 61 =5, },

1/2
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where Wit denotes the classical quadratic Wasserstein distance defined by

/2
(20) Wiet (i, 81) = ( inf // |z — y|2dé;(z, y))
0:€T(s:,5:) J Jaxa

With the phase Wasserstein distances (W)O<z< n at hand, we can define the
global Wasserstein distance W on A := Ay x - -+ x Ay by setting

N 1/2
§) = (Z Wl(sz,/s\l)2> s Vs,g c A.
=0

Finally for technical reasons we also assume that there exist smooth extensions
K and @ to R? of the tensor and the porosity, respectively, such that (3) holds on
R? for }K, and such that @ is strictly bounded from below. This allows to define
distances d; on the whole Rby

@) d(@y)= nf (/ () <¢)-v'<r>dr)1/2, Va,y € BY

YEP(=,y)
where P(z,y) = {v € C([0,1;R?) | 7(0) = @ and v(1) = y} . In the sequel, we
assume that the extension K of K is such that
(22) Q is geodesically convex in M; = (R%, d;) for all i.

In particular d; = d; on Q x Q. Since K—! is smooth, at least CZ(R?), the Ricci
curvature of the smooth complete Riemannian manifold M; is uniformly bounded,
i.e., there exists C' depending only on (u;)y<,;<y and K such that

(23) IRica,,2(v)| < CwK - v, Yz € RY, Yo € RY.

Combined with the assumptions on w we deduce that H is XZ displacement convex
on P§¢(M;) for some X; € R. Then (22) and mass scaling implies that H,, is \;
displacement convex on (A;, W;) for some A; € R. We refer to [46, Chap. 14 & 17]
for further details on the Ricci curvature and its links with optimal transportation.

In the homogeneous and isotropic case K(z) = Id, Condition (22) simply amounts
to assuming that € is convex. A simple sufficient condition implying (22) is given
in Appendix A in the isotropic but heterogeneous case K(x) = x(x)L,.

1.2.3. Gradient flow of the energy. The content of this section is formal. Our aim
is to write the problem as a gradient flow, i.e.

ds
(24) T —grady, £(s) = — (grady, £(s), . .., grady,, £(s))
where grady, £(s) denotes the full Wasserstein gradient of £(s), and gradyy, £(s)
stands for the partial gradient of s; — £(s) with respect to the Wasserstein distance
W;. The Wasserstein distance W; was built so that § = (3;);, € grady, £(s) iff
there exists h € d5€(s) such that

K
Oss; = =V - <SiM‘Vhi> : vie {0,...,N}.

Such a construction was already performed by Lisini in the case of a single equation.
Owing to the definitions (13) and (15) of the energy £(s) and its subdifferential
09s&(s), the partial differential equations can be (at least formally) recovered. This
was roughly speaking to purpose of our note [15].
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In order to define rigorously the gradient grady, & in (24), A has to be a Rie-
mannian manifold. The so-called Otto’s calculus (see [42] and [46, Chapter 15])
allows to put a formal Riemannian structure on .A. But as far as we know, this
structure cannot be made rigorous and A is a mere metric space. This leads us
to consider generalized gradient flows in metric spaces (cf. [5]). We won’t go deep
into details in this direction, but we will prove that weak solutions can be obtained
as limits of a minimizing movement scheme presented in the next section. This
characterizes the gradient flow structure of the problem.

1.3. Minimizing movement scheme and main result.

1.3.1. The scheme and existence of a solution. For a fixed time-step 7 > 0, the
so-called minimizing movement scheme [24, 5] or JKO scheme [30] consists in com-
puting recursively (s™),,~; as the solution to the minimization problem

<W(s, snh)?

(25) s" = Argmin o + 8(5)) ,

sc A

the initial data s° being given (10).

1.3.2. Approzimate solution and main result. Anticipating that the JKO scheme
(25) is well posed (this is the purpose of Proposition 2.1 below), we can now define
the piecewise constant interpolation s™ € L*°((0,7); X N A) by

(26) s7(0,-) =8 and s7(t,-)=s" Vte ((n—1)1,n7], ¥n > 1.
The main result of our paper is the following.

Theorem 1.2. Let (7),~, be a sequence of time steps tending to 0, then there
exists one weak solution s in the sense of Definition 1.1 such that, up to an unlabeled
subsequence, (8™),~, converges a.e. in Q towards s as k tends to co.

As a direct by-product of Theorem 1.2, the continuous problem admits (at least)
one solution in the sense of Definition 1.1. As far as we know, this existence result
is new.

Remark 1.3. It is worth stressing that our final solution will satisfy a posteriori
Opsi € L2((0,7); HL(Y)'), s; € L2((0,T); HY(Q)), and thus s; € C([0,T]; L*(Q)).
This reqularity is enough to retrieve the so-called Energy-Dissipation-Equality

%5(5(15)) _ —;/QKS;(?V(pi(t)+\11i)-V(pi(t)—i—\lli)d:c <0 forae te(0,T),

which is another admissible formulation of gradient flows in metric spaces [5].

1.4. Goal and positioning of the paper. The aims of the paper are twofolds.
First, we aim to provide rigorous foundations to the formal variational approach
exposed in the authors’ recent note [15]. This gives new insights into the modeling
of complex porous media flows and their numerical approximation. Our approach
appears to be very natural since only physically motivated quantities appear in
the study. Indeed, we manage to avoid the introduction of the so-called Kirchhoff
transform and global pressure, which classically appear in the mathematical study
of multiphase flows in porous media (see for instance [18, 9, 20, 26, 27, 22, 19, 2, 3]).
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Second, the existence result that we deduce from the convergence of the varia-
tional scheme is new as soon as there are at least three phases (N > 2). Indeed,
since our study does not require the introduction of any global pressure, we get rid
of many structural assumptions on the data among which the so-called total dif-
ferentiability condition, see for instance Assumption (H3) in the paper by Fabrie
and Saad [26]. This structural condition is not naturally satisfied by the models,
and suitable algorithms have to be employed in order to adapt the data to this
constraint [21]. However, our approach suffers from another technical difficulty: we
are stuck to the case of linear relative permeabilities. The extension to the case of
nonlinear concave relative permeabilities, i.e., where (1) is replaced by

81552‘ -+ V . (kl(sz)vl) = 0,

may be reachable thanks to the contributions of Dolbeault, Nazaret, and Savaré [25]
(see also [48]), but we did not push in this direction since the relative permeabilities
k; are in general supposed to be convex in models coming from engineering.

Since the seminal paper of Jordan, Kinderlehrer, and Otto [30], gradient flows
in metric spaces (and particularly in the space of probability measures endowed
with the quadratic Wasserstein distance) were the object of many studies. Let
us for instance refer to the monograph of Ambrosio, Gigli, and Savaré [5] and to
Villani’s book [46, Part II] for a complete overview. Applications are numerous.
We refer for instance to [41] for an application to magnetic fluids, to [43, 7, 6] for
applications to supra-conductivity, to [12, 11, 47] for applications to chemotaxis,
to [37] for phase field models, to [39] for a macroscopic model of crowd motion,
to [13] for an application to granular media, to [17] for aggregation equations,
or to [31] for a model of ionic transport that applies in semi-conductors. In the
context of porous media flows, this framework has been used by Otto [42] to study
the asymptotic behavior of the porous medium equation, that is a simplified model
for the filtration of a gas in a porous medium. The gradient flow approach in
Wasserstein metric spaces was used more recently by Laurengot and Matioc [34] on
a thin film approximation model for two-phase flows in porous media. Finally, let us
mention that similar ideas were successfully applied for multicomponent systems,
see e.g. [16, 32, 48, 49].

The variational structure of the system governing incompressible immiscible two-
phase flows in porous media was recently depicted by the authors in their note [15].
Whereas the purpose of [15] is formal, our goal is here to give a rigorous foundation
to the variational approach for complex flows in porous media. Finally, let us
mention the work of Gigli and Otto [28] where it was noticed that multiphase linear
transportation with saturation constraint (as we have here thanks to (1) and (4))
yields nonlinear transport with mobilities that appear naturally in the two-phase
flow context.

The paper is organized as follows. In Section 2, we derive estimates on the
solution s7 for a fixed 7. Beyond the classical energy and distance estimates detailed
in §2.1, we obtain enhanced regularity estimates thanks to an adaptation of the
so-called flow interchange technique of Matthes, McCann, and Savaré [38] to our
inhomogeneous context in §2.2. Because of the constraint on the pore volume (4),
the auxiliary flow we use is no longer the heat flow, and a drift term has to be added.
An important effort is then done in §3 to derive the Euler-Lagrange equations
that follow from the optimality of s™. Our proof is inspired from the work of
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Maury, Roudneft-Chupin, and Santambrogio [39]. It relies on an intensive use of the
dual characterization of the optimal transportation problem and the corresponding
Kantorovitch potentials. However, additional difficulties arise from the multiphase
aspect of our problem, in particular when there are at least three phases (i.e., N >
2). These are overpassed using a generalized multicomponent bathtub principle
(Theorem B.1 in Appendix) and computing the associated Lagrange multipliers in
§3.1. This key step then allows to define the notion of discrete phase and capillary
pressures in §3.2. Then Section 4 is devoted to the convergence of the approximate
solutions (s7), towards a weak solution s as 7, tends to 0. The estimates we
obtained in Section 2 are integrated w.r.t. time in §4.1. In §4.2, we show that these
estimates are sufficient to enforce the relative compactness of (s™), in the strong
LY(Q)N*! topology. Finally, it is shown in §4.3 that any limit s of (s™), is a weak
solution in the sense of Definition 1.1.

2. ONE-STEP REGULARITY ESTIMATES

The first thing to do is to show that the JKO scheme (25) is well-posed. This is
the purpose of the following Proposition.

Proposition 2.1. Letn > 1 and s"~! € XN.A, then there exists a unique solution
8™ to the scheme (25). Moreover, one has s™ € X N A.

Proof. Any s"~! € X N A has finite energy thanks to (14). Let (s™%), Cc A
be a minimizing sequence in (25). Testing s"~! in (25) it is easy to see that
E(s™F) < E(s"1) < oo for large k, thus (s™F), C X N .A thanks to (14). Hence,
one has 0 < s"*(x) < w(x) for all k. By Dunford-Pettis theorem, we can therefore
assume that sfk — s weakly in L!(Q). It is then easy to check that the limit s™
of s™* belongs to X N.A. The lower semi-continuity of the Wasserstein distance
with respect to weak L' convergence is well known (see, e.g., [44, Prop. 7.4]), and
since the energy functional is convex thus ls.c., we conclude that s™ is indeed a
minimizer. Uniqueness follows from the strict convexity of the energy as well as

from the convexity of the Wasserstein distances (w.r.t. linear interpolation s =
(1 79>So+981). O

The rest of this section is devoted to improving the regularity of the successive
minimizers.

2.1. Energy and distance estimates. Testing s = s"~! in (25) we obtain
W(Sn, STL—1)2
2T

As a consequence we have the monotonicity
LS EEM) <EBETH <L <E(8%) < 0

at the discrete level, thus s™ € X for all n > 0 thanks to (14). Summing (27) over
n we also obtain the classical total square distance estimate

(27) +E(s") < E(s"T),

(28) LYWL s < 26(%) < C (I W)

n>0

the last inequality coming from the fact that s is uniformly bounded since it
belongs to X, thus so is £(s®). This readily gives the approximate 1/2-Holder
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estimate

(29) W(s",s") < Cy/|ng — ny|t.

2.2. Flow interchange, entropy estimate and enhanced regularity. The
goal of this section is to obtain some additional Sobolev regularity on the capillary

pressure field m(s™*, &), where s™* = (s7,...,s%) is the unique element of X*
corresponding to the minimizer s™ of (25). In what follows, we denote by
Q —- R
n . 5 .
m { z o m(s™ (@), ), Vie{l,...,N}

and " = (7}, ..., 7%). Bearing in mind that w(z) > w, > 0 in Q, we can define
the relative Boltzmann entropy H,, with respect to w by

He(s) = /Q (z)log (8(( ))> dx, for all measurable s: Q — R,.

Lemma 2.2. There exists C' depending only on Q,11,w,K, (1;),, and ¥ such that,
for alln > 1 and all 7 > 0, one has

N " n
(30 Zwmlim)sc<1+wz<8f +Z )=l >>_

=0

Proof. The argument relies on the flow interchange technique introduced by Matthes,
McCann, and Savaré in [38]. Throughout the proof, C' denotes a fluctuating con-
stant that depends on the prescribed data Q,II,w, K, (11;);, and ¥, but neither on
t, 7, nor on n. For ¢ =0... N consider the auxiliary flows

08 = le(]KVéI — 5, KV lng), t>0xe€ Q,
(31) K(V3; — 5 Vlegw) - v =0, t>0, xe€ o,
gilt:() = S?’, x €

for each i € {0,..., N}. By standard parabolic theory (see for instance [33, Chapter
III, Theorem 12.2]), these Initial-Boundary value problems are well-posed, and
their solutions §;(x) belong to C*2((0, 1] x Q) NC([0,1]; LP(Q2)) for all p € (1, 00) if
w € C?%(Q) and K € CH*(Q) for some a > 0. Therefore, ¢t — §;(-,t) is absolutely
continuous in L*(£2), thus in A; endowed with the usual quadratic distance Wyer (20)
thanks to [44, Prop. 7.4]. Because of (19), the curve ¢t — $;(-,t) is also absolutely
continuous in A; endowed with W;.

From Lisini’s results [36], we know that the evolution ¢ — 51( ,t) can be inter-
preted as the gradient flow of the relatlve Boltzmann functional - H with respect
to the metric W;, the scaling factor I appearing due to the definltlon (18) of the
distance W;. As a consequence of (23), The Ricci curvature of (€, d;) is bounded,
hence bounded from below. Since w € C%(Q) and with our assumption (22) we
also have that i?—lw is \;-displacement convex with respect to W; for some \; € R
depending on w and the geometry of (€,d;), see [46, Chapter 14]. Therefore, we
can use the so-called Fvolution Variational Inequality characterization of gradient
flows (see for instance [4, Definition 4.5]) centered at s!'*, namely

S WEEO ) + FWAEO 7)< LU = H0)
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Denote by 38 = (3g,...,8n), and by & = (31,...,8n). Summing the previous
inequality over i € {0,..., N} leads to
(32)

G (Zwisn.s >)sc<w e +Z o FH(S%“”)

In order to estimate the internal energy contrlbutlon in (25), we first note that
Y s?(x) = w(z) for all z € Q, thus by linearity of (31) and since w is a stationary
solution we have Y §;(x,t) = w(x) as well. Moreover, the problem (31) is mono-
tone, thus order preserving, and admits 0 as a subsolution. Hence 3;(x,t) > 0, so
that 8(t) € ANX is an admissible competitor in (25) for all ¢ > 0. The smoothness
of & for ¢ > 0 allows to write

(33) % (/Q H(é*(w,t)m)dw) = ﬁ:/gﬁi(%t)@téi(w,t)dw = (t) + Lx(t),

where 7; := 7r,( ,+), and where, for all ¢ > 0, we have set

I(t) = — Z / Vii(t) - KV (t)de, I(t) = - - KVwde.
— Jo Q
To estimate I, we first use the invertibility of = to write
5(x,t) = (7 (.1),x) = p(x.1),
yielding
(34) Vi(x,t) = J.¢(7 (2, 1), 2) VE(z, t) + Vo (7 (2, 1), ).
Combining (3), (7), (8) and the elementary inequality
a®> b
(35) ab < 53 + % with & > 0 arbitrary,
we get that for all ¢ > 0, there holds
* 1
Li(t) < —”—/ |V (t)|?dz + £* (5/ |V7“r(t)|2dw—|—f/ |Vm¢(7“r(t))|2dm>.
@ Q 0 Ja
Choosing § = —, we get that
(36) L) < -3 / V()2 dz +C, V> 0.
4oo* Q

In order to estimate I, we use that 3(t) € X for all ¢ > 0, so that 0 < 3;(x,t) <
w(x), hence we deduce that Zf\; (%)2 < 1. Therefore, using (35) again, we get

I(t) < 6&*/ |V (t)|*dz + i/ |Vw|?de.
Q § Jo
Choosing again § = = yields

(37) L(t) < §

Taking (36)—(37) into account in (33) provides

3
(38) di < (x,t), z)dx vt > 0.
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Let us now focus on the potential (gravitational) energy. Since 3(t) belongs to
X N A for all t > 0, we can make use of the relation

So(z,t) = w(x) — Z x,t), for all (z,t) € @ x Ry,

=1

to write: for all ¢ > 0,

Z/ Si(x, t)W i/ Si(x, ) (0, —\Ifo)(w)dw—i-/w(m)\llo(m)dw

Q Q

This leads to

N
(39) i(; /S2 éi(t)\I/id:c> Z / (@))Busi (@, t)de = Ty (8) + Jat),

where, using the equations (31), we have set

N Z / VT, — ) - KV (t)da,

Z/ V(\If — ¥y - KVwde.

The term J; can be estimated using (35). More precisely, for all § > 0, we have

(40) Ji(t) <& <5||Vé*(t)ll2m + %Z IV (W; — ﬁ’o)lliz) :

i=1

Using (34) together with (7)—(8), we get that

2
%2 1 Ny 2 y 2
VI3 < (10l +100Ms ) < IVl + 2(00M0)"
(@)% 3 (40), we infer from the regularity of ¥ that

Therefore, choosing § = e

(41) Ji(t) < ”**/|Vir(t)|2d:c+0, vt > 0.
Q

T 4w

Finally, it follows from the fact that Zf\; 3; < w, from the Cauchy-Schwarz in-
equality, and from the regularity of ¥,w that

N

(42) Ja(t) = =¥ [V — V| 2| Vw2 = C
=1

Combining (39), (41), and (42) with (38), we get that

d
4 .
(43) dtf(())_ vt >0
Denote by
(44) Fr(s) = W s,s" ) + E(s)

27
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the functional to be minimized in (25), then gathering (32) and (43) provides

d n (& * ~ 112
&}-T(S(t))ﬂL V7|72
<C (1 + WQ(E(?’ s + Z LG ;Hw(éi(t))> vt > 0.

Since 3(0) = s™ is a minimizer of (25) we must have
d
0 < limsup (]-'f(é(t))) ,
t—0+ dt

otherwise &(t) would be a strictly better competitor than s™ for small ¢ > 0. As a
consequence, we get

W2 (5(1), s Si_ 1) — Ho(5:(t))
. . 22 < . s i )
htrgérlf IV7(t)||72 < Climsup (1 + . + E

t—0+

Since §; belongs to C([0,1]; LP(Q2)) for all p € [1,00) (see for instance [14]), the
continuity of the Wasserstein distance and of the Boltzmann entropy with respect
to strong LP-convergence imply that

Wz(é(t),s”*l)t$>+ W2(s",s" Y and  He(5(t) — He(sP).

t—0+ ¢

Therefore, we obtain that

(49) l?EoiEfIVﬁ(t)lizé(J(l LAt 1)+ZH (o) = Hols ”).

It follows from the regularity of 7r that
w(8*(t),z) =«(t) — 7" =xw(s"",x) in LP(Q).
t—0t+

Finally, let (t¢),, be a decreasing sequence tending to 0 realizing the lim inf in (45),
then the sequence (Vi (te)),>, converges weakly in L?(2)V*¢ towards Va". The
lower semi-continuity of the norm w.r.t. the weak convergence leads to
N
S NVar|i: < lim [[Va(t)|7. = liminf |V (t)]7
{—00 t—0+

i=1

and the proof is complete. O

3. THE EULER-LAGRANGE EQUATIONS AND PRESSURE BOUNDS

The goal of this section is to extract informations coming from the optimality of
s™ in the JKO minimization (25). The main difficulty consists in constructing the
phase and capillary pressures from this optimality condition. Our proof is inspired
from [39] and makes an extensive use of the Kantorovich potentials. Therefore, we
first recall their definition and some useful properties. We refer to [44, §1.2] or [46,
Chapter 5] for details.

Let (v1,v2) € M, (Q)? be two nonnegative measures with same total mass. A
pair of Kantorovich potentials (;, ;) € L'(v1) x L (15) associated to the measures

n
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v1 and v, and to the cost function $d? defined by (16), i € {0,..., N}, is a solution
of the Kantorovich dual problem

DP;(v1,v9) = max / wi(x)v(x)de + / Vi (y)va(y)dy.
(pipi) €L (v1) x Lt (v2) Q Q
ei(@)+i(y)<3d; (2,y)

We will use the three following important properties of the Kantorovich potentials:

(a) There is always duality
1
DP;(v1,v2) = §Wi2(1/1,1/2), Vie{0,...,N}.

b) A pair of Kantorovich potentials (¢;, ;) is dvy ® dre unique, up to additive
2
constants.
¢) The Kantorovich potentials ¢; and 1); are Ld2-conjugate, that is
p 2 2d; Jjug

N
pi(x) = ylrelg 7di (x,y) —Yi(y), Yxe,
3 ]' 2
Vi(y) = mlrelg i (x,y) —pi(z), Vye

Remark 3.1. Since Q is bounded, the cost functions (x,y) — %df(w,y), S
{1,..., N}, are globally Lipschitz continuous, see (17). Thus item (c) shows that
w; and ; are also Lipschitz continuous.

3.1. A decomposition result. The next lemma is an adaptation of [39, Lemma
3.1] to our framework. It essentially states that, since s™ is a minimizer of (25), it
is also a minimizer of the linearized problem.

Lemma 3.2. Forn > 1 andi = 0,...,N there exist some (backward, optimal)

Kantorovich potentials ¢} from si to 5?_1 such that, using the convention m§ =

g—g}(s?,...,s%;c) =0, setting
(46) F'i="+7'+9,, Vie{0,...,N},

-
and denoting F™ = (F"), ., <, there holds

(47) s"e Argmin/ F*(x) - s(x)dx.
seXNA JQ

Moreover, F* € L>= N HY(Q) for alli € {0,...,N}.

Proof. We assume first that s7~'(x) > 0 everywhere in Q for all i € {1,..., N},
so that the Kantorovich potentials (¢, ¢?) from sP to 5?71 are uniquely deter-
mined after normalizing ¥ (xyer) = 0 for some arbitrary point @x.r € Q (cf. [44,
Proposition 7.18]). Given any s = (s;); o<y € X N A and € € (0,1) we define the
perturbation

s¢=(1—-¢)s" +es.

Note that XN.A is convex, thus s° is an admissible competitor for all € € (0,1). Let
(¢5, %) be the unique Kantorovich potentials from s§ to s"~ 1 similarly normalized

i
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as @5 (@rer) = 0. Then by characterization of the squared Wasserstein distance in
terms of the dual Kantorovich problem we have

1 2/.e n—1\ __ £ £ £ n—1
) = [ @i+ [ i) ),

1 2/.n n—1 (3 n € n—1
PV 2 [ @@t [ i) @),

By definition of the perturbation s° it is easy to check that s§ — s = e(s; — s¥).
Subtracting the previous inequalities we get

W2(s€, ") — W2(s?, 57t €
T T JO
Denote by s°* = (s§,...,s%), @ = w(s%, ), and extend to the zero-th component
7¢ = (0,7°). The convexity of II as a function of sq,..., sy implies that

(49) /Q(H(s"*,a:) —II(s**, x)) dz > /Qﬂ'8 (8™ — s d
= /ﬂfs (8" —s%)dx = 75/9?5 (s —s")de.

For the potential energy, we obtain by linearity that

(50) /Q(ss—s”)-\lldwza/ﬂ(s—sn)-\Ildw.

Summing (48)—(50), dividing by ¢, and recalling that s™ minimizes the functional
F defined by (44), we obtain

N €\ __ n( oM N £
(51) o < F2(s) ms)SZ/ (%Hﬁ\pi)(si_sy)dm
=0 Q T

3

for all s € XN A and all € € (0,1). Because 2 is bounded, any Kantorovich
potential is globally Lipschitz with bounds uniform in € (see for instance the proof
of [44, Theorem 1.17]). Since s° converges uniformly towards s™ when ¢ tends to
0, we infer from [44, Theorem 1.52] that ¢f converges uniformly towards ¢ as
tends to 0, where ¢} is a Kantorovich potential form s} to 3?71. Moreover, since
7 is uniformly continuous in s, we also know that ¢ converges uniformly towards
7™ and thus the extension to the zero-th component ™ — 7" = (0,7") as well.
Then we can pass to the limit in (51) and infer that

(52) OS/F"-(S—S")dm, Vse XNA
Q

and (47) holds.
It s?‘l > 0 does not hold everywhere we argue by approximation. Running the

flow (31) for a short time & > 0 starting from s"~!, we construct an approximation
snmh0 = (n7 0 s converging to 8”1 = (spL ..., 8% 1Y) in LY(Q) as

§ tends to 0. By construction "% € X N A, and it follows from the strong
maximum principle that 5?71’5 > 0in Q for all § > 0. By Proposition 2.1 there
exists a unique minimizer s™° to the functional
s XNA—-Ry
4 s = W?(s,8" 1) + £(s)
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Since s"~1% > 0, there exist unique Kantorovich potentials (w?’é,wlﬁ’é) from s?"s
to s7 1. This allows to construct F™® using (46) where @7 (resp. ") has been
replaced by np;“s (resp. 77?’5). Thanks to the above discussion,

(53) 0< / Fro* . (s* —s™)dz,  Vs* € X*NA".
Q

We can now let d tend to 0. Because of the time continuity of the solutions to (31),
we know that s~ 19 converges towards s~ ! in L'(Q). On the other hand, from the
definition of ™ and Lemma 2.2 (in particular (30) with s?~1:9 sm° 7™ instead
of s"~1 5™, ™) we see that 7™ is bounded in H'(Q)V*! uniformly in 6 > 0. Using
next the Lipschitz continuous (8) of ¢, one deduces that s™° is uniformly bounded
in H'(Q)N*1. Then, thanks to Rellich’s compactness theorem, we can assume that
s™9 converges strongly in L?(Q)N*! as § tends to 0. By the strong convergence
s 1.9 5 gn—1 and standard properties of the squared Wasserstein distance, one
readily checks that ™9 I'-converges towards F, and we can therefore identify the
limit of ™7 as the unique minimizer s" of F". Thanks to Lebesgue’s dominated
convergence theorem, we also infer that 7'(?75 converges in L?(f2) towards 7. Using
once again the stability of the Kantorovich potentials [44, Theorem 1.52], we know
that np?’é converges uniformly towards some Kantorovich potential ¢}'. Then we can
pass to the limit in (53) and claim that (52) is satisfied even when some coordinates
of 8”1 vanish on some parts of Q.

Finally, note that since the Kantorovich potentials ¢ are Lipschitz continuous
and because 7' € H! (cf. Lemma 2.2) and ¥ is smooth, we have F" € H'. Since
the phases are bounded 0 < s?(x) < w(x) and = is continuous we have ©" € L,
thus F* € L* as well and the proof is complete. (I

We can now suitably decompose the vector field F" = (F}") ;. defined by
(46).

Corollary 3.3. Let F" = (FJ,...,FL) be as in Lemma 3.2. There ezxists a™ €
RN such that, setting A" (x) := min(FJ'(x) + of), there holds A € H'(2) and
j

(54) F'+al) =" ds! — a.e. in Q, Vi€ {0,...,N},
(55) VE! =V ds!' — a.e. inQ, Vie {0,...,N}.
Proof. By Lemma 3.2 we know that s™ minimizes s — [ F"-s among all admissible
s € XN .A. Applying the multicomponent bathtub principle, Theorem B.1 in

appendix, we infer that there exists a™ = (af,...,a%) € RN*! such that F'+-al =
A" for dsj-a.e. & € Q and A" = min(F}* 4+ o) as in our statement. Note first that
J

A" € HY(Q) as the minimum of finitely many H! functions Fy,..., Fx € HY(Q).
From the usual Serrin’s chain rule we have moreover that

VA" = Vmin(F}' + af) = VE . X(Frpar=in]s
j S
and since s = 0 inside [F[* + ol # A"] the proof is complete. O

3.2. The discrete capillary pressure law and pressure estimates. In this
section, some calculations in the Riemannian settings (€2, d;) will be carried out. In
order to make them as readable as possible, we have to introduce a few basics. We
refer to [46, Chapter 14] for a more detail presentation.
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Let ¢ € {0,...,N}, then consider the Riemannian geometry (2,d;), and let
x € 2, then we denote by g; 4 : R?% x R — R the local metric tensor defined by

Giw(v,v) = WK Hx)v v =G;(z)v v, Vv € R,
In this framework, the gradient V, ¢ of a function ¢ € C!(12) is defined by
o(x + hv) = () + hgiw (Vg 0(x),v) +0(h), YoeS Voe
It is easy to check that this leads to the formula

1
(56) Voo= KVg,

where V¢ stands for the usual (euclidean) gradient. The formula (56) can be
extended to Lipschitz continuous functions ¢ thanks to Rademacher’s theorem.
For ¢ belonging to C2, we can also define the Hessian Dgiw of ¢ in the Riemann-
ian setting by
d2
giaw (DG (@) v, 0) = —50(7,)

t=0
for any geodesic v, = exp, ,(tv) starting from z with initial speed v € T; .

Denote by ¢} the backward Kantorovich potential sending si* to s?*l associated
to the cost %df By the usual definition of the Wasserstein distance through the
Monge problem, one has

LV?<s?,s?*1>=:jécﬁ<w,t?cn»s?<w>dm,

where t' denotes the optimal map sending s}’ on 8?71. It follows from [46, Theorem
10.41] that

(57) ti (@) = exp, 5 (=Vy i (@),  Veel

Moreover, using the definition of the exponential and the relation (56), one gets
that

n n n 1 n n
d; (z,exp; & (— V4,07 (@) = giw (V.07 (@), Vg, 0} (2)) = ;K(m)v% (z)- Vi ().

This yields the formula

n
(58) W2(s?, st 1) = / SRV Verde,  Vie{0,...,N}.
Q Hi
‘We have now introduced the necessary material in order to reconstruct the phase
and capillary pressures. This is the purpose of the following Proposition 3.4 and of
then Corollary 3.5

Proposition 3.4. Forn > 1 let ¢} : s — s'™' be the (backward) Kantorovich
potentials from Lemma 5.2. There exists h = (hyy,...,h%) € HY(Q)N*L such that
(i) VA = —Vf@? for ds?-a.e. x € Q
(it) R} (x) — hi(x) = 7l (x) + U;(z) — Uo(x) for dz-a.e. z€Q,ic{l,...,N}
(i4i) there exists C depending only on Q1L w, K (u;),, and ¥ such that, for all
n>1 and all 7 > 0, one has

79

n’ Snfl)

n WQ(S
|~ ||%11(Q)N+1 <C (1 4+ 4

7

T2 T

waﬂmwv.
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Proof. Let ¢ be the Kantorovich potentials from Lemma 3.2 and F* € L*NH*(Q)
as in (46), as well as o™ € RV*! and X" = min(F}* + o}) € L™ N H'(Q) as in
J

Corollary 3.3. Setting
Rl = T L F N\ Vi e {0,...,N},
T

we have h' € H1(Q) as the sum of Lipschitz functions (the Kantorovich potentials

or') and H' functions F7*, A", Recalling that we use the notation my = AL — 0, we

=41
see from the definition (46) of F* that
(59)
n n __ n SD/;L n (p/(,)L _ n n _ n
hi' —hg = (Fz - T) —(Fo - T> = (m + ;) — (mg + Vo) = ' +¥; — ¥y

for all 4 € {1,..., N} and dz-a.e. z, which is exactly our statement (ii).
For (i), we simply use (55) to compute
(60)

Vel

Vot
Vh} = —i—ﬁ—V(Fi"—/\f) = for ds}-a.e. x € Q, Vie {0,...,N}.
-

In order to establish now the H' estimate (iii), let us denote

Wi
n > .
@)z 1 )

Mi:{weQ

Then since Y s (x) = w(x) > w, > 0, one gets that, up to a negligible set,

N
(61) Ut =9, hence @) c | Ju;.
i=0 j#i

We first estimate Vhg. To this end, we write
1

(62) Vha[2, < 7/ KVhy - Vhide < A+ B,
Rx JQ

where we have set

1 1
A=— | KV} -Vhldw, B=— KVhy - Vhida.

Kx Juo Bx J(o)e

Owing to (60) one has Vi = —% on Uy C (2, where sg > 77%5. Therefore,

N +1 o N+1 S

A< M/ ‘LUKth S Vhida < (Q'Fﬂ/ SLKv%l - Vpde.
Wy Kok Uy Mo T Wik« Ja Mo

Then it results from formula (58) that

(63) A< Swass, s

where C' depends neither on n nor on 7. Combining (61) and (59), we infer

N

1
B< — § : KV — (7l + ¥; — ¥g)] - V[hI — (7 + ¥; — ¥g)]dx.
7
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Using (a + b+ 0)2 < 3(a? + b + %) and (3), we get that
N
Do (Ivaflize + V(¥ = Po)|72) -

i=1

3K*
4) B<— KVh; - Vh;
(64) - z; Vhi - Vhidz + =

Similar calculations to those carried out to estimate A yield

/KVh Vhdm<£W2( nosth

? ’L i l

for some C' depending neither on n,7 nor on 7. Combining this inequality with
Lemma 2.2 and the regularity of ¥, we get from (64) that

(65) B<O(1+W2(s:;sn ) +Z i 1)* “(S?)>

for some C not depending on n and 7 (here we also used 1/7 < 1/72 for small 7 in
the W2 terms). Gathering (63) and (65) in (62) provides

N wW2(s", SPTHY — M (s
||Vho||iQ<C<1 +Z _—— >>.

Note that (i)(ii) remain invariant under subtraction of the same constant h{, h]" ~»
hy — C,h? — C, as the gradients remain unchanged in (i) and only the differences
h — hy appear in (ii) for ¢ € {1... N}. We can therefore assume without loss of
generality that fQ hidxz = 0. Hence by the Poincaré-Wirtinger inequality, we get
that

n n W?2(s — Heo(S]
[h2 1|2, < C|VhE|2. < C (1 ( +Z (5; )) .

Finally, from (ii) A = h{ + 7 + ¥; — Uy, the smoothness of ¥, and using again
the estimate (30) for |[Vz™||2, we finally get that for all ¢ € {1,..., N}, one has

1B < CORGIE + I I3 + 125 + 1 oll5)
2 n sn— 1 N n 1 n
§C<1 W o)y 5 Halst ) - m(sn)’

i=0

and the proof of Proposition 3.4 is complete. (I

We can now define the phase pressures (pj'),_, 5 by setting

(66) pri=h—W,;,  Vie{0,...,N}.

The following corollary is a straightforward consequence of Proposition 3.4 and of
the regularity of U,.

Corollary 3.5. The phase pressures p" = (p}')y<i<n € HY Q)N satisfy

. W2(sn, st N on, shY = H, (87
67 1" s0<1+(72)+2 b SR
1=0

T

for some C' depending only on Q,II,w, K, (1;),, and ¥ (but neither on n nor on 7),
and the capillary pressure relations are fulfilled:

(68) pp—pr=nr,  Vie{l,...,N}.



20 CLEMENT CANCES, THOMAS O. GALLOUET, AND LEONARD MONSAINGEON

Our next result is a first step towards the recovery of the PDEs.

Lemma 3.6. There exists C' depending depending only on Q, 1L, w, K, (11;);, and ¥
(but neither on n nor on T) such that, for alli € {0,...,N} and all £ € C*(2), one
has

(69)

K
/ (s? — 3?71) Edx + 7'/ st—V (pi + ¥;) - Védx
Q

Q Hi
< OW(st,s7~ D36

i 9% 3

|OO'

This is of course a discrete approximation to the continuity equation Os; =

Proof. Let ¢l denote the (backward) optimal Kantorovich potential from Lemma 3.2
sending s;" to s, and let t? be the corresponding optimal map as in (57). For
fixed & € C2() let us first Taylor expand (in the g; Riemannian framework)

(47 @)~ @) + LK@ V(@) - Vil (@) < 10} €l e, (@),

Using the definition of the pushforward 5?71 = t’#s}', we then compute

n n—1 K($) n n
[t@ - s @petante - [ D vew). vt

— — £t () s (z)dx — K(=) x) - Vi (x)s) (x)dx
-| [ - se@psi@an - [ “Eve) vpr@st@a

|00Wi2(8n Snfl .

797

1 . X 1

From Proposition 3.4(i) we have Vo = —7VhA? for ds? a.e. x € §, thus by the
definition (66) of p’, we get V" = —7V(p! + ¥;). Substituting in the second
integral of the left-hand side gives exactly (69) and the proof is complete. O

4. CONVERGENCE TOWARDS A WEAK SOLUTION

The goal is now to prove the convergence of the piecewise constant intepro-
lated solutions s”, defined by (26), towards a weak solution s as 7 — 0. Simi-
larly, the 7 superscript denotes the piecewise constant interpolation of any previ-
ous discrete quantity (e.g. p](¢) stands for the piecewise constant time interpola-
tion of the discrete pressures p}*). In what follows, we will also use the notations
s™ = (s7,...,8%) € L=((0,T); X*) and " = w(s™, x).

4.1. Time integrated estimates. We immediately deduce from (29) that

(70) W (s"(t2), (1)) < Clta —t1+7]2,  VO<ti <t <T.
N

From the total saturation Y s?(z) = w(z) < w* and s] > 0, we have the L™
i=0

estimates

(71) 0<s](x,t) <w* ae inQ@foralie{0,... N}

Lemma 4.1. There ezists C depending only on Q,T,II,w,K, (1;);, and ¥ such
that

(72) 1P 220, 1y ey + 177N (0,901 () < C-
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Proof. Summing (67) from n =1 to n = N, := [T/7], we get

N,
1PN Z2cy = D 7P 170
n=1
N 2(an on—1 N> n—1y n
gczf@w(s ) | 9 Al Hw<sz>>
T , T
n=1 =0
N~ 2(an on—1 N
w (3 y S ) 0 N.
< A A A S 0) _ N .
_c((:r+1)+nz1 . -I—;(’Hw(sl) He(s] ))
We use that
1 19] .
0>Hu(s) > —=|wl| > ——, Vse L*(Q) with 0 <s<w
e e

together with the total square distance estimate (28) to infer that ||pH2LQ(H1) <C.

The proof is identical for the capillary pressure ©7 (simply summing the one-step
estimate from Lemma 2.2). O

4.2. Compactness of approximate solutions. We denote by H' = H'(Q)’.

Lemma 4.2. For each i € {0,..., N}, there exists C depending only on Q, I1, ¥,
K, and p; (but not on 7) such that

Is7 (t2) — s7 (1)l < Clta — t1 + 72, VO<t; <ty <T.

Proof. Thanks to (71), we can apply [39, Lemma 3.4] to get

/Qf{SI(tz) = s7(t1)}dz| < |V fllrz@Weet(s] (1), 57 (t2)),  Vf € H' ().

Thus by duality and thanks to the distance estimate (70) and to the lower bound
in (19), we obtain that

57 (¢2) = 7 (t1) |1 < Wiet (7 (81), 57 (t2)) < CWi(sT (1), 7 (£2)) < Clt2 —t1 + 72
for some C depending only on Q, II, (p;);, g, (1:);, K. O

From the previous equi-continuity in time, we deduce full compactness of the
capillary pressure:

Lemma 4.3. The family (77 ).~ is sequentially relatively compact in L*(Q)N.

Proof. We use Alt & Luckhaus’ trick [1] (an alternate solution would consist in
slightly adapting the nonlinear time compactness results [40, 8] to our context).
Let A > 0 be a small time shift, then by monotonicity and Lipschitz continuity of
the capillary pressure function (., x)

|77 (- +h) - 777(')H2L2((0,Tfh);L2(Q)N)
1

< =
Ry

T—h
/ (7" (t+ h,x) — 7" (t,x)) - (87" (t+ h,x) — s7* (¢, x))dzdt
0 Q

2\/T T T % T*
< ?Hﬂ' z2(0,m): 1 @)M) 187" (- + Ry ) — 87" || oo (0, 7= n); YN -
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Then it follows from Lemmas 4.1 and 4.2 that there exists C' > 0, depending neither
on h nor on 7, such that

|77+ k) = 77 | 2o r—nyze@yny < Clh+ 7|2

On the other hand, the (uniform w.r.t. 7) L%((0,7); H'(Q2)N)- and L>(Q)N-
estimates on 77 ensure that

177 ¢+ ) = 7|2z < CVIIA+ VgD, Yy eRY

where 77 is extended by 0 outside 2. This allows to apply Kolmogorov’s com-

pactness theorem (see, for instance, [29]) and entails the desired relative compact-
ness. g

4.3. Identification of the limit. In this section we prove our main Theorem 1.2,
and the proof goes in two steps: we first retrieve strong convergence of the phase
contents s — s and weak convergence of the pressures p” — p, and then use the
strong-weak limit of products to show that the limit is a weak solution. All along
this section, (73),~, denotes a sequence of times steps tending to 0 as k — oo.

Lemma 4.4. There exist s € L=(Q)N 11 with s(-,t) € X N A for a.e. t € (0,T),
and p € L2((0,T); H (Q)N*Y) such that, up to an unlabeled subsequence, the fol-
lowing convergence properties hold:

(73) s — s a.e inQ,
k— o0

(74) Tk k_\ w(s*,.) weakly in L?((0,T); H'(Q)V),
— 00

(75) pTE P weakly in L*((0,T); HY(Q)NF1).

Moreover, the capillary pressure relations (5) hold.

Proof. From Lemma 4.3, we can assume that w™ — z strongly in L?(Q)"N for
some limit z, thus a.e. up to the extraction of an additional subsequence. Since
z+— ¢(z,2) = m~1(z,x) is continuous, we have that

s =¢(n x) — P(w,x) =: 8" a.e. inQ.
k—o00
In particular, this yields =™ v m(s*,) a.e. in Q. Since we had the total satu-
— 00

N
ration Y s;"(t,x) = w(x), we conclude that the first component ¢ = 0 converges
i=0

pointwise as well. Therefore, (73) holds. Thanks to Lebesgue’s dominated conver-
gence theorem, it is easy to check that s(-,t) € X N A for a.e. t € (0,7). The
convergences (74) and (75) are straightforward consequences of Lemma 4.1. Lastly,
it follows from (68) that

P —pit = mi(s™,),  Vie{l,..., N}, Vk> 1.

We can finally pass to the limit ¥ — oo in the above relation thanks to (74)—(75)
and infer

pi —po = mi(s*,x) in L2((0,T); H'(Q)), Vie{l,...,N}.

which immediately implies (5) as claimed. O
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Lemma 4.5. Up to the extraction of an additional subsequence, the limit s of
(ST’“)kE belongs to C(|0,T); A) where A is equipped with the metric W. Moreover,
W (s™ (1), 5(t)) — 0 for allt €[0,7].

—00

Proof. 1t follows from the bounds (71) on s; that for all ¢ € [0,T], the sequence
(s7*), is weakly compact in L'(€). It is also compact in A; equipped with the
metric W; due to the continuity of W; with respect to the weak convergence in
LY(Q) (this is for instance a consequence of [44, Theorem 5.10] together with the
equivalence of W; with Wit stated in (19)). Thanks to (70), one has
limsup W; (s7%(ta), 57" (t1)) < |ta — t1|Y/2,  Vt1,ta € [0,T].
k—o0

Applying a refined version of the Arzela-Ascoli theorem [5, Prop. 3.3.1] then pro-
vides the desired result. O

In order to conclude the proof of Theorem 1.2, it only remains to show that
s =1lims™ and p = lim p™ satisfy the weak formulation (12):

Proposition 4.6. Let (Tk),Czl be a sequence such that the convergences in Lem-
mas 4.4 and 4.5 hold. Then the limit s of (s”“)k21 is a weak solution in the sense
of Definition 1.1 (with —p;g replaced by +VU; in the general case).

Proof. Let 0 < t; <ty <T, and denote n; = ﬁ—i—‘ and t; = n; 7y, for j € {1,2}.

Fixing an arbitrary ¢ € C%(Q) and summing (69) from n = ny, + 1 to n = nay
yields

n2 k
1) [ () -t ega= S [0 - s eda
a n=nik+1 Q
to 5Tk 2,k
= f/ / KV (pi* + ;) - Védadt + O Z W2(sl, s 1)
¢ Q Hi n=ni r+1
Since 0 < #; —t; < 73, and ik KV (pj* + ;) - V¢ is uniformly bounded in L?(Q),

one has

t2 T
/ / YRV (p7 + 0;) - Vedadt
i Ja M

Tk

to
:/ /%KV(pZ’“+‘1!i)-V§dwdt+O(\/E).
t1 Q %

Combining the above estimate with the total square distance estimate (28) in (76),
we obtain

ta Tk
Tk _ Tk Si Tk A —
(77) /Q(sZ (t2) —s; (tl))fdm—F/tl /Q " KV (p* + ¥;)- Védadt = O (/7).

Thanks to Lemma 4.5, and since the convergence in (A;, W;) is equivalent to the
narrow convergence of measures (i.e., the convergence in C()’, see for instance [44,
Theorem 5.10]), we get that

(78) o7 = s esde [ (stt2) = s
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Moreover, thanks to Lemma 4.4, one has

to Tk b '
oS f —oo Jyy Jo Hi

Gathering (77)—(79) yields, for all £ € C?(Q) and all 0 < t; <ty < T,

(80) /Q (si(t2) — si(t1))édx + /t : /Q %KV (pi + ;) - Védadt = 0.

In order to conclude the proof, it remains to check that the formulation (80) is
stronger the formulation (12). Let £ > 0 be a time step (unrelated to that appearing
in the minimization scheme (25)), and set L. = [ L. Let ¢ € C>°(Q x [0,7)), one
sets ¢p = @(-,le) for £ € {0,...,L.}. Since t — ¢(+,t) is compactly supported in
[0,T), then there exists e* > 0 such that ¢;,_ = 0 for all £ € (0,£*]. Then define by

(be'{QX[O,T] - R
’ (x,t) = ¢o(x) ifteE[le, (L4 1)e).

Choose t1 = le, ta = ({+1)e, £ = ¢y in (80) and sum over £ € {0,..., L. —1}. This
provides

(81) A(e) + B(e) =0, Ve > 0.

where

L.—1

Z / (£ +1)e) — 5:(¢e)) ¢da,
B(e) = / g jKV (pi + ;) - Vo*dadt.

Due to the regularity of ¢, V¢° converges uniformly towards ¢ as € tends to 0, so
that

e—0

(82) B(e) — //Q %KV (pi +9;) - Vodadt.

Reorganizing the first term and using that ¢, = 0, we get that

Z /sl (Le) ¢>e ! mf/ﬂsgqﬁ(yO)d:c

It follows from the continuity of ¢ — s;(-,t) in A; equipped with W; and from the
uniform convergence of

(@,1) M itte[(f— e, be)

towards 0;¢ that

(83) ) = // szc')tqﬁdwdtf/ s96(-,0)dx

Combining (81)—(83) shows that the weak formulation (12) is fulfilled. O
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APPENDIX A. A SIMPLE CONDITION FOR THE GEODESIC CONVEXITY OF (£2,d;)

The goal of this appendix is to provide a simple condition on the permeability
tensor in order to ensure that Condition (22) is fulfilled. For the sake of simplicity,
we only consider here the case of isotropic permeability tensors

(84) K(z) = r(x)ly, vz € Q

with k, < k(x) < k* for all z € . Let us stress that the condition we provide is
not optimal.

As in the core of the paper, Q denotes a convex open subset of R? with C?
boundary 9. For T € 0f), we denote by n(x) the outward-pointing normal.
Since 0f) is smooth, then there exists £y > 0 such that, for all x €  such that
dist(z, 002) < £p, there exists a unique T € 99 such that dist(x, 9Q) = | —Z| (here
dist denotes the usual Euclidian distance between sets in R%). As a consequence,
one can rewrite = T — ¢n(x) for some ¢ € (0,4).

In what follows, a function f : @ — R is said to be normally nondecreasing
(resp. nonincreasing) on a neighborhood of 9 if there exists ¢; € (0, £p] such that
¢ — f(x — ¢n(x)) is nonincreasing (resp. nondecreasing) on [0, ¢1].

Proposition A.1. Assume that:

(i) the permeability field x — k(x) is normally non-increasing in a neighborhood

of 09;
(ii) for all® € 0Q, either Vk(T)-n(T) < 0, or Vi(Z)-n(x) = 0 and D?k(T)n(x)-
n(x) = 0.

Kx

Then there exists a C? extension K : R — | 5, k%] of k and a Riemannian metric

~ 1 1 1/2

(85) §(x,y)= inf (/ = |’7/(7')2d7'> , Va,y € R?
~YEP(x,y) 0 ‘%(7(7-))

with P(z,y) = {v € C([0,1;R?) |7(0) = @ and v(1) =y}, such that (Q,0;) is

geodesically convex.

Proof. Since Q is convex, then for all x € R%\ Q, there exists a unique & € 9 such
that dist(z, Q) = |z — Z|. Then one can extend  in a C? way into the whole R?
by defining

|z — |

k(x) = k(T) + | — T|VE(T) - n(T) + D*k(Z)n(Z) - n(Z), YR\ Q.

Thanks to Assumptions (i) and (ii), the function ¢ — k(Z—¢n(x)) is non-decreasing
on (—oo, 4] for all & € 9. Since 0f) is compact, there exists £2 > 0 such that

(T — In(T) > % Ve € (—L,0].

Let p : Ry — R be a non-decreasing C? function such that p(0) = 1, p/(0) =
p"(0) =0 and p(¢) = 0 for all £ > £5. Then define

Fx
2 )
so that the function £ — k(& — ¢n(T)) is non-increasing on (—oo,¢1) and bounded
from below by .

E(x) = p(dist(z, Q))k(x) + (1 — p(dist(z, Q))) Ve € RY,
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Let @,y € Q, then there exists ¢ > 0 such that dist(z,0%) > ¢, dist(y, 0Q) > ¢,
and k is normally nonincreasing on 92, := {x € Q | dist(x, Q) < €}. A sufficient
condition for (£2,d) to be geodesic is that the geodesic 73}_”{1 from « to y is such that

(86) dist (ygPy, (), 09) > e, Vte[0,1].
In order to ease the reading, we denote by v = 7‘;{’; any geodesic such that
1
~ 1
(87) Fay) = |z ()P
o K(y(1))

We define the continuous and piecewise C! path ~_ from x to y by setting
(88) ¥e(t) = projg_(v(1)),  Vt€[0,1],

where Q. := {z € Q | dist(z,09) > €} is convex, and the orthogonal (w.r.t. the
euclidian distance dist) projection projg_ onto Q. is therefore uniquely defined.
Assume that Condition (86) is violated. Then by continuity there exists a non-

empty interval [a,b] C [0, 1] such that

dist(vy(t), 00) < e, vt € (a,b),
the geodesic between ~y(a) and () coincides with the part of the geodesics between
x and y. Then, changing = into v(a) and y into ~(b), we can assume without loss
of generality that

dist(v(t),090) < ¢, vt € (0,1).
It is easy to verify that

89) O @I vtel0.1],  and |y ()] <[¥'(t)] on (a,b)
for some non-empty interval (a,b) C [0, 1]. It follows from (85) that

~ 1 1
Pens |

Since k is normally non-increasing, one has

52 ! 1 ’ 2
6 (z, y) 5/0 %(W(T))m(fn dr.

[ye(r)Pdr.

Thanks to (89), one obtains that

1
~ 1
) < |z OFn
o R(v(7))
providing a contradiction with the optimality (87) of 4. Thus Condition (86) holds,
hence (£2,0) is a geodesic space. O

APPENDIX B. A MULTICOMPONENT BATHTUB PRINCIPLE

The following theorem can be seen as a generalization of the classical scalar
bathtub principle (see for instance [35, Theorem 1.14]). In what follows, N is a
positive integer and € denotes an arbitrary measurable subset of R
Theorem B.1. Let w € LY (Q), and let m = (mo,...,my) € (RL)NH be such
that Zi\io m; = [qwdx. We denote by

XNA = {S = (s0,..-,5n5) € LL (@)

N
/sidwzmi and Zsi =wa.e. in Q}
Q

=0
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Then for any F = (Fy, ..., Fn) € (L= (Q)N*L, the functional
Fis— / F - sdx
Q

has a minimizer in X N.A. Moreover, there exists a = (v, ..., an) € RV such
that, denoting

AMz) = oglgnN{Fj(m) + i}, xz € Q,

any minimizer s = (sy,...,Sy) satisfies
Fi+oi=X ds;-a.e. inQ, Vie{0,...,N}.

One can think of this as: s; = 0in {F;+«a; > A} and F;+«; > A everywhere, i.e.,

s; > 0 can only occur in the “contact set” {w Fi(x)+a; = mjin(Fj(w) + aj)}.

Proof. For the existence part, note that F is continuous for the weak L' conver-
gence, and that X N .A is weakly closed. Since > s; = w and s; > 0 we have in
particular 0 < s; < w € L' for all i and s € X N.A. This implies that X N A
is uniformly integrable, and since the mass ||s;||,2 = [s; = m; is prescribed, the
Dunford-Pettis theorem shows that X N.A is L'-weakly relatively compact. Hence
from any minimizing sequence we can extract a weakly-L! converging subsequence,
and by weak L! continuity the weak limit is a minimizer.

Let us now introduce a dual problem: for fixed o = (a,...,ay) € RV we
denote
(90) Aa(z) := min{F;(x) + a; }
and define

J(a) = /Q)\a(m)w(w)dw - Zaimi.

We shall prove below that

(i) sup J(a)= max J(a) is achieved,
aERN+1 a€RN+1
(i) Sern(\)lrrle}"(s) = Dax J(a).

The desired decomposition will then follow from equality conditions in (ii), and
AMx) = Ag(x) will be retrieved from any maximizer & € Argmax J.

Remark B.2. The above dual problem can be guessed by introducing suitable La-
grange multipliers A(x),a for the total saturation and mass constraints, respec-
tively, and writing the convex indicator of the constraints as a supremum over
these multipliers. Formally exchanging inf sup = supinf and computing the opti-
mality conditions in the right-most infimum relates A to a as in (90), which in turn
yields exactly the duality iI;f]: = max J. See also Remark B.3
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Let us first establish property (i). For all & € RN*! and all s € X N A, we first
observe that

J(a) = /Q mjin{Fj(:c) + ojtw(x)dz — Z a;m;
N . N
= /Q mjm{Fj(w) + o5} ZZ:(:) si(x)dx — iz:(:)ai /Q si(x)dx

:i/g(nljn{Fj(m)—i_aj}_ai) si(w)de/QFsdm:}'(s).

In particular J is bounded from above and

91 sup J(a) < min F(s).

( ) aERIEJrl ( ) T sexXnA ( )

Since [wdx =Y m;, the function J is invariant under diagonal shifts, i.e., J(o +

cl) = J(a) for any constant ¢ € R. As a consequence we can choose a maximizing

sequence {a’};>1 such that min a? =0 for all £ > 0. Let j(k) be an index such
J

k
J

k

that oz?(k) = mjina 0. Then, since " is maximizing and w(x) > 0, we get, for

k large enough,

sup/ ~ 1< J(a) = [ min(F(e) + abfw(a)de - 3 abm,
K

k k k
< [ (i (@) + o Jwta)da = 3 afms < [Pl o2 — 3 ok
Q N~

=0
Thus Zafmi < C, and since ozf > 0 and m; > 0 we deduce that (ak)k is
bounded. Hence, up to extraction of an unlabelled subsequence, we can assume
that o converges towards some & € ]Rf *1. The map J is continuous, hence @ is
a maximizer.

Let us now focus on property (ii). Note from (91) and (i) it suffices to prove the
reverse inequality

max J(a)> min F(s).
acRN+1 sEXNA

We show below that, for any maximizer & of J, we can always construct a suitable
s € XNAsuch that F(s) = J(&). This will immediately imply the reverse inequal-
ity and thus our claim (ii). In order to do so, we first observe that J is concave,
thus the optimality condition at @ can be written in terms of superdifferentials as
Ogrn+1 € OJ(@). Denoting by

AMa) = / Aawdx = / min{F;(z) + o }w(z)de
Q Q J
the first contribution in J, this optimality can be recast as
(92) m € O\(a).
For fixed x € Q and by usual properties of the min function, the superdifferential

OAa(x) of the concave map a +— A\ (x) at o € RVF! is characterized by

MNa(x) = { 6 e RYH!

N
Z@i =1, and 0; = 0if F(x) + a; > )\a(:c)} .
i=0
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Therefore, it follows from the extension of the formula of differentiation under the
integral to the non-smooth case (cf. [23, Theorem 2.7.2]) that
(93)

OA(c) = {w e RN

w= / 0(x)w(x)dx with O(x) € O\ () a.e. in Q} .
Q

The optimality criterion (92) at any maximizer & gives the existence of some func-
tion @ as in (93) such that

mi:/ei(m)w(a:)dm, ¥ie{0,...,N}.
Q
Defining

(94) si(x) = 0;(x)w(z), Vie{0,...,N},

we have by construction that s; > 0, f si=my,and > s; = (Zl 0;)w = w a.e, thus
s € X N A. Exploiting again Y s; = w as well as the crucial property that ; = 0
a.e. in {z | F; +@; > A\g}, or in other words that F; + a@; = A\g for ds;-a.e © € Q,
we get

N N N
Q i=0 i=0 /€ i=0

N N
i=0 7€ i=0

as claimed. Therefore s constructed by (94) is a minimizer of F and
(95) J(@) = F(s).

In order to finally retrieve the desired decomposition, choose any minimizer
s € XN A of F and any maximizer & € RN+ of J. Then it follows from (95) that

N N
0=F(s)-J@) =) /Q Fys;dx — /ﬂ A wda + Y @m;.
=0 =0

Using once again that [s; =m,; and ), s; = w, we get that

N
Z/ (Fi + a; — /\a)§id(1} =0.
i=0 /2

By definition of A& the above integrand is nonnegative, hence F; + @; = A a.e. in
{s;, > 0}. O

Remark B.3. To understand the dual problem one chan think the function F; as
N + 1 bathub that can be translated vertically. The translation of each bathtub is
given by a;. Once these translations are given one just wants to fill the bathubs
starting from the bottom (that is Ao ), while satisfying the global saturation and
mass constraints. For an optimal translation vector o, each phase i contributes at
x with a ratio 6;(x) as in (94).
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ABSTRACT. The Wasserstein gradient flow structure of the PDE system governing multiphase
flows in porous media was recently highlighted in [C. Cances, T. O. Gallouét, and L. Monsain-
geon, Anal. PDE 10(8):1845-1876, 2017]. The model can thus be approximated by means of
the minimizing movement (or JKO) scheme, that we solve thanks to the ALG2-JKO scheme
proposed in [J.-D. Benamou, G. Carlier, and M. Laborde, ESAIM Proc. Surveys, 57:1-17,
2016]. The numerical results are compared to a classical upstream mobility Finite Volume
scheme, for which strong stability properties can be established.
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1. MULTIPHASE POROUS MEDIA FLOWS AS WASSERSTEIN GRADIENT FLOW

Because of their wide range of interest in the applications, multiphase flows in porous media
have been the object of countless scientific studies. In particular, there has been an extensive
effort in order to develop reliable and efficient tools for the simulation of such flows. In many
practical situations, the characteristic size of the pores (typically of the order the pum for regular
sandstones) is much smaller than the characteristic size of the domain of interest. The direct
numerical simulation of fluid flows at the pore scale is therefore not tractable. The use of
homogenized models of Darcy type is therefore commonly used to simulate porous media flows.

1
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The derivation of such models is the purpose of a very extended literature. We refer for instance
to [3] for an extended introduction to the modeling of porous media flows. But let us stress
that, as far as we know, there is no rigorous mathematical derivation of homogenized models for
multiphase porous media flows.

Because of the very large friction of the fluid with the porous matrix, the energy is dissipated
and inertia is often naturally neglected in the Darcy type models. The resulting models there-
fore have a formal gradient flow structure, as highlighted in [10] for immiscible incompressible
multiphase porous media flows. This was then rigorously established in [11] that the equations
governing such flows can be reinterpreted as a gradient flow in some appropriate Wasserstein
space. The goal of this paper is to explore how this new point of view can be used to simulate
multiphase flows in porous media.

1.1. Incompressible immiscible multiphase flows. As a first step, let us recall the equa-
tions governing multiphase porous media flows. We remain synthetic here and refer to the
monograph [3] for a rather complete presentation of the models. The porous medium is repre-
sented by a convex bounded open subset Q of R? (d < 3). Within this porous medium, N + 1

phases are flowing. Denoting by s = (sg,...,sy) the saturations, i.e., the volume ratios of the
various phases in the fluid, the following total saturation relations has to be fulfilled:
(1a) so+sy+---+sy=1

In what follows, we denote by
A:{SERf | so+si+-+sy=1},

and by
X:{S:Q—>RN|s(w)€Af0ra.e.weQ}.

As a consequence of (1a), the composition of the fluid is fully characterized by the knowledge of

8" =(s1,...,8n) E A" = {(517...,3N)€Rf
i=1

Concerning the evolution, each phase is convected with its own speed
(1b) wos; + V- (s,-vi) =0,

where w stands for the porosity of the medium €2 and is assumed to be constant in the sequel for
simplicity. Then a straightforward rescaling in time allows to choose w = 1. We further assume
a no flux condition across the boundary 9€) for each phase, hence the mass is conserved along
time. This motivates the introduction of the set

A:{seL}F(Q)N /sidw:/s?dx},
Q Q

where 8% = (s?) : Q@ — A is a prescribed initial data.
The phase speeds v; are prescribed by the Darcy law [14]

H .
—;(Vpi—pig), 1€{0,...,N}.

(3

(1e) v; =

In (1c), k denotes the permeability of the porous medium. For simplicity, it is assumed to be
constant and positive. We refer to [11] for the case of space-dependent anisotropic permeability
tensors. The fluid viscosity and density are denoted by u; > 0 and p; > 0, respectively, whereas
g = —ge. denotes the gravity. The unknown phase pressures p = (p;)y<;<y are related to the
saturations by N capillary pressure relations o

(1d) pi —po =mi(s*), Vie{l,...,N}.
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The capillary pressure functions @ = (m;), ., 5 are assumed to derive from a strictly convex and
w-concave potential IT: A* — R, for some w > 0, i.e.,

(2) 0<IIE") —I(s*) —m(s*)- (8" —s%) < %|§* — s, Vs*, 8" € A*, with s* # 5",
This implies that 7 : A* — RY is strictly monotone (thus one-to-one) and Lipschitz continuous:
0< (w(8") —m(s") - (3" — s*) < w[3" — %%, Vs*, 8" € A*, with s* # 57,

and thus
0< DMI(s*) <wly,  Vs* € A*

The last inequalities have to be understood in the sense of the symmetric matrices. The function
IT is extended by +oco outside of A*.

As established in [11], the problem (1) can be interpreted as the Wasserstein gradient flow of
the energy

(3) E(s) :-/Q[H(s*)—i—s~\II+XA(s)] de, Vs € A.

In formula (3), the exterior gravitational potential ¥ = (V;),,. v is given by
(4) Vi(z) = —pig -, Va € Q.

Remark 1.1. In fact in (3) one can consider a large class of arbitrary potential ¥, see [11] for
details.

The constraint (1a) is incorporated in the energy rather than in the geometry thanks to the
term

+00 otherwise.

{0 ifs €A,

We refer to [8, 5, 28] for a presentation of the multiphase optimal transportation problem for
which the constraint (1a) is directly incorporated in the geometry. In order to be more precise in
our statements, we need to introduce some extra material concerning the Wasserstein distance
to be used to equip A. This is the purpose of the next section.

Remark 1.2. In the previous work [11], the uniform convexity of the capillary potential II was
required. In (2), we relax this assumption into a mere strict convezity requirement. This can be
done by slightly adapting the proofs of [11].

1.2. Wasserstein distance. For i € {0,..., N} we define

Q

Given s;,5; € A;, the set of admissible transport plans between s; and s; is given by

Li(si,5:1) = {% EML(QxQ)

Ai = {Si S Ll(Q;R+)

% 7

i (2 x Q) = my, 'y(l) = s; and 7(2) =3 },

where M (Q x ) stands for the set of Borel measures on Q x  and vgk) is the k' marginal of

the measure 7;. The quadratic Wasserstein distance W; on A; is then defined as

—~ . 127
(5) W7(si,5;) = min_ // o — y|*dyi(z, y).
Yi €T (84,5%) oxQ K

Equivalently, the continuity equation (1b) allows to give the following dynamical characterization:
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Proposition 1.3 (Benamou-Brenier formula [4]). For s;,s;1 € A; we have

(6) Wf(si,o,szl 7m1n/ / m|v | dSz f( )

where the minimum runs over curves of measures t — s;; € A; with endpoints s;,s;1 and
velocity fields t — vy € M(Q) such that
Osit + V- (si0) =0

in the sense of distributions.

Remark 1.4. As originally developped in [4], the right variables to be used in the Benamou-
Brenier formula (6) is not the velocity v, but in fact the momentum m = sv, since the action

2
A(s,m) = @ = s|v|? becomes then jointly convex in both arguments.
A third equivalent formulation is the Kantorovich dual problem:

Proposition 1.5. There holds

(7 fW (84,54) —max{/¢ )ds;(x /1/1 )ds;(y },

where the mazimum runs over all pairs (¢,1) € L*(ds;) x L'(ds;) such that ¢(z) + ¥(y) <
Sila — y|%. Any mazimizer is called a (pair of optimal) Kantorovich potential.

The viscosity p; and permeability « appear in (5)—(7) as scaling factors in the cost function
pilz — y|?/k, and this is required for consistency with Darcy’s law (1c). For more general
heterogeneous permeability tensors K(z) one could use instead the intrinsic distance d?(x,y)
induced on €2 by the Riemannian tensor 1; K~ (z), see [27] for a general approach of Wasserstein
distances with variable coefficients and [11] in the particular context of multiphase flows in porous
media.

With the phase Wasserstein distances (W;) ;< at hand, we can define the global Wasserstein
distance W on A := Ay x --- x Ay by setting

N 1/2
= (ZW2(317§1)2> , Vs,ge A.
=0

1.3. Approximation by minimization scheme. As already mentioned, the problem (1) is the
Wasserstein gradient flow of our singular energy (3), see our earlier works [10, 11]. Rather than
discussing the meaning of gradient flows in the Wasserstein setting, we refer to the monograph
[2] for an exposition of gradient flows in abstract metric spaces [2] and to [35, 36] for a detailed
overview. As is now well understood from the work of Jordan, Kinderlehrer, and Otto [25], one
possible way to formalize this gradient flow structure is to implement the JKO scheme (also
referred to as DeGiorgi’s minimizing movement, see [15]). Given an initial datum s° € A with
energy £(s) < oo and a time step 7 > 0, the strategy consists in:

(i) construct a time discretization s™(.) = s(nr,.) by solving recursively

(8) s"T! = argmin {1W2(s, s™) + 5(3)} ;
scA 27

(ii) define the piecewise-constant interpolation
s, (t) == s"T! ift € (nr,(n+1)7];

(iii) retrieve a continuous solution s(t) = hn%) s-(t) in the limit of small time steps.
T—
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This is a variant in the Wasserstein space of the implicit variational Euler scheme: indeed, in
Euclidean spaces x € R? and for smooth functions E : R? — R, the Euler-Lagrange equation
corresponding to minimizing « +— 5-|z — z"|* + E() is nothing but the finite difference approx-
n+l__n

imation ¥—"* = —~VE(z"*!). We refrain from giving more details at this stage and refer

again to [2, 35, 37].

Due to lower semi-continuity and convexity, it is easy to prove that the minimization problem
(8) is well-posed, hence the discrete solution s, is uniquely and unambiguously defined. But we
still need to construct approximate phase pressures p. = (p1.r,p2,r). Their construction makes
use of the backward Kantorovich potentials (see [11, Section 3]).

Lemma 1.6. There exist pressures p?“ and Kantorovich potentials rj)?“ (from s?“ to st)
such that

D
(9) S =" Wy g in {sPT >0} fori=0,...,N,
and
(10) prtt —pptt = (8" ) ae inQ fori=1,...,N.

nl = ﬁ@ should be interpreted as the
discrete velocity driving the i-th phase, which will automatically give d;s; + V - (s;v;) = 0 in the
limit 7 — 0. Hence (9) is a discrete counterpart of Darcy law (1c). The capillary relation (1d)
hold as well at the discrete level thanks to relations (10), whereas the total saturation constraint
(1a) is automatically enforced in (8) thanks to £(s"*!) < co. For the sake of brevity we omit

the details and refer again to [11].

From classical optimal transport theory [35], v

1.4. Main properties of the approximation. Since our system (1) of PDEs is highly nonlin-
ear, taking the limit s(t) = lirno s,(t) will require sufficient compactness both in time and space.
T—

In this section we sketch the main arguments leading to such compactness.

Compactness in time is derived from the classical total square distance estimate below, which
is a characteristic feature of any JKO variational discretization. Testing s = s™ as a competitor
in (8) gives first

1
2—W2(3"+1, s") 4+ E(s"T) < E(s™).
-
This implies of course the energy monotonicity £(s"*1) < £(s™), but summing over n, we also
get the total square distance estimate in the form

(11) iT;)WQ(s”“,s”) <2 (5(30) _n}‘fg).

By definition of the piecewise-constant interpolation, an easy application of the Cauchy-Schwarz
inequality gives then the approzimate equicontinuity

W (s:(t1), s:(t2)) < Clta —ty + 7|7, VO <ty <t
uniformly in 7, which yields the desired compactness in time (see [2, Proposition 3.10] or [18,

Theorem C.10]).

Compactness in space will be obtained exploiting the flow interchange technique from [29].
Roughly speaking, this amounts to estimating the dissipation of the driving functional £ along
a well-behaved auxiliary gradient flow, driven by an auxiliary functional and starting from the
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minimizer s"*!. More explicitly, we define the e-perturbation 3, = (3¢.,...,3n.) as solutions
to the independent heat equations

321" = kAS§; for small € > 0,

Sz|5 0= 8n+1

The key observation is that, for each ¢ = 0... N, the above heat equation is a gradient flow in
the Wasserstein space (A;, W;) with driving functional p;H, where the Boltzmann entropy

(12) H(s) = /Qs(:c) log (s(z)) dz.

In addition to the usual regularizing effects, this heat equation is particularly well-behaved here

N N
in the sense that it preserves the total saturation constraint > &, = > st =1 and, since Q2
=0 i=0

is convex, the auxiliary driving functional H is displacement convex in (A;, W;) [37, 31]. If
1
FI'(s) = 2fW2(s, s")+&(s)
T
denotes the JKO functional, then by optimality of the minimizer s"*! in (8) we must have

lim sup .7—'”( ) > 0.

e—0Tt de

The energy term &(8 fQ (8¥) can easily be differentiated under the integral sign (with
respect to ¢€), while the Varlatlon of the first W2 (3, s”) term can be estimated using the evolution
variational inequality [2] for the well-behaved H-flow 8. (this metric characterization precisely
requires some displacement convexity of the auxiliary flow, see [19, Theorem 2.23]). Omitting

again the details, one gets in the end the dissipation estimate

TZ||V7T n+1 )HLQ(Q) < C <7‘+W2 n+1 +ZH erl))7

see [11, Sectlon 2.2] for the details. Exploiting the previous total square distance estimate and
summing over n = 0...|T/7] (or equivalently integrating in time), we control next

N

(13) 7 (s?)z20,15m1) < C (T + ZH(S?) + 1) =Cr
i=0

for arbitrary 7 > 0 and fixed initial datum s°. It is worth recalling at this stage that, due to our
assumption (2), w(s*) = Vs-II(s*) is a strictly monotone thus invertible map of s* due to the
strict convexity of II. The compactness w.r.t. the space variable of (s;) then follows from
(13).
Remark 1.7. A formal but more PDE-oriented explanation of the above flow-interchange simply
consists in taking log(s;) as a test function in the weak formulation of system (1). The delicate
technical part is to justify this computation and mimic this formal chain rule in the discrete time
setting in order to retrieve enhanced regularity of the JKO minimizers.

>0

Exploiting the above compactness, one can argue as in [11] and finally prove the following
convergence results. The existence of a weak solution to the problem (1) is a direct byproduct.

Theorem 1.8. For any discrete sequence 7, — 0 and up extraction of a subsequence if needed,
we have convergence

Sr, — 8 strongly in all L1((0,T) x Q),
w(sk ) — m(s*) weakly in L*(0,T; H(12)),

p,—p weakly in L2(0,T; H*(2)),
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and the limit (s,p) is a weak solution of (1).

2. NUMERICAL APPROXIMATION OF THE FLOW

We present here the ALG2-JKO scheme and the upstream mobility finite volume scheme. The
first method is based on the variational JKO scheme (8) described in subsection 1.3 whereas the
second method is based on the PDE formulation of the problem (1) given by (1a)-(1b)-(1c)-(1d).
Both methods are well adapted for gradient flows equations, and more precisely we will check
the following key properties for the numerical solutions:

e preservation of the positivity
e conservation of the mass and saturation constraints,
e energy dissipation along solutions.

2.1. The ALG2-JKO scheme. This algorithm relies on the seminal work of Benamou and
Brenier [4] where an augmented Lagrangian approach was used to compute Wasserstein distances.
In [6], this approach was extended to the computation of Wasserstein gradient flows. The method
is very well suited for computing solutions to constrained gradient flows, as it will appear in the
numerical simulations presented in Section 3.

2.1.1. The augmented Lagrangian formulation. Roughly speaking, the ALG2-JKO scheme con-
sists in rewriting the single JKO step (8) as a more fashionable (and effectively implementable)
convex minimization problem. In order to do so, let us first introduce the convex lower-
semicontinuous 1-homogeneous action function given, for all (s,m) € R x R%, by

ImPif s >0,
(14) A(s,m) =< 0 if s =0 and m =0,

400 otherwise.
We recall that m = sv is the momentum variable in the continuity equation d;s + V - (sv) =0
and |m|?/s = s|v|? is a kinetic energy, see Remark 1.4. As originally observed in [4], the function
A can be seen as the support function

(15) A(s,m)= sup {as+b-m}
(a,b)eK,

of the convex set Ko, where K, is defined for o« > 0 as

(16) K, = {(a,b)eRde : a+;|b|2§0}.

Taking advantage of the Benamou-Brenier formula (6), and given the previous JKO step s™, (8)
can be recast as

(17) Isnrlllll {Z % /o /Q A(si(x), m; (x)) dedt + TE(st_l)} ,

where the infimum runs over curves of measures ¢t — s, = (So¢,...,5n+) € A and momenta
tmy = (Mmoy,...,myy) € MHQ)NTL subject to N + 1 linear constraints
Osit+V-(myy) =0 inD,
(18) m;;-v=0 on 09, 1=0,...,N.
3i|t:0 = S?a
Note that only the initial endpoint s;—q = s" is prescribed for the curve (s¢);c[o,1- The terminal

endpoint is free and contributes to the objective functional (17) through the £(sy=1) term, and
the JKO minimizer will be retrieved as s"*! = s,—;. Note also that the minimizing curve
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(8¢)tef0,1) in (17)-(18) will automatically be a Wasserstein geodesic between the successive JKO

minimizers s;—g = s” and s;—; = s" 1.

As a first step towards a Lagrangian formulation, we rewrite the constraint (18) as a sup
problem with multipliers ¢; (¢, x)

N 1
(19) Sl;p{;/ﬂ¢i(1a')8i,1—/in%(ow)si —/0 -/S2(at¢i3i,t+v¢i'mi,t)}

_Jo if (18) holds,
T ] +oo else,

and minimizing (17) under the constraint (18) can thus be written inf sup{...}. Swapping
s,m d)

infsup = supinf as in [6] and using that the Legendre transform of ££A is the charateristic
function (convex indicator) of the convex set Ky, ., defined in (16),

O lf (a7b) € Kg'ui/,{,

Bi \* _ _
(;A> (a,b) = XKzui/m(a’b) - { 400 else,

the problem (17)-(18) finally becomes after a few elementary manipulations

N
i=0 7%
Here £ denotes the Legendre transform of £, := 7&. This dual problem can be reformulated as
nf {F(¢) +Gla) :  a=Ad}.

where

Ao = (atd)a Vo, _d)(l’ )) and q= ((1, b, C)

are functions with values in (R x RY x R)N+1,

N
Flg) =3 /Q 6:(0, )57

N 1
6l =3 | [ e + 2600

and Xg,, , stands again for the characteristic function of Ky, /.. Introducing a Lagrange
multiplier

o= (s,m,3)

for the constraint A¢ = g, finding a minimizer s"*! in the JKO scheme (8) is thus equivalent
to finding a saddle-point of the Lagrangian

(20) L(¢,q,0) = F(¢)+ G(q) +0-(Ap—q).
Here we slightly abuse the notations: s = (s¢)icjo,1] and m = (my).c[0,1] are time-depending
curves while 8; € A is independent of time. The scalar product in (20) is

N

U~(A¢q)—2(/01/g(si(3t¢iai)eri'(Véﬁibz‘))/

=0 Q

51,i(Ps(1,-) + Ci))'
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We stress that the free variable 3; is a priori independent of the curve (s;).e[,1], but that the
saddle-point will ultimately satisfy s;—; = 8;. In the Lagrangian (20), the original unknowns
(s, m, 1) become the Lagrange multipliers for the constraint ¢ = A¢, i.e., respectively

a=0i¢, b=Ve¢, and c=—-o(1,).

For some fixed regularization parameter r > 0, we introduce now the augmented Lagrangian
r
(21) Li($.q,0) = F(¢) + G(g) + o - (Ap — q) + ;[Ad — q|]*,

where the extra regularizing term is given by the L? norm

N 1
r 2ff§: 02 _p.|2 (1. 12
§||A¢7q” 9 v </0 /Q(|8t¢1 az| +|V¢), bz| )+/Q|¢,(1, )+Cz‘ )

Observe that being a saddle-point of (20) is equivalent to being a saddle-point of (21), see
for instance [22]. Thus in order to solve one step of the JKO scheme (8), it suffices to find a
saddle-point of the augmented Lagrangian L,..

2.1.2. Algorithm and discretization. The augmented Lagrangian algorithm ALG2 aims at finding
a saddle-point of L, and consists in a splitting scheme. Starting from (qbo, q°,0"), we generate
a sequence ((;5’“7 q", ") x>0 by induction as follows

Step 1: minimize with respect to ¢:
¢“4:m%m(ﬂ@+a“A¢+QM¢—wﬁy
Step 2: minimize with respect to gq:
gt = argmin (G(q) —of-q+ glAqb’““ - q\z) :

Step 3: maximize with respect to o, which amounts here to updating the multiplier by the
gradient ascent formula

ottt = b 1 r(Ap"T — g" ).

Since step 3 is a mere pointwise update we only describe in details the first two steps. In order to
keep the notations light we sometimes write s;(¢, &) = s; (), and likewise for any other variable
depending on time.

e The first step corresponds to solving N + 1 independent linear elliptic problems in time
and space, namely

A 2T =V ((sF, mF) — r(ak, b)) in (0,1) x ©
with the boundary conditions
ro 0, ) = sP(-) — sF(0,-) +rak(0, ) in Q,
P (QF (L) + (1)) = 3E () = sE 1) (ak (1) = k() g,
(rV(JS;H'l +mF — rbf) v=20 on 0N).

e The second step splits into two convex pointwise subproblems. The first one corresponds
to projections onto the parabolas Ky, /,:

1
(a1 b (¢, x) = Pk, . ((8@5“, Vot (t, ) + ;(sf,mf)(t, m)) , Vi=0,...,N.

(3
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This projection Py, , onto Ky, /. is explicitly given by (see [33])

(CY,,B), if (a>ﬂ) € KQ,ui/m

_ niB e
a— A, i) otherwise,

/K

PKQM/K(OQB) = {

where A is the largest real root of the cubic equation
Hi
(@ = N)(pi/k+A)* + - |B[* = 0.

The second subproblem should update ¢. To this end, we need to solve the pointwise
proximal problem: for each x € Q2

N
1
(22) () = argmin {; SoI0E (@) — Sah (@) el + E:<x,c>} 7

ceRN+1 i—0

where E*(x,-) is the Legendre transform of the energy density E,(x,-) = 7E(x,-) in its
second argument (E being implicitly defined as £(s) = [, E(x, s(x)) dx).
Notice that the energy functional £ only plays a role in the minimization with respect to the
internal ¢ variable, namely the second subproblem (22) in Step 2. In Section 3 we will try to
make this step explicit for our two particular applications.

In order to implement this algorithm in a computational setting we use P2 finite elements
in time and space for ¢, and P1 finite elements for o and q. The variables Vt,wqbfﬂ =
(6t¢f+17 V(ﬁf“) are understood as the projection onto P1 finite elements and the algorithm was
implemented using FreeFem++ [24]. The convergence of this algorithm is known in finite dimen-
sion [22], i.e., the iterates (¢>k, q",o") are guaranteed to converge to a saddle point (¢, q, o) as
k — oo. Once the saddle-point is reached, the output o = (s, m, 31) is a minimizer for the prob-
lem (17)-(18) and the solution of the JKO scheme (8) is simply recovered as s"*! = & = s|;—1.

Numerically, the Benamou-Brenier formula involves an additional time dimension to be effec-
tively discretized in each elementary JKO step, and this can be seen as a drawback. However
the successive JKO densities are close due to the small time step 7 — 0 (indeed W (s" "1, s") =
O(y/7) from the total square distance estimate (11)) and, in practice, only a very few inner
timesteps are needed.

2.1.3. Some properties of the approximate solution. As previously mentioned, the above La-
grangian framework can be practically implemented by simply projecting the (infinite dimen-
sional) problem onto P1/P2 finite elements. Provided that the iteration procedure (Steps 1 to 3
in Section 2.1.2) converges as k — oo, as guaranteed from [22], the saddle-point o = (s, m, 1)
satisfies by construction:

(i) (s;,m;) remains in the domain Dom(A) of the action functional A defined in (14);
(ii) the continuity equation J;s;¢ 4+ V - (m;;) = 0 holds with zero-flux boundary condition.
n+1

As a consequence of (i) the scheme preserves the positivity, i.e., s{'" > 0, whereas (ii) ensures

the mass conservation [, s/t = [, s

Moreover, the fully discrete ALG2-JKO scheme preserves by construction the gradient flow
structure, hence the scheme is automatically energy diminishing. Since the energy functional
(3) includes the xa term accounting for the saturation constraint > s; = 1, one can and should
include this convex indicator term in the discretized energy. This contraint is then passed on to
the proximal operator to be used in the implementation, see Section 3 for details. As a result

the saturation constraint is satisfied.
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2.2. Upstream mobility Finite Volume scheme. The ALG2-JKO scheme described in the
previous section will be compared to the widely used upstream mobility Finite Volume scheme [34,
7, 21]. As a first step, let us detail how Q is discretized.

2.2.1. The finite volume mesh. The domain (2 is assumed to be polygonal. Then following [20], an
admissible mesh consists in a triplet (‘Z, ¢, (mK)KeT). The elements K of ¥ are open polygonal
convex subsets of Q called control volumes. Their boundaries are made of elements o € & of
codimension 1 (edges if d = 2 or faces if d = 3). Let K, L be two distinct elements of T, then
K NL is either empty, or reduced to a point (a vertex), or there exists o € € denoted by o = K|L
such that K N L = @. In particular, two control volumes share at most one edge. We denote by
Cx = {0 ee | Uaeek T = 8K} the set of the edges associated to an element K € ¥, and by
Ny = {L € ¥ | there exists 0 = K|L € € } the set of the neighboring control volumes to K. We
also denote by

Gext = {CT S @ ‘ o C 39 }, eint = G\Gexty GmmK = Gint n @K, VK € ‘I

The last element (k) ;5 of the triplet corresponds to the so called cell-centers. To each control
volume K € %, we associate an element xx € {2 such that for all L € g, the straight line
(xk,xr) is orthogonal to the edge K|L. This implicitly requires that xx and xj are distinct,
and we denote by d, = |xx — x| for 0 = K|L the distance between the cell centers of the
neighboring control volumes K and L. For o € €x N €y, we denote by x, the projection of
i on the hyperplane containing o, and by d, = |xx — x,|. We also require that the vector
T — T is oriented in the same sense as the normal ng , to 0 € Eg outward w.r.t. K. We
refer to Figure 1 for an illustration of the notations used hereafter.

FIGURE 1. Here is an example of admissible mesh in the sense of [20]

Beyond cartesian grids, there are two classical ways to construct admissible meshes in the
above sense when d = 2. The first one consists in the classical Delaunay triangulation, the cell-
center xx of K € T being the center of the circumcircle of K. The second classical construction
consists in choosing the cell centers (xf) at first, and then to construct ¥ as the associated
Voronoi diagram.

In what follows, we denote by mg the d-dimensional Lebesgue measure of the control volume
K € %, while m, denotes the (d — 1)-dimensional Lebesgue measure of the edge o € €. We also
denote by a, = Zl—: the transmissivity of the edge o.

In order to simplify the presentation, we restrict our presentation to the case of uniform time
discretizations with time step 7 > 0. The extension to the case of time discretizations with
varying time steps does lead to any particular difficulty.
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2.2.2. Definition of the Finite Volume scheme. The Finite Volume scheme relies on the discretiza-
tion of the Euler-Lagrange equations (1) rather than on the minimizing movement scheme (8).
The main unknowns to the problems are located at the cell centers (Tx )y . They consist in
discrete saturations s} ;- =~ s;(xx,n7) and discrete pressures p; - =~ p;(Tx,n7). In what follows,

we denote by s = (SZK)ogiSN (resp. pi = (p' K)0< <N) and sk = (8% ) e
The first equation of the scheme is a straightforward consequence of (1a), i.e.,

(23a) Y stg=1  VKeT Vn>1

This motivates the introduction of the discrete counterpart Xz of X defined by
Xz={sz|skeAforall K €T},

so that (23a) amounts to requiring that s% belongs to X'z for all n (the nonnegativity of the
saturations will be established later on). The capillary pressure relations (1d) are discretized
into

(23b) P — Por = mi(SKk), Vie{l,...,N}, VK € T, ¥n > 1.

Integrating (1b) over the control volume K € ¥ (recall here that the porosity w was artificially
set to 1) and using Stokes’ formula, one gets the natural approximation

sz‘S

(23c) mK+Z S0l =0,  Vie{0,...,N}, VK € T, Vn > 1.

oeCk

Here, v') , is an approximation of fg v;(7y,nT) - Nk ,d7y, where v; is related to p; through to
Darcy law (1c). Thanks to the orthogonality condition on the mesh, the choice

K
(23d) Vg g = ag; (PP + Vi — P — ViL), Vo = K|L € &y,

3

is consistent — we use the shortened notation ¥; g = ¥;,(xx) —. In accordance with the
no-flux boundary conditions, we impose that

Vi'k.o =0, Vo € Cx N Coyi, Vn > 1.

It remains to define the approximate saturations si', for o € €;,;. We use here the very classical
upwind choice [34, 7, 21], i.e

+ .
87 ifol'y >0
(23e) st = ( %KL LK = Vo = K|L € €.
’ (s;‘ L) otherwise,
Note that even though the mapping (s%,p%) — sg = ((s" )0<i<n)ge@ t is discontinuous, the
quantity s7, v}y , depends in a continuous way of the main unknowns.

The scheme (25) amounts to a nonlinear system of equations to be solved a each time step.
This will be practically done thanks to Newton-Raphson method. But before, we establish some
properties of the FV scheme, namely the energy decay, the entropy control, the non-negativity
of the saturations, or the existence of a solution (s%,p%) to the scheme.
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2.2.3. Some properties of the approximate solution. The first key property of the FV scheme
that we point out is the non-negativity of the saturations:

si >0 Vie{0,...,N}, VK € T, Vn > 1.
In order to establish this estimate, it suffices to rewrite (23c) as

st D (ki) T o) T = (58n) T () | = sl

o€Cint, K
o=K|L

thanks to (23¢). In the previous expression, we used the convention a~ = max(0, —a) > 0.
Assume for contradiction that si i 1s negative, then so does the left-hand side, while the right-
hand side is nonnegative by induction. Together with (23a), this shows that

(24) sy € Xg, Vn > 1.
The scheme is mass conservative for the IV + 1 phases since
VikeotViL, =0 hence s vk, +s!,v,=0, for 0 = K|L.
Together with the no-flux boundary conditions, this shows that the mass is conserved along time:
(25) Z S{ MK = Z sZ}lmK: Z s%KmK, Yn>1, Vie{0,...,N}.
Kex Kex Kex

Then the discrete solution s% remains in the discrete counterpart As of A defined as the elements
sz of RY such that Y- co sixmr = Y gex 89 gmi foralli e {0,...,N}.
Multiplying the scheme (23c) by 7 (p? kT Y K) and summing over K € ¥ yields

N
D0 (shae —stg" ) (hae + i)

N
+TZ i Z a'O'SZO' (p;n,K + \I’i,K —pﬁL — \I/i,L)2 =0.
=0 Wi TEC; 1t

The second term in the above expression is clearly nonnegative. concerning the first term, one
can use the constraint (23a) to rewrite as

N N
n_ _ n—1 n _ n _ n—1 (n _n )
Si,k — 8k | Pi, kMK = Si,K — 8K Pix —Po,x) MK

=0 Ke¥ =1 Ke¥
>3 (R~ T(si ™)) mc,
Ke%

the last inequality being a consequence of the convexity of II. This establishes that the scheme
is energy diminishing: denoting by

N
E(sy) = Z (H(ST;(*) + ZSZK\IILK> mg, n >0,

Ke ¥ =0

one has

N
(26) E(sx) +7-Z I Z s}y PPk + Wik —pip — Vir) < E(si™), Vn > 1.
i=0 " 0ECEn
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The last a priori estimate we want to point out is the discrete counterpart of the flow in-
terchange estimate. It is obtained by multiplying (23c) by 7p;log(s} ) and by summing over
i€{0,...,N} and K € T, leading to

(27)
N N

Z I Z (sﬁK - sZ;(l ) log(szK)mK + TZ K Z R o (log(sZK) — log(sﬁL)) =0.
i=0  Ke% i=0  0ECiy

As already discussed in Remark 1.7 this corresponds to taking logs; as a test-function in the
weak formulation of the continuous PDEs. The first term of (27) can be estimated thanks to an
elementary convexity inequality

Z Hi Z ( ZK_siK )bg( Tr)mi > H(sk) — H(sE ), V> 1

Ke¥
with

ZmZ( 1)~ (IR mic, () = slog(s) — s +120.

=0 Ke%

Note that the entropy functional H is bounded on X'z. The second term of (27) can be estimated
as follows. First, the concavity of s — log(s) yields

S?,L (10g(5?71<) - log(S?,L)) < SZK - SZL < SZK (10g(5?71<) - log(S?,L)) ) o=KI|L,
so that the upwind choice (23¢) for s7, ensures that
oSy 07 i 5 (108(s7 1) —log(s}' ) > agv]' s o (] ke — Si'L), o=K|L.

Using the expression (23d) of v}’ , and the relation (23a) on the saturations, one gets that

N
Z Z Ao S; o Vi K o (log(sZK) — log(sZL)) > A+ B,
1=0 cECjpnt
where
N
A= 3 an(mlsi) = mlap) ol = sia),
1=1 oc€¢
o=KL
N N
B :Z Z o’ z K — \I’z L)( - 8 = Z Z S?,K Z aa(\pi,K - \I’i,L)'
i=0 E%TL i=0 KET LeNk

Recalling the definition (4) of the external potential and denoting by ¥; , = ¥;(x,), one has

Z ae(Psx — V1) + Z ae (Vi x — ¥ ) =0.

LeNk TECaxNEK
Since 0 < s < 1, this implies that
B > 7k|09||g|.
On the other hand, the assumption (2) on the capillary pressure potential ensures that
1 < 2
A>— S ap (m(si) —m(st)”, Vo=KL € Ey.

=1 0€Cins
oc=K|L
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Hence collecting the previous inequalities in (27) provides the following discrete L2 (H')-estimate
one the capillary pressures

g
z

(28) 7 ST ao (mils) —mi(s])® < C(1+ Mr).

Clearly, (28) is the discrete counterpart of the estimate (13) obtained thanks to the flow inter-
change technique. The derivation of a discrete L2 .(H') estimate on the phase pressures from (28)
and (26) requires one additional assumption on the capillary pressure functions (m;);;,. More
precisely, we assume that o

7]
(29) m; only depends on s;: D5, mi(s*) =01if i # ;5.
Sj
Since II is convex, the functions 7; are increasing. Assumption (29) is needed to establish that,
at least for fine enough grids, there holds

N
25302a>0, Vn > 1, Vo € €y,
=0

for some uniform a. Thanks to this estimate, one can follow the lines of [11, Proposition 3.4 &
Corollary 3.5] (see also [13]) to derive the estimate
M N
(30) S>> an (v —pin)’ < OO+ Mr).
0

=1 o€Cin
oc=K]|L

n=1

The phase pressures being defined up to an additive constant (recall that they are related to
Kantorovich potentials), one has to fix this degree of freedom. This can be done by enforcing

z po kMK =0, Yn > 1.
Ke%

Based on the a priori estimates (24) and (30), we can make use of a topological degree
argument (see for instance [16]) to claim that there exists (at least) one solution to the scheme.
Moreover, assuming some classical regularity on the mesh T (see for instance [1]), one can prove
the piecewise constant approximate solutions converge towards a weak solution when the size
of the mesh ¥ and the time step 7 tend to 0. This convergence results together with the
properties (24)—(30) as well as the wide popularity of this scheme in the engineering community
makes this scheme a reference for solving (1). In the next section, we show that the ALG2-
JKO scheme presented in Section 2.1 produces very similar results: same qualitative results,
conservation of the mass of each phase and preservation of the positivity.

3. NUMERICAL EXPERIMENTS

In this section, we compare the numerical results produced by the ALG2-JKO scheme pre-
sented in Section 2.1 with the upstream mobility Finite Volume scheme of Section 2.2. In the
sequel the regularization parameter r introduced in the augmented Lagrangian formulation (21)
is fixed to r = 1 for simplicity, which gives satisfactory numerical results. The case of a three
phase flow (typically water, oil and gas) is presented in Section 3.2, whereas a two-phase flow
is simulated in Section 3.1. In both cases, we do not have analytical solutions at hand and the
results are compared thanks to snapshots.

Note the both time discretizations are of order 1. The extension to order two methods is a
challenging task. Concerning the ALG2-JKO scheme, one possibility could be to use the order 2
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approximation based on the midpoint rule proposed in [26], but there is no rigorous foundation to
this work up to now as far as we know. An alternative approach would be to use the variational
BDF2 approach proposed in [30]. But the variational problem to be solved at each time step is no
longer convex-concave, so that its practical resolution becomes more involving. Concerning the
finite volume scheme, there is (up to our knowledge) no time integrator of order 2 that ensures
the decay of a general energy. Going to higher order time discretizations yields also difficulties
concerning the preservation of the positivity. This explains why the backward Euler scheme is
very popular in the context of the simulation of multiphase porous media flows.

3.1. Two-phase flow with Brooks-Corey capillarity. As a first example we consider a two-
phase flow, where water (sg) and oil (s1) are competing within the background porous medium.
For the capillary pressure, we choose the very classical Brooks-Corey (or Leverett) model

(31) p1—po=mi(s1) =a(l—s) Y2

We refer to [3] for an overview of the classical capillary pressure relation for two-phase flows.
As in Section 1.1, the corresponding energy reads explicitly

8(80,81)2/\I/0$0+/\1’181—20/(1—31)1/24—/XA(SQ,Sl).
Q Q Q Q

As already mentioned, only the second subproblem (22) in step 2 of the ALG2-JKO algorithm
depends on the choice of the energy functional. For the above particular case, this reads: for
each & € Q and setting € := —¢" (1, ) + 5¥(x), solve

1
c"(x) = argmin {|c —¢? + Ei(=x, c)} ,
cEeR3 2

where E*(x,-) is the Legendre transform of F.(x,-) defined by
E-(x,co,c1) = 700 (x)co + 701 (2)er — 27a(l — )% + xalco, 1) for all ¢o,¢; € R.
This minimization problem is equivalent to computing
ck+1(:v) = ProxE;(my,)(E),

where the proximal operator Prox; of a given convex, lower semicontinuous function f : RN+
R U {+0o0} is defined by

1

Prox;(y) == argmin{|yy|2+f(y)}, Vg e RV
yERN+1 2

Thanks to Moreau’s identity

(32) Proxs«(y) = y — Prox;(y) vy € RV

it suffices to compute Proxg, in order to determine Proxg:, and we never actually compute the
Legendre transform EJ(z,-). Computing the proximal operator ¢**1(x) = Proxp: (s, (€) thus
amounts to evaluating

(ch+H (@), ¢ (@) = (20,21) — Prox, (. (€0, 71):

Finally, (¢, ¢1) := Proxg, (a,.)(Co, 1) is computed by solving

)

1 1

¢ = argmin {lcl +2o = 7W(@) — 1 + Jler — o1 + 70 ()] — 2ra(l - c1>1/2}

0<ei<1 2 2

and then setting ¢ = 1 — ¢;. More explicitly, ¢; is the positive part of the root on (—oo,1) of
Ta

2e =+ (@) +20 ~ To(@) ~ 1+ Ty = 0.
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To conclude, we set (cp™ (), c} ™ (x)) = (Co — é,1 — &1).

On Figure 3, we compare the numerical solutions of problem (1) with Brooks-Corey cap-
illarity (31) obtained thanks to the ALG2-JKO scheme and to the upstream mobility finite
volume scheme. Simulations with the ALG2-JKO scheme are carried using a structured grid
with 5000 triangles and 2601 vertices in space and a single inner time step, and with 200 JKO
steps (7 = 0.05). Simulations with the upstream mobility finite volume scheme are performed
on the corresponding Cartesian grid with 2500 squares. The time step 7 appearing in (23c) can
be also set to 0.05 here since Newton’s method converges rather easily in this test case.

Oil saturation, ALG2-JKO scheme

: ! 1 — Brooks-Corey capillary pressure
. 0.9 16
. 0.8 14
07
. 06
05
-0. 0.4
-0. 03
0. 0.2
-0. 0.1
-0. 0

-0.5 0 0.5 0.2 0.4 0.6 0.8 1
oil saturation

capillary pressure
S ©

o N A O ®

o

FIGURE 2. Two-phase flow: initial oil saturation profile (left) and Brooks-Corey
capillary pressure function (31) with o =1 (right).

As expected, the results produced by the two schemes are very similar. The dense phase (the
water) is instantaneously diffused in the whole domain because of the singularity of m; near 1.
When time goes, oil slowly moves to the top because of buoyancy.

3.2. Three-phase flow with quadratic capillary potential. In the second test case, we
consider the case of a three-phase flow where water (sp), oil (s1), and gas (s2) are in competition
within the porous medium. Here we assume that the capillary pressure functions 7; and mo are
linear,

p1—po =mi(s1) = ais and P2 — po = m2(s2) = azs2.
The corresponding capillary potential IT is then given by

[(s) = SHsD) + S (s3).

The Assumption (2) and (29) are fulfilled, so that we are in the theoretical framework of our
statements, i.e., convergence of the minimizing movement scheme and of the finite volume scheme.
However, the problem is difficult to simulate because of the rather large ratios on the viscosities.
Indeed, the phase 0 represents water, the phase 1 corresponds to oil and the phase 2 corresponds
to gas, and we set

po=1, w1 =50, us=0.1, and po=1 p;1 =087, ps=0.1.
The resulting energy in the JKO scheme (8) is given by

2
o o
E(so, $1,52) Z:Z/\I}isi—i—?l/si‘f'?z/S%‘i‘/XA(S[),Sl,SQ),
/e Q Q Q

and we denote accordingly, for € Q and ¢ = (cg, 1, c2) € R?

2
TQ TQ
E, (x,c) := ZT\I&(:C)Cz + 710% + 7203 + xal(c).
=0
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Ficure 3. Oil saturation for the two-phase flow problem with Brooks-Corey
capillary pressure function (31), @ = 1: numerical solution provided by the
ALG2-JKO scheme (left) and difference between the ALG2-JKO approximate
solution and the upstream mobility finite volume approximation solution (right).
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Setting again € = —¢" " (1,2) + 5%(x) and taking advantage of Moreau’s identity (32), the
second subproblem (22) of step 2 is equivalent to, for all € RY,

ckrl (x) =¢— PI‘OXET(w,~) (©).

Evaluating the proximal operator ¢ := Proxg_(z,.)(€) is equivalent to solving

~ o~ . 1 _ Q4
(33) (é1,62) = argmin { Z (262' — G+ T (x)|* + 7203)

0<ei<1,0<er+ea<t | 5
1 = 2
+§|C1—|—02—|—CQ—T\IIO(ZIZ)—1| s

with ég = 1 — ¢, — é2. The solution (u1,usz) of the unconstrained version of (33) is explicitly
given by

(2 +Taz)y — 72 (2+Ta1)y2 —n
2+ 7a1)(2+ Tan) — 1 2+7a1)2+Tag) — 17
where v; :=¢; — 7V, (x) — ¢y + 7V (x) + 1. If (u1,us) € A* then (é1,¢2) = (u1,uz) is the true
solution of (33), and ¢y = 1 — u3 — uz. Otherwise, one should seek for the minimizer of (33) on
the boundary OA™ = {57 =0,0 < 55 <1} U{0 < s1 < 1,89 =0} U {s1 + s2 = 1}. This leads to
three easy minimization problems that can be again solved explicitly, and we omit the details.
To conclude, the update of ¢! (x) is given by c**!(x) =¢ — ¢.

Figures 5—7 show the evolution of the three phases with quadratic capillarity potential. Again,
the simulation with the ALG2-JKO scheme is carried out using a 50 x 50 discretization in space,
with a single inner time step. There are 200 JKO steps (7 = 0.05). The convergence of the
augmented Lagrangian iterative method is rather slow: it took around 10 hours on a laptop to
produce the results with FreeFem++. But because of the large viscosity ratio, Newton’s method
had severe difficulties to converge for the upstream mobility scheme. A very small time step
(r = 107*) was needed, so that more that 2 days of computation on a cluster were needed to
produce the results with Matlab. Concerning the upstream mobility finite volume scheme, we
run the scheme on an unstructured Delaunday triangulation made of 5645 triangles. Once again,
both methods produce similar results, as highlighted on the figures 5-7 below.

and up =

Uy =

Oil saturation, ALG2-JKO scheme Gas saturation, ALG2-JKO scheme
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FIGURE 4. Initial oil (left), water (center) and gas (right) saturation profiles.

Due to the large viscosity ratios, two distinct time scale appear in the numerical results. Since
water and gas have smaller mobilities, they move much faster than oil. This quick phenomenon
is not well captured by the ALG2-JKO scheme. The interface between oil and gas is already
almost horizontal at ¢ = 0.1. This horizontal interface is captured by the finite volume scheme
but not by the ALG2-JKO scheme that encounters difficulties to converge for the early time
steps. The finite volume scheme also has difficulties to converge, enforcing us to consider very
small time steps. Oil is much less mobile and its interface with the two other phases remains
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almost vertical at that time. Then oil evolves slowly towards its equilibrium state, that consists
in a horizontal layer trapped between gas above and water below. This long time equilibrium is
not yet reached for ¢t = 10.

3.3. Energy dissipation. As already highlighted, both schemes dissipate the energy along time.
The goal of this test case is to compare the energy dissipation. To this end, we consider a test
case proposed in [9]. We consider a two-phase flow with oil (i = 1) and water (i = 0) with
p1 =087, po =1, u1 = 10 and py = 1, while Kk = 1 and w = 1. The capillary pressure law is
given by
S1
p1—po=mi(s1) = DR

so that the energy is defined by

5(81)=/Q<<2)2+81(Po—m)g'w)-

We consider the initial data s(z) = e~ 4/,

under the constraints s° € [0, 1] and

(34) / s7° = / s9.
Q Q
It is therefore given by

(35) either s7° € {0,1} or m1(s1) = (p1 — po)g - = + 7,

the constant v being fixed thanks to (34). Similar calculations can be performed in the discrete
settings, both for the ALG2-JKO scheme and the finite volume scheme. Then one computes
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FIGURE 8. Left: The steady state (35). Right: The relative energies computed
with the ALG2-JKO scheme (blue) and the finite volume scheme (red).

for both scheme the relative energy £(s1) — £(s5°) > 0, that we plot as a function of time on
Figure 8. The convergence towards the equilibrium appears to be exponential in both cases.

4. CONCLUSION

We proposed to apply the ALG2-JKO scheme of [6] to simulate multiphase porous media
flows. The results have been compared to the widely used upstream mobility finite volume
scheme. The ALG2-JKO scheme appears to be robust w.r.t. the capillary pressure function
and overall w.r.t. the viscosity ratios. The method is parameter free (the only parameter r
has a rather low influence and is chosen equal to 1 in the computations) and is unconditionally
converging whatever the time step. This is a great advantage when compared to the Newton
method that may require very small time steps in presence of large viscosity ratios. Moreover,
the ALG2-JKO scheme preserves the positivity of the saturations, the constraint on the sum



24 C. CANCES, T. O. GALLOUET, M. LABORDE, AND L. MONSAINGEON

of the saturations, and it is locally conservative. Its main drawback concerns the restriction to
linear mobility function so that formulas (15)—(16) hold (this can probably be extended to the
non-physical case of concave mobilities [17] but we did not push into this direction). Finally, let
us stress that the code depends only at stage (22) of the energy. Therefore, the extension of the
ALG2-JKO approach to multiphase models with different energies (like for instance degenerate
Cahn-Hilliard models [32, 12]) is not demanding once the code is written. A natural extension
to this work would be to add source terms corresponding for instance to production wells. This
would for instance require to adapt the material of [23] to our context.

Acknowledgements. CC was supported by the French National Research Agency (ANR)
through grant ANR-13-JS01-0007-01 (project GEOPOR) and ANR-11-LABX0007-01 (Labex
CEMPI). LM was partially supported by the Portuguese Science Fundation through FCT grant
PTDC/MAT-STA/0975/2014. TOG was partially supported by the Fonds de la Recherche Sci-
entifique - FNRS under Grant MIS F.4539.16.

REFERENCES

[1] A. Ait Hammou Oulhaj. Numerical analysis of a finite volume scheme for a seawater intrusion model with
cross-diffusion in an unconfined aquifer. Numer. Methods Partial Differential Equations, 34(3):857-880, 2018.

[2] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows: in metric spaces and in the space of
probability measures. Springer Science & Business Media, 2008.

[3] J. Bear and Y. Bachmat. Introduction to modeling of transport phenomena in porous media. Kluwer Academic
Publishers, Dordrecht, The Netherlands, 1990.

[4] J.-D. Benamou and Y. Brenier. A computational fluid mechanics solution to the Monge-Kantorovich mass
transfer problem. Numer. Math., 84(3):375-393, 2000.

[5] J.-D. Benamou, Y. Brenier, and K. Guittet. Numerical analysis of a multi-phasic mass transport problem.
In Recent advances in the theory and applications of mass transport, volume 353 of Contemp. Math., pages
1-17. Amer. Math. Soc., Providence, RI, 2004.

[6] J.-D. Benamou, G. Carlier, and M. Laborde. An augmented Lagrangian approach to Wasserstein gradient
flows and applications. In Gradient flows: from theory to application, volume 54 of ESAIM Proc. Surveys,
pages 1-17. EDP Sci., Les Ulis, 2016.

[7] Y. Brenier and J. Jaffré. Upstream differencing for multiphase flow in reservoir simulation. SIAM J. Numer.
Anal., 28(3):685-696, 1991.

[8] Y. Brenier and M. Puel. Optimal multiphase transportation with prescribed momentum. ESAIM Control
Optim. Cale. Var., 8:287-343 (electronic), 2002.

[9] C. Cances. Energy stable numerical methods for porous media flow type problems. HAL: hal-01719502,
February 2018.

[10] C. Cances, T. O. Gallouét, and L. Monsaingeon. The gradient flow structure of immiscible incompressible
two-phase flows in porous media. C. R. Acad. Sci. Paris Sér. I Math., 353:985-989, 2015.

[11] C. Cances, T. O. Gallouét, and L. Monsaingeon. Incompressible immiscible multiphase flows in porous media:
a variational approach. Anal. PDE, 10(8):1845-1876, 2017.

[12] C. Cances, D. Matthes, and F. Nabet. A two-phase two-fluxes degenerate Cahn-Hilliard model as constrained
Wasserstein gradient flow. HAL: hal-01665338, December 2017.

[13] C. Cances and F. Nabet. Finite volume approximation of a degenerate immiscible two-phase flow model of
Cahn-Hilliard type. In C. Canceés and P. Omnes, editors, Finite Volumes for Complexr Applications VIII
- Methods and Theoretical Aspects : FVCA 8, Lille, France, June 2017, number 199 in Proceedings in
Mathematics and Statistics, pages 431-438, Cham, 2017. Springer International Publishing.

[14] H. Darcy. Les fontaines publiques de la ville de Dijon. Dalmont, Paris, 1856.

[15] E. De Giorgi. New problems on minimizing movements. In Boundary value problems for partial differential
equations and applications, volume 29 of RMA Res. Notes Appl. Math., pages 81-98. Masson, Paris, 1993.

[16] K. Deimling. Nonlinear functional analysis. Springer-Verlag, Berlin, 1985.

[17] J. Dolbeault, B. Nazaret, and G. Savaré. A new class of transport distances between measures. Calc. Var.
Partial Differential Equations, 34(2):193-231, 2009.

[18] J. Droniou, R. Eymard, T. Gallouét, C. Guichard, and R. Herbin. The gradient discretisation method .
A framework for the discretisation and numerical analysis of linear and non-linear elliptic and parabolic
problems, November 2016.



SIMULATION OF MULTIPHASE POROUS MEDIA FLOWS 25

[19] M. Erbar, K. Kuwada, and K.-T. Sturm. On the equivalence of the entropic curvature-dimension condition
and Bochner’s inequality on metric measure spaces. Invent. Math., 201(3):993-1071, 2015.

[20] R. Eymard, T. Gallouét, and R. Herbin. Finite volume methods. Ciarlet, P. G. (ed.) et al., in Handbook of
numerical analysis. North-Holland, Amsterdam, pp. 713-1020, 2000.

[21] R. Eymard, R. Herbin, and A. Michel. Mathematical study of a petroleum-engineering scheme. M2AN Math.
Model. Numer. Anal., 37(6):937-972, 2003.

[22] Michel Fortin and Roland Glowinski. Augmented Lagrangian methods, volume 15 of Studies in Mathematics
and its Applications. North-Holland Publishing Co., Amsterdam, 1983. Applications to the numerical solution
of boundary value problems, Translated from the French by B. Hunt and D. C. Spicer.

[23] T. Gallouét, M. Laborde, and L. Monsaingeon. An unbalanced Optimal Transport splitting scheme for general
advection-reaction-diffusion problems. HAL: hal-01508911, 2017.

[24] F. Hecht. New development in FreeFEM++. J. Numer. Math., 20(3-4):251-265, 2012.

[25] R. Jordan, D. Kinderlehrer, and F. Otto. The variational formulation of the Fokker-Planck equation. STAM
J. Math. Anal., 29(1):1-17, 1998.

[26] G. Legendre and G. Turinici. Second-order in time schemes for gradient flows in Wasserstein and geodesic
metric spaces. C. R. Acad. Sci. Paris Sér. I Math., 353(3):345-353, 2017.

[27] S. Lisini. Nonlinear diffusion equations with variable coefficients as gradient flows in Wasserstein spaces.
ESAIM Control Optim. Calc. Var., 15(3):712-740, 2009.

[28] Christian Loeschcke. On the relazation of a variational principle for the motion of a vortex sheet in perfect
fluid. PhD thesis, Univ. Bonn, 2012.

[29] D. Matthes, R. J. McCann, and G. Savaré. A family of nonlinear fourth order equations of gradient flow
type. Comm. Partial Differential Equations, 34(11):1352-1397, 2009.

[30] D. Matthes and S. Plazotta. A Variational Formulation of the BDF2 Method for Metric Gradient Flows.
arXiv:1711.02935, 2017.

[31] R. J. McCann. A convexity principle for interacting gases. Adv. Math., 128(1):153-179, 1997.

[32] F. Otto and W. E. Thermodynamically driven incompressible fluid mixtures. J. Chem. Phys., 107(23):10177—
10184, 1997.

[33] N. Papadakis, G. Peyré, and E. Oudet. Optimal transport with proximal splitting. SIAM J. Imaging Sci.,
7(1):212-238, 2014.

[34] D. W Peaceman. Fundamentals of numerical reservoir simulation, volume 6 of Developments in Petroleum
Science. Elsevier, 1977.

[35] F. Santambrogio. Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Mod-
eling. Progress in Nonlinear Differential Equations and Their Applications 87. Birkhduser Basel, 1 edition,
2015.

[36] F. Santambrogio. {Euclidean, metric, and Wasserstein} gradient flows: an overview. Bulletin of Mathematical
Sciences, 7(1):87-154, 2017.

[37] C. Villani. Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2009. Old and new.

CLEMENT CANCES: INRIA, UNIV. LiLLE, CNRS, UMR 8524 - LABORATOIRE PAUL PAINLEVE, F-59000 LILLE
(clement.cances@inria.fr)

THOMAS GALLOUET: INRIA, PROJECT TEAM MOKAPLAN AND MATHEMATICS DEPARTMENT, UNIVERSITE DE
LIEGE, BELCGIUM, (thomas.gallouet@inria.fr)

MAXIME LABORDE: DEPARTMENT OF MATHEMATICS AND STATISTICS, MCGILL UNIVERSITY, MONTREAL, CANADA
(maxime.laborde@mcgill.ca)

LEONARD MONSAINGEON: IECL UNIVERSITE DE LORRAINE, NANCY, FRANCE & GFM UNIVERSIDADE DE
LisBoa, LisBON, PORTUGAL (leonard.monsaingeon@univ-lorraine.fr)






2.2. Wasserstein Gradient flows 145

2.2.2 Variational finite volume scheme

Articles:

e A variational finite volume scheme for Wasserstein gradient flows.  Nu-
merische Mathematik, Springer Verlag, 146 (3), pp 437 - 480 (2020). https:
//hal.science/hal-02189050. C.Cances, Gallouét T.O., Todeschi. G

e From geodesic extrapolation to a variational BDF2 scheme for Wasserstein
gradient flows. Under minor revision for Mathematics of Computations (2023)
https://hal.science/hal-03790981 Gallouét T.O., Natale A. et Tode-
schi. G

Collaborators: The first paper was done in collaboration with Clément Cances and
Gabriele Todeschi. It was the starting point of Gabriele Todeschi’s PhD Thesis: the
goal was to build variational numerical finite volume scheme. The second paper is
done with A. Natale and G. Todeschi. It is a follow up of G. Todeschi’s PhD The-
sis where we aim to build second order in time numerical scheme for Wasserstein
Gradient flows.

Main contributions:

e We used a first optimize than discretize approach in order to built, for Wasser-
stein gradient flows, a finite volume scheme which is exactly the Euler-
Lagrange condition of a discretized JKO scheme.

e We prove the convergence of this scheme under some hypothesis on the energy.

e We implemented this scheme for a wider class of energy/system of PDE and
gave numerical evidence of convergence.

e In the second work we proposed a second order in time variational finite vol-
ume scheme. To do this we had to modify the JKO step of the previous paper.

The second paper has already been included in Section 2.1 since it also contains the
work on Wasserstein extrapolation.

Research directions: With G. Todeschi and A. Natale we pursue our investigations
into higher order variational numerical scheme for Wassertein gradient flows. Our
main focus is now to build a second order in time scheme based on the metric extrap-
olation of Wasserstein geodesics, see Section 2.1 for more details on this notion.



https://hal.science/hal-02189050
https://hal.science/hal-02189050
https://hal.science/hal-03790981

A VARIATIONAL FINITE VOLUME SCHEME FOR WASSERSTEIN
GRADIENT FLOWS

CLEMENT CANCES, THOMAS O. GALLOUET, AND GABRIELE TODESCHI

ABsTrRACT. We propose a variational finite volume scheme to approximate the solutions to
Wasserstein gradient flows. The time discretization is based on an implicit linearization of the
Wasserstein distance expressed thanks to Benamou-Brenier formula, whereas space discretization
relies on upstream mobility two-point flux approximation finite volumes. The scheme is based
on a first discretize then optimize approach in order to preserve the variational structure of the
continuous model at the discrete level. It can be applied to a wide range of energies, guarantees
non-negativity of the discrete solutions as well as decay of the energy. We show that the scheme
admits a unique solution whatever the convex energy involved in the continuous problem, and
we prove its convergence in the case of the linear Fokker-Planck equation with positive initial
density. Numerical illustrations show that it is first order accurate in both time and space, and
robust with respect to both the energy and the initial profile.

1. A STRATEGY TO APPROXIMATE WASSERSTEIN GRADIENT FLOWS

1.1. Generalities about Wasserstein gradient flows. Given a convex and bounded open subset
Q of R, a strictly convex and proper energy functional & : L'(;R,) — [0, +oc], and given an
initial density p° € L'(£;R,) with finite energy, i.e. such that £(p°) < 400, we want to solve
problems of the form:

Do~V (o) =0 in Qr=Qx (0,7),
(1) QV‘;—‘Z[Q] n=0 on Xp =090 x (0,7),
Q(': 0) = pO in 2.

Equation (1) expresses the continuity equation for a time evolving density p, starting from the
initial condition p°, convected by the velocity field —V%[Q]. The mixed boundary condition the
system is subjected to represents a no flux condition across the boundary of the domain for the
mass: the total mass is therefore preserved.

It is now well understood since the pioneering works of Otto [34, 52, 53] that equations of the
form of (1) can be interpreted as the gradient flow in the Wasserstein space w.r.t. the energy
€ [2]. A gradient flow is an evolution stemming from an initial condition and evolving at each
time following the steepest decreasing direction of a prescribed functional. Consider the space
P(Q) of nonnegative measures defined on the bounded and convex domain 2 with prescribed total
mass that are absolutely continuous w.r.t. the Lebesgue measure (hence P(Q) C L'(Q;R,)). The
Wasserstein distance Wo between two densities p, u € P(Q2) is the cost to transport one into the
other in an optimal way with respect to the cost given by the squared euclidean distance, namely
the optimization problem

(2) W2(p,u) = min // ly — @ Pdy (. y),
YT (1) J JaxQ
1
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with the set T'(p, 1) of admissible transport plans given by
L(p,p) = {v EPQx 0y =py?= u}7

where !, 2 denote the first and second marginal measure, respectively.
A typical example of problem entering the framework of (1) is the linear Fokker-Planck equation

(3) do=2A00+V-(eVV) inQr,

complemented with no-flux boundary conditions and an initial condition. In (3), V € W1>(Q)
denotes a Lipschitz continuous exterior potential. In this case, the energy functional is

(4) &) = [ ptox Ly = p+ eV lda,

The potential V' is defined up to an additive constant, which can be adjusted so that the densities
e~V and p° have the same mass. Beside this simple example studied for instance in [34, 10],
many problems have been proven to exhibit the same variational structure. Porous media flows
[63, 38, 15], magnetic fluids [52], superconductivity [4, 3], crowd motions [47], aggregation processes
in biology [22, 9], semiconductor devices modelling [36], or multiphase mixtures [18, 33] are just few
examples of problems that can be represented as gradient flows in the Wasserstein space. Designing
efficient numerical schemes for approximating their solutions is therefore a major issue and our
leading motivation.

1.2. JKO semi-discretization. An intriguing question is how to solve numerically a gradient flow.
Problem (1) can of course be directly discretized and solved using one of the many tools available
nowadays for the numerical approximation of partial differential equations. The development of
energy diminishing numerical methods based on classical ODE solvers for the march in time has
been the purpose of many contributions in the recent past, see for instance [8, 16, 17, 13, 56, 51, 19].
Nevertheless, the aforementioned methods disregard the fact that the trajectory aims at optimizing
the energy decay, in opposition to methods based on minimizing movement scheme (often called
JKO scheme after [34]). This scheme can be thought as a generalization to the space P(£2) (the
mass being defined by the initial data p°) equipped with the metric W5 of the backward Euler
scheme and writes:

(5) {/ﬁ =, N

py € argmin, o-W3(p, pp~") + E(p).

The parameter 7 is the time discretization step. Scheme (5) generates a sequence of measures
(p2),;>1- Using this sequence it is possible to construct a time dependent measure by gluing them
together in a piecewise constant (in time) fashion: p,(t) = p2, for t € (1"~ = (n — 1)7,t" = n7].
Under suitable assumptions on the functional £, it is possible to prove the uniform convergence in
time of this measure to weak solutions g of (1) (see for instance [2] or [55]).

Lagrangian numerical methods appear to be very natural (especially in dimension 1) to approx-
imate the Wasserstein distance and thus the solution to (5). This was already noticed in [37], and
motivated numerous contributions, see for instance [45, 12, 46, 35, 23, 20, 39]. In our approach, we
rather consider an Eulerian method based on Finite Volumes for the space discretization. The link
between monotone Finite Volumes and optimal transportation was simultaneously highlighted by
Mielke [48] and Maas [42, 30, 25, 43, 31]. But these works only focuses on the space discretization,
whereas we are interested in the fully discrete setting. Moreover, the approximation based on up-
stream mobility we propose in Section 2.3 does not enter their framework. Last but not least, let us
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mention the so-called ALG2-JKO scheme [7, 14] where the optimization problem (5) is discretized
and then solved thanks to an augmented Lagrangian iterative method. Our approach is close to
the one of [7], with the goal to obtain a faster numerical solver.

Thanks to formal calculations, let us highlight the connection of the minimization problem in-
volved at each step of (5) with a system coupling a forward in time conservation law with a backward
in time Hamilton-Jacobi (HJ) equation. The problem can be rewritten thanks to Benamou-Brenier
dynamic formulation of optimal transport [6] as

(6) inf — / / plv|*dzdt + E(p(t")),
psv 2 tn—1
where the density and velocity curves satisfy weakly
Op+V-(pv) =0 inQx (t""1 "),
(7) pv-n =0 on 90 x ("~ t"),
p(t=1) = pr—t in Q.
The next value p” is chosen equal to p(t™) for the optimal p in (6)—(7). Using the momentum

m = pv instead of v as a variable, and incorporating the constraint (7) in (6) yields the saddle-
point problem

;nf sup/ / [m d dt—l—/ / (p0:d + m - Vo)dadt
m.o tn—1 tn—1
+ [ 6 = om)plemIde + E(pl).
Q

We will refer to (8) as the primal problem. The dual problem is obtained by exchanging inf and
sup in (8). Strong duality can be proven and the problem hence does not change. Optimizing first
w.r.t. m leads to m = —pV ¢, so that the dual problem writes

. " 1 n— T — n n n
©)  swpinf [ @0 = 5iveRimmat + [ o = op(en e + E(e).

Because of the first term in (9), the infimum is equal to —oco unless —9;¢ + 1|V¢|> < 0 a.e. in
Q x (t"~1, "), with equality p-almost everywhere since p > 0. Moreover, optimizing w.r.t. p(t")
provides that ¢(t") < %[p(t")] with equality p(t")-almost everywhere. Hence the dual problem
can be rewritten as

(10) sup [ o e+ int [e'(p(t"))— / ¢<t">p<t">dw]7

¢(t" 1

subject to the constraints

~0ip+3|Ve> <0 in Qx ("1,
(11) o(t") < [pt™)]  inQ,
o(t) = Elptm)]  p(t") ace.
On the one hand, the monotonicity of the backward HJ equation —9;¢+ £|V¢|*> = f with respect
to its right-hand side f < 0 implies that given ¢(¢™), the solution (which exists) of 76t¢+% IVo|? =0
gives a bigger value at ¢(t"~!) and thus a better competitor for (10). On the other hand, in
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order to saturate the final time constraints we use the monotonicity of the backward HJ equation
—0i + $|V¢|> = f with respect to its final time ¢(¢"). Indeed let (p, ¢) be a saddle point of (9)
and ¢ be the solution of —9,p + £|Vp|? = —0id + L|Vo|* with o(t") = %[ﬁ(t")] > ¢(t"). In
particular (11) gives (") = ¢(t") p(t™)-almost everywhere and the monotonicity of HJ implies
e(t"71) > ¢(¢t"~1). All together this inequalities yields

[ [0 5i9elIpdadt+ [ (ot )ort = pmptelde + (o)
tn—=1.JQ Q

’ 5 L 712 7, Jan—1\ n—1 T/n\ =(1n —/n
z AH/Q(M_ 5IVel )pdmdt+/ﬂ[¢(t )pr Y — G(t™)p(tM)]de + E(p(E™))

—sw [ [ @0~ jivoRimmat [ o)t < oot a + £lp(en)

Bearing in mind the optimality of ¢, this last inequality is then an equality and the strong duality
implies that (p, ) is also a saddle point of (9). At the end of the day, the primal-dual optimality
conditions of problem (5) finally amounts to the mean field game

8t¢ - %|v¢|2 = Oa . n—1 4n : p(tnil) = pfil’ i
12 Q x ("1, "), with Q.
(12) {atp—v«pw) g, AT, {¢<t”> = s,

The optimal p? of (5) is then equal to p(t"). The no-flux boundary condition reduces to V¢p-n =0
on 9Q x ("1 ).

The approximation of the system (12) is a natural strategy to approximate the solution to (1).
This approach was for instance at the basis of the works [7, 21]. These methods require a sub-time
stepping to solve system (12) on each interval (#"~1,t"), yielding a possibly important computa-
tional cost. The avoidance of this sub-time stepping is the main motivation of the time discretization
We propose now.

1.3. Implicit linearization of the Wasserstein distance and LJKO scheme. Let us intro-
duce in the semi-discrete in time setting the time discretization to be used in the fully discrete
setting later on. The following ansatz is at the basis of our approach: when 7 is small, p7 is close to
p~1. Then owing to [57, Section 7.6] (see also [54]), the Wasserstein distance between two densities
p and p of P() is close to some weighted H ! distance, namely

(13) o= pllg;r = Walp, ) + o(Walp, ), Vo, p € P(Q).

In the above formula, we denoted by
1/2
) Wl = {suw [ node |l <1}, with ol = ( [ ovelae)
]

so that [|p— pfl g1 = |9l 72 with % solution to
p

(15) {puv(pr)O in Q,

Vi -n=0 on 0f).
Indeed, in view of (14)—(15), there holds

[0-nede == [ V- (Vv)pde = [ pvu-Vode < [0]4 el
Q Q Q
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with equality if ¢ = ¢/||¢|| 4. Equation (15) can be thought as a linearization of the Monge-
Ampeére equation. !

In view of (13), a natural idea is to replace the Wasserstein distance by the weighted H;l norm
in (5), leading to what we call the implicitly linearized JKO (or LJKO) scheme:

1 12
(16) pF € argming lo =7z T € n =1

The choice of an implicit weight p in (16) appears to be particularly important when {p?~! = 0}
has a non-empty interior set, which can not be properly invaded by the p7 if one chooses the explicit
(but computationally cheaper) weight p”~! as in [50]. Our time discretization is close to the one
that was proposed very recently in [41] where the introduction on inner time stepping was also
avoided. In [41], the authors introduce a regularization term based on Fisher information, which
mainly amounts to stabilize the scheme thanks to some additional non-degenerate diffusion. In
our approach, we manage to avoid this additional stabilization term by taking advantage of the
monotonicity of the involved operators.

At each step n > 1, (16) can be formulated as a constrained optimization problem. To highlight
its convexity, we perform the change of variables (p,%) — (p,m = —pV4), in analogy with (6),
and rewrite step n as:

p—p" P EV-m=0 in Q,

m-n=0 on Of).

m|®

(17) inf

dx + &(p), subject to: {
pm o 27p

Incorporating the constraint in the above formulation yields the following inf-sup problem:

2
(18) inf sup/ [ dx — / (p—pt Hpdx + / m-Vodx + E(p),
pmo Jo 2Tp Q Q

the supremum w.r.t. ¢ being +oo unless the constraint is satisfied. Problem (18) is strictly convex
in (p, m) and concave (since linear) in ¢. Exploiting Fenchel-Rockafellar duality theory it is possible
to show that strong duality holds, so that (18) is equivalent to its dual problem where the inf and
the sup have been swapped. Optimizing w.r.t. to m yields the optimality condition m = —7pV ¢,
hence the problem reduces to

n—1 : T 2
(19) sup /Q o de + inf /Q (~6— 2IV6P)pdz +E(p).

The problem is now strictly convex in p and concave in ¢. Optimizing w.r.t. p leads to the optimality
condition

n T n|2 o n
_ < =
(20) 6 + 5IVer < 1ot

with equality on {p” > 0}. In the above formula, ¢ denote the optimal ¢ realizing the sup in (19).
Similarly to what has been done in the previous section for the JKO scheme, it is possible to show
again that saturating inequality (20) on {p? = 0} is optimal since the mapping f — ¢ solution to
¢+ Z|V¢|? = f is monotone. Finally, the optimality conditions for the LJKO problem (16) write

T o0&

6+ TIVor? = S (o),
(21) pn o pn—l P
il v (paver) =,

T
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set on 2, complemented with homogeneous Neumann boundary condition V¢ - n = 0 on 0€2. We
can interpret (21) as the one step resolvent of the mean-field game (12). Both the forward in time
continuity equation and the backward in time HJ equation are discretized thanks to one step of
backward Euler scheme.

1.4. Goal and organisation of the paper. As already noted, most of the numerical methods
based on backward Euler scheme disregard the optimal character of the trajectory ¢ +— o(t) of the
exact solution to (1). Rather than discretizing directly the PDE (1), which can be thought as
the Euler-Lagrange equation for the steepest descent of the energy, we propose to first discretize
w.r.t. space the functional appearing in the optimization problem (16), and then to optimize. The
corresponding Euler-Lagrange equations will then encode the optimality of the trajectory. The
choice of the LJKO scheme (16) rather than the classical JKO scheme (5) is motivated by the
fact that solving (21) is computationally affordable. Indeed, it merely demands to approximate
two functions pl, ¢ rather than time depending trajectories in function space as for the JKO
scheme (12). This allows in particular to avoid inner time stepping as in [7, 21|, making our
approach much more tractable to solve complex problems.

Two-Point Flux Approximation (TPFA) Finite Volumes are a natural solution for the space
discretization. They are naturally locally conservative thus well-suited to approximate conservation
laws. Moreover, they naturally transpose to the discrete setting the monotonicity properties of the
continuous operators. Monotonicity was crucial in the derivation of the optimality conditions (21),
as it will also be the case in the fully discrete framework later on. This led us to use upstream
mobilities in the definition of the discrete counterpart of the squared Hl} norm. The system (21)
thus admits a discrete counterpart (36). The derivation of the fully discrete Finite Volume scheme
based on the LJKO time discretization is performed in Section 2, where we also establish the well-
posedness of the scheme, as well as the preservation at the discrete level of fundamental properties
of the continuous model, namely the non-negativity of the densities and the decay of the energy
along time. In Section 3, we show that our scheme converges in the case of the Fokker-Planck
equation (3) under the assumption that the initial density is bounded from below by a positive
constant. Even though we do not treat problem (1) in its full generality, this result shows the
consistency of the scheme. Finally, Section 4 is devoted to numerical results, where our scheme is
tested on several problems, including systems of equations of the type of (1).

2. A VARIATIONAL FINITE VOLUME SCHEME

The goal of this section is to define the fully discrete scheme to solve (1), and to exhibit some
important properties of the scheme. But at first, let us give some assumptions and notations on
the mesh.

2.1. Discretization of Q. The domain Q C R? is assumed to be polygonal if d = 2 or polyhedral
if d = 3. The specifications on the mesh are classical for TPFA Finite Volumes [27]. More precisely,
an admissible mesh of Q is a triplet (7,3, (€ k) c7) such that the following conditions are fulfilled.

(i) Each control volume (or cell) K € T is non-empty, open, polyhedral and convex. We assume
that KNL=0if K,L € T with K # L, while {Ji.7 K = Q. The Lebesgue measure of
K € T is denoted by mg > 0.

(i) Each face 0 € ¥ is closed and is contained in a hyperplane of R?, with positive (d — 1)-
dimensional Hausdorff (or Lebesgue) measure denoted by m, = H% '(o) > 0. We assume
that H4"1(cNo’) = 0 for 0,0’ € ¥ unless 0’ = 0. For all K € T, we assume that there exists

a subset Y of ¥ such that K = |J,5, 0. Moreover, we suppose that Jyer Xx = 2.
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Given two distinct control volumes K, L € T, the intersection K N L either reduces to a single
face o € ¥ denoted by K|L, or its (d — 1)-dimensional Hausdorff measure is 0.

(iii) The cell-centers (zx)xe7 C 2 are pairwise distinct and are such that, if K,L € T share a
face K|L, then the vector ¢, — ¢k is orthogonal to K|L and has the same orientation as the
normal ngy, to K|L outward w.r.t. K.

Cartesian grids, Delaunay triangulations or Voronoi tessellations are typical examples of admissible
meshes in the above sense. We refer to [29] for a discussion on the need of such restrictive grids. Since
no boundary fluxes appear in our problem, the boundary faces Yoy = {0 C 9Q} are not involved
in our computations. Nonzeros fluxes may only occur across internal faces ¢ € ¥ = X\ Sy, We
denote by L = L N X the internal faces belonging to 9K, and by Ny the neighboring cells of
K,ie,Ng ={L e T|K|L € Xk} For each internal face 0 = K|L € X, we refer to the diamond
cell A, as the polyhedron whose edges join €k and x to the vertices of . The diamond cell A,
is convex if xx € K and x;, € L. Denoting by d, = |xx — x|, the measure ma, of A, is then
equal to m,d,/d, where d stands for the space dimension. The transmissivity of the face o € ¥ is
defined by a, = my/d,-.
The space R7 is equipped with the scalar product

(h,d)r = Y hidxm, Vh = (hg)ger @ = (9K) ke
KeT

which mimics the usual scalar product on L?(Q).

2.2. Upstream weighted dissipation potentials. Since the LJKO time discretization presented
in Section 1.3 relies on weighted H; and HP_1 norms, we introduce the discrete counterparts to be
used in the sequel. As it will be explained in what follows, the upwinding yields problems to
introduce discrete counterparts to the norms. To bypass this difficulty, we adopt a formalism based
on dissipation potentials inspired from the one of generalized gradient flows introduced by Mielke
in [48]. This framework was used for instance to study the convergence of the semi-discrete in space
squareroot Finite Volume approximation of the Fokker-Planck equation, see [32].

Let p = (pr)ger € R7, and let ¢ = (PK)keT € R7, then we define the upstream weighted
discrete counterpart of %qu”il by

P

1
(22) A (i) =5 D aops (9 —61)" 20,
ocex
oc=K|L

where p, denotes the upwind value of p on o € 3:

, _{pK if o > o1,

(23) .
pr  ifox < or,

Vo =K|L € X.
Because of the upwind choice of the mobility (23), the functional (22) is not symmetric, i.e.,
A (p; d) # As-(p; —¢) in general, which prohibits to define a semi-norm from A%-(p;-). But
one easily checks that ¢ — A% (p, @) is convex, continuous thus lower semi-continuous (l.s.c.) and
proper.

Let us now turn to the definition of the discrete counterpart of || - H?&r;l' To this end, we

introduce the space F C R?® of conservative fluxes. An element F of Fr is made of two outward
fluxes Fio, Fr, for each 0 = K|L € ¥, and one flux Fg, per boundary face o € Y. We impose
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the conservativity across each internal face
(24) Fro+Fr, =0, Vo=K|LeX.

In what follows, we denote by F, = |Fk,| = |FL,|. There are no fluxes across the boundary faces.
The space Fr is then defined as

Fr = {F = (Fko, Fro)p—ijpes € B | (24) holds} .
Now, we define the subspace
Rl ={h=(hg)ger €RT | (h,1)7 =0}

and

(25) Ar(pih) =inf y

oceX

(F,)?

)
2 dyme > 0, Yh € R],

where the minimization over F' is restricted to the linear subspace of F+ such that

(26) hgmyg = Z My Fro, VK €T.

oEXK

In (25), p, denotes the upwind value w.r.t. F, i.e.,

if Fge >0,
(27) po =K LK Vo = K|L € 3.
PL lfFLU>O,

In the case where some p, vanish, we adopt the following convention in (25) and in what follows:

2 : _ _
(Fy) _ {0 if F, =0and p, =0, —

200 +oo if F, > 0and p, =0,

Remark that this condition is similar to the one implicitly used in (8) and (17). Summing (26)
over K € T and using the conservativity across the edges (24), one notices that there is no F € Fr
satisfying (26) unless h € R} . But when h € R, the minimization set in (25) is never empty. Note
that A7 (p; h) may take infinite values when p vanishes on some cells, for instance Ay (p;h) = +o0
if hg > 0 and px = 0 for some K € T.

Formula (25) deserves some comments. This sum is built to approximate [, %dm. The flux
F, approximates |m-n,|, and thus encodes the information on m only in the one direction (normal
to the face o) over d. But on the other hand, the volume d,m, is equal to dma_ which allows
to hope that the sum is a consistent approximation of the integral. This remark has a strong link
with the notion of inflated gradients introduced in [24, 26]. The convergence proof carried out in
Section 3 somehow shows the non-obvious consistency of this formula.

At the continuous level, the norms || - || 1 and || || >+ are in duality. This property is transposed

to the discrete level in the following sense.

Lemma 2.1. Given p > 0, the functionals h — A7 (p;h) and ¢ — A%(p;p) are one another
Legendre transforms in the sense that

(28) Ar(p;h) = Sg})(h, )7 — Ar(p;¢),  VheR].
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In particular, both are proper convez l.s.c. functionals. Moreover, if Ar(p;h) is finite, then there
exists a discrete Kantorovitch potential ¢ solving

(29) hgmx = Y aopo(dx —¢r), VKET,
JER
such that
1
(30) A7(pih) = A7 (pi¢) = 5 (h, &)

Proof. Let p > 0 be fixed. Incorporating the constraint (26) in (25), and using the definition of p,
and the twice conservativity constraint (24), we obtain the saddle point primal problem

(Freo)™)* | ((Fio)™)’

d
2pK QPL Mels

-h) = infs
A7 (p;h) = il sip >
cEY
oc=K|L
+ > hxdxmi — Y moFro(dx — ¢r)-
KeT o€
oc=K|L

The functional in the right-hand side is convex and coercive w.r.t. F' and linear w.r.t. ¢, so that

strong duality holds. We can exchange the sup and the inf in the above formula to obtain the dual
problem, and we minimize first w.r.t. F, leading to

dK — 9L

FKa:p d

Vo =K|L € %.

Substituting F, by pa% in the dual problem leads to (28), while the constraint (26) turns to
(29). The fact that A% (p,-) is also the Legendre transform of A7 (p,-) follows from the fact that
it is convex L.s.c., hence equal to its relaxation.

When A7(p; h) is finite, then the supremum in (28) is achieved, ensuring the existence of the
corresponding discrete Kantorovitch potentials ¢p. Finally, multiplying (29) by the optimal ¢ and
by summing over K € T yields (h, ¢)7 = 2A4%(p; ¢). Substituting this relation in (28) shows the

relation A1 (p; h) = A% (p; ¢). O

Our next lemma can be seen as an adaptation to our setting of a well known properties of optimal
transportation, namely p — %Wg (p, ) is convex, which is key in the study of Wasserstein gradient
flows.

Lemma 2.2. Let p € RI, the function p — A7 (p; p— p) is proper and convex on (u+R]) ORI.

Proof. The function p — A7 (p; u — p) is proper since it is equal to 0 at p = u. Then it follows
from (28) that

(31) Ar(p;pn—p) = Sipw - p, )T — A (p; @)

Since p — A%-(p; ¢) is linear, A7 (p; u — p) is defined as the supremum of linear functions, whence
it is convex. g
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2.3. A variational upstream mobility Finite Volume scheme. The finite volume discretiza-
tion replaces the functions p7, ¢? at time step n > 1 defined on 2 with the vectors p™ € RI and
¢"™ € R7. In each cell K, the restriction of each of these functions is approximated by a single
real number p%-, ¢%, which can be thought as its mean value located in the cell center xx. Given
pl € RI, the space P+ which is the discrete counterpart of P(Q2) is then defined by

Pr={peRL | {p,1)7 = (p°, 1)7} = (o +R]) NR].

It is compact. The energy £ is discretized into a strictly convex functional & € CI(RI; Ry ) that
we do not specify yet. We refer to Sections 3 and 4 for explicit examples.

We have introduced all the necessary material to introduce our numerical scheme, which combines
upstream weighted Finite Volumes for the space discretization and the LJKO time discretization:

(32) p" € argminlAT(p; P =p)+Er(p), n>1
pePr T

A further characterization of the scheme is needed for its practical implementation, but the con-

densed expression (32) already provides crucial informations gathered in the following theorem.

Note in particular that our scheme automatically preserves mass and the positivity since the solu-

tions (p™),,~, belong to Pr.

Theorem 2.3. For all n > 1, there exists a unique solution p™ € Py to (32). Moreover, energy is
dissipated along the time steps. More precisely,

1
(33) Er(p") < Er(p") + —Ar(p"; 0" = p") <Er(p"Y),  Vn =1L

Proof. The functional p — %AT(p; p" L —p)+ &7 (p) Ls.c. and strictly convex on the compact set
Pr in view of Lemma 2.2 and of the assumptions on £7. Moreover, it is proper since p"~! belongs
to its domain. Therefore, it admits a unique minimum on Py. The energy / energy dissipation
estimate (33) is obtained by choosing p = p"~! as a competitor in (32). O

In view of (31), and after rescaling the dual variable ¢ «+ %, solving (32) amounts to solve the
saddle point problem

. e T

(34) inf sup (Pt =p ), — 3 > aopo(éx —o1)* +Er(p).
UZ%X\:L

which is equivalent to its dual problem

. . T
(35) sup inf (p" 1 = p, @) — = S appe(ox — 61)? + Er(p).
¢ P20 2 gED

o=K|L

Our strategy for the practical computation of the solution to (32) is to solve the system correspond-
ing to the optimality conditions of (35). So far, we did not take advantage of the upwind choice
of the mobility (23) (we only used the linearity of (p, @) — (ps),cy, in the proofs of Lemmas 2.1
and 2.2, which also holds true for a centered choice of the mobilities). The upwinding will be key
in the proof of the following theorem, which, roughly speaking, states that there is no need of a
Lagrange multiplier for the constraint p > 0.
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Theorem 2.4. The unique solution (p™,@") to system

micdie + 5 Y aal(dh — 0D’ = 56",
(3) v e
(P — P Im +7 Y agpl (¢ — 67) =0,
cEX K
where plt denotes the upwind value, i.e.,
o {p?( Ok >0E o _pines.

P if Pk < 9L,
is a saddle point of (35).

System (36) is the discrete counterpart of (21), whose derivation relied on the monotonicity of
the inverse of the operator ¢ — ¢+ %|V¢>|2. Before proving Theorem 2.4, let us show that the space

discretization preserves this property at the discrete level. To this end, we introduce the functional
G = (Gk) g € CHRT;RT) defined by

~
G (o) = dx + S UGXE:K ar (b5 —¢r)")°, VK eT.
o=K|L

Lemma 2.5. Given f € R7, there exists a unique solution to G(¢) = f, and it satisfies

(37) min f < ¢ < max f.

Moreover, let ¢, aﬁ be the solutions corresponding to f and .7" respectively, then

(38) F2f = ¢2¢

Proof. Given f > } and ¢, J) corresponding solutions, let K* be the cell such that
¢K*-$K*==ggg(¢K-—$K)

Then, for all the neighboring cells L of K™, it holds ¢~ — b+ < 1, — 1, and therefore dg- —dp, <
¢+ — ¢, which implies

T 2 T ~ ~ 2
(39) 2m ”e;* (e ((¢K* — ¢L)+) < DY UE;* Ay ((¢K* — ¢L)+)
J:KI*(\L a:KI*{\L

Recall £ > f so G+ (@) > Gic+(¢) together with (39) it yields ¢x- > ¢x-. Finally as in K*
the difference ¢x — ¢ is minimal, we obtain ¢ > ¢ for all K € T. The uniqueness of the
solution ¢ of G(¢) = f follows directly. The maximum principle (37) is also a straightforward
consequence of (38) as one can compare ¢ to (min f)1 and (max f)1 which are fixed points of
G. Finally, existence follows from Leray-Schauder fixed-point theorem [40] as the bounds (37) are
uniform whatever 7 > 0. O

With Lemma 2.5 at hand, we can now prove Theorem 2.4.
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Proof of Theorem 2.4. Uniqueness of the solution p™ to (32) was already proved in Theorem 2.3.
Owing to (33), Ar(p"; p"~! — p") is finite. So Lemma 2.1 ensures the existence of a discrete

Kantorovitch potential (?)n satisfying (after a suitable rescaling by 771)
(40) (Pk — Pk Jmic +7 Y aopp (o —d1) =0,  VKET.
cEX K

The above condition is the optimality condition w.r.t. ¢ in (35). To compute the optimality
condition w.r.t. p in (35) let us rewrite the objective using the definition of p, and G :

<pn—1 2 ¢>7- - g Z aopa(¢K - ¢L>2 + gT(p)

oed
o=K|L
=&r(p)+(p" ' —p,b), — g > {aapK (o — ¢L)+)2 +arpr (¢ — ¢K)+>2}
o‘i%zfl/
= gT(p) + <pn_1 - P, ¢>T - gz Z Qg PK ((¢K - ¢L)+)2
K oce¥g
o=K|L

=&r(p)+ (P ) — (P B)r — > mKpK QT;K > ao ((0x — o))’
K oEX K
o=K|L
= gT(p) + <pn—17 ¢>7- - <p7 g(¢)>7‘
Thus (35) rewrites
(41) sup inf E7(p) + (P @) — (P G()) -

Denote by
Z"={KeT|pk=0}  P'={KeT|pg>0}=(2"),
Using (41) the optimality conditions w.r.t. p of (35) thus reads

~ T “n T o0&
(42) midk +5 . ao((Ok —o1)) =5 ("), VK eP"
0'620);(
and
~ ~ o€
(43) midic 5 Y (@ —91)")’ < aTZ(pn), VK € 2",
0€X0, K

By definition, (p", 2)”) is a saddle point of (35), so equivalently of (41) and by strong duality is it
also a saddle point of

(44) inf sup Erp) + (0" ) — (p,G(9)) -

In particular Es" is optimal in

(45) SupEr(p") + (" 6)7 — (6", G(D))
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To prove Theorem 2.4, we have to prove that, given p™, we can saturate the inequality in both
(42) and (43) while preserving the optimality in (45). Lemma 2.5 gives the existence of a solution
¢" € R7 to

n 1 061, ,
46 = | - '
(46) g(e") <mK apr P ))KGT
Note that (42) implies

~n

Gr(@")=Gk(d ) VK € P"

SO

~n

(47) (p".G(®")7 = (p".6(&")
The combination of (42) and (43) is exactly G(¢™) > g(&"), thus Lemma 2.5 gives ¢" > qNSn
Consequently,

(48) (0" 9" r = (770"

since p"~! > 0. Incorporating (47) and (48) in (45) shows that ¢" is a better competitor than & .
Therefore, (p™, ¢") is a saddle point of (35) and satisfies (36). Finally, owing to Lemma 2.5, the
solution ¢" to (46) is unique, concluding the proof of Theorem 2.4. O

2.4. Comparison with the classical backward Euler discretization. The scheme (32) is
based on a “first discretize then optimize” approach. We have built a discrete counterpart of %Wf
and a discrete energy £7, then the discrete dynamics is chosen in an optimal way by (32). In
opposition, the continuous equation (1) can be thought as the Euler-Lagrange optimality condition
for the steepest descent of the energy. A classical approach to approximate the optimal dynamics
is to discretize directly (1), leading to what we call a “first optimize then discretize” approach. It is
classical for the semi-discretization in time of (1) to use a backward Euler scheme. If one combines
this technic with upstream weighted Finite Volumes, we obtain the following fully discrete scheme:

1 9&r

— ZT "), VKeT.
o 8pK(p )

(49)  (Pk —pic Imx +7 Y aopy(d —9L) =0, with & =
oEYX K

This scheme has no clear variational structure in the sense that, to our knowledge, p" is no longer

the solution to an optimization problem. However, it shares some common features with our

scheme (32): it is mass and positivity preserving as well as energy diminishing.

Proposition 2.6. Given p"~' € Py, there exists at least one solution (p",é") € P+ xR7 to
system (49), which satisfies

1 n _
(50) Er(p") + —A7(p"ip" = p") +TAT(P": ) < Er(p” h).

Proof. Summing (49) over K € T provides directly the conservation of mass, i.e., (p™, 1)y =
(p"~1,1)7. Assume for contradiction that K" = {K € T | p% < 0} # 0, then choose K* € K"
such that ¢%, > QET[L( for all K € K™. Then it follows from the upwind choice of the mobility in (49)
that
Y i@ — 1) <0,
TEY
o=K|L
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so that pf. > p"Kil > 0, showing a contradiction. Therefore, K™ = () and p™ > 0. These two a
priori estimates (mass and positivity preservation) are uniform w.r.t. 7 > 0, thus they are sufficient
to prove the existence of a solution (p”, (}5”) to (49) thanks to a topological degree argument [40].

Let us now turn to the derivation of the energy / energy dissipation inequality (50). Multiply-
ing (49) by ¢} and summing over K € T provides

(" = p" @ )T + 21 AT (p" ") = 0.

~n

The definition of ¢" and the convexity of & yield (p" — p"~ 1, ¢" )7 > E7(p™) — E7(p"1). Thus
to prove (50), it remains to check that

1 -n, n— -n * (ven, 1M 1 * (wn o n
(51) —Ar(p"; p" T = ") = TAT(P" ) = —AT(P" o).
In view of (29), T(Z)n is a discrete Kantorovitch potential sending p®~! on p" for the mobility
corresponding to p". Therefore (51) holds as a consequence of (30). O

Next proposition provides a finer energy / energy dissipation estimate than (33), which can
be thought as discrete counterpart to the energy / energy dissipation inequality (EDI) which is a
characterization of generalized gradient flows [2, 48].

Proposition 2.7. Given p"~! € Py, let p" be the unique solution to (32) and let p™ be a solution
o (49), then

Er(p") + A7 (0" ") + AT (078" < Er(p" ),

where @ is defined by midh = gl‘f—;(i)n) forall KeT.

Proof. Since p" belongs to Pr, it is an admissible competitor for (32), thus

n 1 3 77— 3 =1 1 ~n 7, — ~n
(52) Er(p") + —Ar(p";p" " = p") < E7(p") + _Ar(p";p" T = p").
Combining this with (50) and bearing in mind that LAy (p"; p"~! — p") = 7 A% (p™; ") thanks
to (30), we obtain the desired inequality (52). O

3. CONVERGENCE IN THE FOKKER-PLANCK CASE

In this section, we investigate the limit of the scheme when the time step 7 and the size of
the mesh hs tend to 0 in the specific case of the Fokker-Planck equation (3). The size of the
mesh is defined by hy = maxger hgx with hxg = diam(K). To this end, we consider a sequence
(Tm, S, (Tr) eTm)m> ) of admissible discretizations of 2 in the sense of Section 2.1 and a sequence

(7'm)m21 of time steps such that lim,, oo 7, = limy, oo by, = 0. We also make the further
assumptions on the mesh sequence: there exists ¢ > 0 such that, for all m > 1,

(53a) hg < (dy < Chg, Vo € Yk, VK € Ty,

(53b) dist(zr, K) < Chr, VK € T,

and

(53c) Z ma, < (mg, VK € .

OEO0K
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Let T > 0 be an arbitrary finite time horizon, then we assume for the sake of simplicity that
Tm = T/Np, for some integer N, tending to +oco with m. For the ease of reading, we remove the
subscript m > 1 when it appears to be unnecessary for understanding.

Given V € C?(2), we define the discrete counterpart of the energy (4) by

K
Er(p)= > mk [PK log ;VK
KeT

—px+e V€|, VpeRT,

where Vi = V() for all K € T. In view of the above formula, there holds
0ET
opr
Given an initial condition ¢° € P(2) with positive mass, i.e. [, 0°dx > 0, and such that £(o°) < oo,

(54) (p) = mi(log(px) + Vi) VK eT.

it is discretized into p® = (p?()KeT defined by
1
(55) % = —/ o’dx >0, VK eT.
mg K

Note that the energy £y is not in Cl(RI) since its gradient blows up on 8]RI. However, the
functional £7 is continuous and strictly convex on RI, hence the scheme (32) still admits a unique
solution p™ for all n > 1 thanks to Theorem 2.3, since its proof does not use the differentiability of
the energy. Thanks to the conservativity of the scheme and definition (55) of p°, one has

(p" 1) = (p°, 1) = / o’de >0, Vn>1.
Q
Let us show that p™ > 0 for all n > 1. To this end, we proceed as in [55, Lemma 8.6].

Lemma 3.1. Assume that ¢° has positive mass, then the iterated solutions (p™), <, to scheme (32)
satisfy p" > 0 for all m > 1. Moreover, there exists a unique sequence (¢")~, of discrete Kan-
torovitch potentials such that the following optimality conditions are satisfied for all K € T and all
n>1:

(56) it g 2 o (0 —01)7)" =loalpR) + Vic,
o=K|LeXk
(57) (P — P Ime +7 > agp(f — 67) =0.
o=K|LeX

Proof. Define p = ﬁ Jo 0°dz and p = p1 € Pr, and by p!" = (p% )
for some arbitrary € € (0,1). Since p™ is optimal in (32), there holds

A _ n
ker =P+ (L—€)p" €Pr

(58) Y mx [pilog pi — pieJogple ] < D mi (P — i) Vie
KeT KeT

+ Ar(pli 0" = pl) — Ar(p" 0" = p").
The convexity of p — A7(p, p"~! — p) implies that
A7(pl;p" = pl) < eAr(pip" ! —p) + (1 — ) Ar(p™; 0" — p"),
while the boundedness of V' provides

S mk (e — 05) Vie < ellV ol 2 0-
KeT
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Therefore, the right-hand side in (58) can be overestimated by

> mi [phlog pfe — pie Jog pe..| < Ce

KeT
for some C' depending on p", p"~! and V but not on e. Setting Z" = {K € T | pi+ = 0} and
Pr={K €eT|pk >0}= (2", we have

> mk [piclog pie — ple Jog pie | =€ Y mxplogep,
KeZzZn Kezn

and, thanks to the convexity of p — plog p and to the monotonicity of p — log p,

> mi [piclog e — i Jogpl. ] =€ Y mi(pik — p)(1+log(pk )
Kepn Kepn

>e Y mi(pk —p)(1+log(p)) > —Ce.
Kepn
Then dividing by € and letting € tend to 0, we obtain that

limsup Z mgplogep < C,
e—0 Kezn
which is only possible if Z* = (), i.e., p™ > 0. This implies that £ is differentiable at p”, hence
the optimality conditions (36) hold, which rewrites as (56)—(57) thanks to (54). The uniqueness of
the discrete Kantorovitch potential ¢™ for all n > 1 is then provided by Theorem 2.4. O

Lemma 3.1 allows to define two functions pr ; and ¢, by setting

pT,T(a:7t) = pTIL(J ¢T,T(m7t) = Qb?}l{ if (ﬂj,t) € K x (tn_17tn]’

It follows from the conservativity of the scheme and definition (55) of p° that

/ pT,T(mvtn)dm = <Pn, 1>7’ = <p07 1>T = / gOdCL’ > 0,
Q Q

so that p7 ,(-,t) belongs to P(Q) for all t € (0,T).
The goal of this section is to prove the following theorem.

Theorem 3.2. Assume that o° > p, for some p, € (0,+00) and that E(o°) < +oo, and let
(Tm,fm, (mK)KeTm)m>1 be a sequence of admissible discretizations of § such that hy,, and T,

tend to 0 while conditions (53) hold. Then up to a subsequence, (pT,, 7. ),,>, tends in L*(Qr)
towards a weak solution o € L*((0,T); L*(2)) N L2((0,T); WH1(Q)) of (3) corresponding to the
initial data o°.

The proof is based on compactness arguments. At first in Section 3.1, we derive some a pri-
ori estimates on the discrete solution. These estimates will be used to obtain some compactness
on pr,. r. and ¢, - in Section 3.2. Finally, we identify the limit value as a weak solution in
Section 3.3.

Remark 3.3. We restrict our attention to the case of the linear Fokker-Planck equation for sim-
plicity. The linearity of the continuous equation plays no role in our study. What is important is
the fact that the discrete and continuous solutions are uniformly bounded away from 0 so that the
weighted H; norm controls the non-weighted H' norm. Such a uniform lower bound can also be
derived for the porous medium equation without drift.
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3.1. Some a priori estimates. First, let us show that if the continuous initial energy £(o°) is
bounded, then so does its discrete counterpart E7(p°).

Lemma 3.4. Given ¢° € P(Q) such that £(0°) < +oo, and let p° be defined by (55), then there
exists Cy depending only on Q, V and ¢° (but not on T ) such that Er(p") < Cy for all n > 0.

Proof. Tt follows from (33) that £7(p") < E7(p°) for all n > 1. Rewriting £7(p°) as
(59) Er(P) =T+ T + T3
with

Ty =Y milpklogpy —pk), To= Y mipkVi, and Ty= Y mge "%,
KeT KeT KeT

we deduce from the definition (55) of p® and Jensen’s inequality that
(60) Ty < / [0 1og ¢° — o]da.
Q
Since V is continuous, there exists £x € K such that fK e Vdax = mge V@) Therefore,

(61) ng/e_vdw+ S mleV (@) emViER)] g/e—de+e“V’Hm\|VV||oodiam(Q).
Q KeT Q

Similarly, it follows from the mean value theorem that there exists Zx € K such that myV (Zx)p% =
Ji 0°Vda. Hence,

(62) Tg:/QOVdm+ Z mep%[V(xx) — V(Eg)] g/QOVdm—l—HVVHOOdiam(Q)/ odex.
Q KeT 2 Q2

Combining (60)—(62) in (59) shows that £&7(p°) < £(0°) + C for some C depending only on V, €
and o°. O

Our next lemma shows that if ¢° is bounded away from 0, then so does pr ..
Lemma 3.5. Using the convention log(0) = —oo, one has
in [log(p%) + V] > min [log(p= 1) + Vi |, Vn > 1.
min [log(pf) + Vic] > min [log(pf ") + Vic] >
In particular, if o° > ps for some p, € (0,+00), then there exists a > 0 depending only on V and
P« (but not on T, 7 and n) such that p™ > al for all n > 1.

Proof. Tt follows directly from (56) that log(p) + Vk > ¢% for all K € T. Let K, € T be such
that ¢ < ¢} for all K € T, then the conservation equation (57) ensures that pf > p}lgl. On

the other hand, since
7 T 2
Z Ao ((¢K* - L)+) = 07
o=K,|LeX K,
the discrete HJ equation (56) provides that

Ot =log(pi,) + Vi, = min [log(pf) + Vic] > log(pf. ") + Vi, > min [log(pj ") + V]
Assume now that ¢° > p,, then for all K € T and all n > 0,

"y > mi 0 — Vi > mi 0y _ > IV H oo = IV oo

log(pk) > glel,r;[log(pL) + VL] = Vi > ggglog(m) 2|[Vloo = 1og(ps) = IV [loo = IV " [0

Therefore, we obtain the desired inequality with a = pye IV e =1V Il O
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Our third lemma deals with some estimates on the discrete gradient of the discrete Kantorovitch
potentials (¢™),,.

Lemma 3.6. Let (p",¢") be the iterated solution to (36), then

N
(63) Ty aopi(f — 67)* < Cu
n=1 o¢=K|LeX
Moreover, if 0° > p, € (0,+00), then there exists Cy (depending on Q, V and o°) such that
N
(64) Ty an(df — 7)< Ca
n=1 o=K|LEX

Proof. Since E7(p) > 0 for all p € Py, summing (33) over n € {1,..., N} yields
N
D AT " o) < Er(eY).
n=1
Thanks to (30), the left-hand side rewrites

N N
SETREIIPI I
n=1 n=1

oc=K|LeX

so that it only remains to use Lemma 3.4 to recover (63).

Finally, if ¢° is bounded from below by some p, > 0, then Lemma 3.5 shows that p} > «
for some « depending only on p, and V. Therefore, since p? is either equal to p} or to p} for
o = K|L € ¥, then (64) holds with C, = - O

The discrete solution p7 . is piecewise constant on the cells. To study the convergence of the
scheme, we also need a second reconstruction ps; » of the density corresponding to the edge mobil-
ities. It is defined by

noos n—1 4n
0 meln= (R Te e ke
Lemma 3.7. There exists C3 depending only on ¢ and o° such that
(66) /Q px.-(x, t)de < Cs, vVt > 0.
Moreover, there exists Cy depending only on ¢,V and o° such that
(67) /ngT(:B,t) log ps - (z, t)dx < C4, vt > 0.

Proof. Since t — px -(-,t) is plecewise constant, it suffices to check that the above properties at
each t", 1 <n < N. In view of the definition of px ., one has

/sz,r(a:,t")da: < Z Z pPrmK + z prma,, .

KeT 0€XkNText oEY
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The first term can easily be overestimated by fﬂ pr.-(x, t")de = fQ o%dzx. Since p? < pt+ p, the
second term in the above expression can be overestimated by

IS AP N |
oA KeT ceX K
Using the regularity property of the mesh (53c), we obtain that
> pima, < C/ Qde,
cEeX Q
so that (66) holds with Cs = (1 + () [, 0°da.

Reproducing the above calculations, one gets that

/ ps,r(x,t)log ps - (z,t)dx < (1 + C)/ P17 (1) log pr 7 (2, t)dz
Q Q

=(1+¢) <5T(Pn) + Z milpk(1— Vi) — eVK]> :

KeT

Since E7(p") < E7(p") < C; and since V is uniformly bounded, we obtain that (67) holds with
Ci=(1+Cr+ (1 =V) o). O

The last lemma of this section can be thought as a discrete (L>((0,7); Wl"x’(Q)))/ estimate on
Otpr ~. This estimate will be used to apply a discrete nonlinear Aubin-Simon lemma [5] in the next
section.

Lemma 3.8. Let ¢ € C°(Qr), then define o} = %K S o(@,t")dz for all K € T. There exists
Cs depending only on ¢, T, 0°,d, such that

N
DY m(pk — o e < Cs
n=1KeT

VSDHL""(QT)'

Proof. Multiplying (57) by ¢% and summing over K € T and n € {1,..., N} yields

N N
A=30N mi(pk —pi ek = =D T D> aorp(dk — O1) 0k — 1)

n=1KeT n=1 o=K|LeS
Applying Cauchy-Schwarz inequality on the right-hand side then provides

N N
68) A< (D> or Y annh(dk — o1)” TY anpi(eh —eh)’
n=1 o¢=K|LeEX n=1 o=K|LEX
The first term in the right-hand side is bounded thanks to Lemma 3.6. On the other hand, the

regularity of ¢ ensures that there exists Zx € K such that ¢(xk,t") = ¢ for all K € T. Thanks
to the regularity assumptions (53a)—(53b) on the mesh, there holds

Pk — L < IVollolTr —2L| < (1+2C(A1+ O))IVellods, 0= K|L.
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Hence, the second term of the right-hand side in (68) can be overestimated by

N N
Som > aepiek — 1) <A+ 2A+ IV D T > medep)

n=1 o=K|LEX n=1 o=K|LeX

< (14 2000+ )| Tl | /Q pordadt

< (1+2¢(1+Q))2CsTd|| V| %,

the last inequality being a consequence of Lemma 3.7. Combining all this material in (68) shows

the desired estimate with Cs = (1 + 2¢(1 + ¢))v/C1C5Td. O

3.2. Compactness of the approximate solution. The goal of this section is to show enough
compactness in order to be able to pass to the limit m — oo. For the sake of readability, we remove
the subscript m unless necessary.

Owing to Lemma 3.4, one has E7(p") < C) for all n € {1,..., N}. Proceeding as in the proof
of Lemma 3.7, this allows to show that

(69) / pr.+(x, t)log pr - (2, t)de < C, Vit € (0,7
Q

for some Cg depending only on ¢°, ¢ and V. Combining de La Vallée Poussin’s theorem with
Dunford-Pettis’ one [58, Ch. XI, Theorem 3.6], there exists o € L>°((0,7); L*(£2)) such that, up to
a subsequence,

(70) PT, =, tends to o weakly in L'(Qr) as m tends to +oc.

Since p — plog p is convex, f +— foT flog fdxdt is L.s.c. for the weak convergence in L'(Q7) (see
for instance [11, Corollary 3.9]), so that (69) yields

(71) // olog pdxdt < CyT.
T

Moreover, since pr r > « thanks to Lemma 3.5, then ¢ > «a too.

Our goal is to show that g is the unique weak solution to the Fokker-Planck equation (3) corre-
sponding to the initial data ¢°. Even though the continuous problem is linear, (70) is not enough
to pass to the limit in our nonlinear scheme. Refined compactness have to be derived in this section
so that one can identify g as the solution to (3) in the next section. To show enhanced compactness
(and most of all the consistency of the scheme in the next section), we have to assume that the
initial data is bounded away from 0.

Proposition 3.9. Assume that ¢° > p, € (0,+0c0), then, up to a subsequence,

(72) Pl —2 0 strongly in L' (Qr),
m—r oo
(73) log pr,, .7, — logo strongly in L' (Qr),
m—r o0
(74) O, 7 — logo+V strongly in L' (Qr).
m— oo

Proof. Our proof of (72)—(73) relies on ideas introduced in [49] that were adapted to the discrete
setting in [5]. Define the two convex and increasing conjugated functions defined on R :

YT:z—e®—z—1 and YT :y— (1+y)log(l+y) —uy,



A VARIATIONAL FINITE VOLUME SCHEME FOR WASSERSTEIN GRADIENT FLOWS 21

then the following inequality holds for any measurable functions f,g: Qr — R:

(75) / /Q Ifoldwar < / /Q T rdwar + / /Q T gzt

Now, notice that since p7 . is bounded from below thanks to Lemma 3.5 and bounded in L*(Q7),
then log p7 ., is bounded in LP(Qr) for all p € [1,00) and Y(|log(pr +)|) is bounded in L'(Qr). As
a consequence, there exists £ € L ((0,T); LP()) such that

(76) log p7., 7, — £ weakly in L'(Qr).
m—r o0

Since f foT T(|f]) is convex thus l.s.c. for the weak convergence, we infer that Y(|¢|) belongs

to L1(Qr). Moreover, in view of (71), T*(p) belongs also to L'(Qr). Therefore, thanks to (75),
the function of is in L*(Qr).
Define the quantities

T

o Y (0% —o2)*)* >0, YK € T, ¥ne {1,....N},

ocEXK

n
T =
K 2mK

and by r7, € L'(Qr) the function defined

rro(z,t) =7y if (x,t) € K x ("1,
Thanks to Lemma 3.6, ||7"T,T||L1(QT) < %CQT. As a consequence, 7, , tends to 0 in L*(Qr) as
m tends to +oc0.

Let £ € R? be arbitrary, we denote by Q¢ = {z € Q | z + ¢ € Q}. Then using (56) and the
triangle inequality, we obtain that for all m > 1, there holds

T
/ / log 7, (@ + &,1) — log pro, o (,8)] diedt < Ay (€) + Ag(€) + Ag (),
0o Jog

where, denoting by Vi (x) = Vi if @ € K, we have set
T
Ain® = [ [ lrmn (e €0 = rr e (@ 0ldedt
0 J

T
Ao (€) = / /Q (67 m (@ 4 6,1) — b7 (1) dzdt,
13

Ag(€) =T / Vi, (@ + &) - Vi, (a)|dz.

Qe

Since (77, 7 )n>q a0d (V7,),,5, are compact in L' (Qr) and L'() respectively, it follows from

the Riesz-Frechet-Kolmogorov theorem (see for instance [11, Exercise 4.34]) that there exists w €
C(Ry;Ry) with w(0) = 0 such that

(77) Ay (&) + Az (&) < w(l€]), Ve e R Ym > 0.
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On the other hand, the function ¢, belongs to L'((0,7); BV (£2)) and the integral in time of its
total variation in space can be estimated as follows:

//QT|V¢TM,%|=iT S moloh — o7

n=1 o¢=K|LEX
1/2

N
< dTY 7 Y me(dk -1 | <Cn

n=1 o¢=K|LEX

with C7 = /d|Q|TC5. This implies in particular that Ag ., (&) < C7|€| for all m > 1. Combining
this estimate with (77) in (56) yields

T
(78) sup [ [ 10870, (@ 4+ €08) = bog pr, o (20 dadt 0
m>1Jo Jo. [€]—0

The combination of (78) with Lemma 3.8 is exactly what one needs to reproduce the proof of [5,
Proposition 3.8], which shows that the product of the weakly convergent sequences (p7,, r,.),, and
(log p7,,. 7. ),,, converges towards the product of their weak limits:

(79) // PTom 7 108 0T, 7, pddt. — // olpdadt, Vo € C(Qr).
m—0o0
T T

Let us now identify ¢ as log(g) thanks to Minty’s trick. Let x > 0 and ¢ € C°(Qr; R4) be arbitrary,
then thanks to (79),

m— o0

0< // (p7 .7 — k) (log p7,, 70 — log k) pdedt — // — k) (¢ —log k) pdadt.
T

As a consequence, (0 — k) (£ —logk) > 0 a.e. in Qr for all k > 0, which holds if and only if
¢ = log p. To finalize the proof of (72)—(73), define

em = (pTorm — 0108 7, 7, —log o) € LY(Qr3Ry),  Ym 2> 1.
Then (79) implies that

// empdadt — 0, Vi € CZ(Qr), » > 0.
T

As a consequence, ¢, tends to 0 almost everywhere in Q)7, which implies that pr; - tends almost
everywhere towards ¢ (up to a subsequence). Then (72)—(73) follow from Vitali’s convergence
theorem (see for instance [58, Chap. XI, Theorem 3.9]).

Finally, one has ¢, = log p7 - + V7 —r7 -. In view of the above discussion, the right-hand side
converges strongly in L'(Qr) up to a subsequence towards log o + V, then so does the left-hand
side. This provides (74) and concludes the proof of Proposition 3.9. O

Next lemma shows that py. , shares the same limit ¢ as p7 -.

Lemma 3.10. Assume that o° > p, € (0,+0c0), then

105 7m0 = PTon 7m Li@r) 5k O
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Proof. Thanks to Lemma 3.7, it follows from the de La Vallée-Poussin and Dunford Pettis theorems
that (px,, 7. ),,>; is relatively compact for the weak topology of L' (Q7). Combining this with (70),
we infer that, up to a subsequence, (px,, 7. = P77 )m>1 CONVerges towards some w weakly in

L'(Qr). Thanks to Vitali’s convergence theorem, it suffices to show that from any subsequence of
(DS 7 = PTonstm )m>1, ONE Can extract a subsequence that tends to 0 a.e. in @7 (so that the whole
sequence converges towards w = 0), or equivalently

(80) [log ps,,.,7 =108 P77 110y — 0,

m—ro0

since both (ps,, 7. ),,>1 ad (P7,, .70 ),,>; are bounded away from 0 thanks to Lemma 3.5. Bearing
in mind the definition (65) of px._, ., and one has
N
llog pss.r = log p7rllpr iy < D27 D ma,|logpi — log pi|.
n=1 o=K|LeS
Using (56) and the triangle inequality, one gets that
|log ps..» — log pT,T”Ll(QT) < Ry + Ry + TR,

with

N N

meYr S maldk-oll R=Yir S malhord)

n=1 o¢=K|LEX n=1 o=K|LeX

and
R3= Z mAa|VK_VL|-
oc=K|LeX

Using again that dma, = d,m, < Chrm, thanks to (53a), one has

R < iv > m|¢"f¢"|<%h — 0
1—dT oYK L—d T .

m—o0
n=1 o¢=K|LEX

Since |r% — 7| < % 4+ r}, the regularity assumption (53c) on the mesh implies that

N
Ro<> 7Y > ma,ri <lllrrrlien 2 0
n=1 KeT oceXk
Since V is Lipschitz continuous, |Vk — V| < [|[VV |leeds < {||VV||oohT for all 0 = K|L € ¥ thanks
to (53a). Therefore,

Ry < {9Vl — 0,
so that (80) holds, concluding the proof of Lemma 3.10. d

3.3. Convergence towards a weak solution. Our next lemma is an important step towards the
identification of the limit p as a weak solution to the continuous Fokker-Planck equation (3). Define
the vector field Fs , : Qr — R by

dpr 5 Pinye, if (x,t) € A x (t"71,17],

0 otherwise.

FZ,T($7t) = {
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Lemma 3.11. Assume that ¢° > p, € (0,+00), then, up to a subsequence, the vector field Fy,, -,
converges weakly in L'(Q7)? towards —Vo — oVV as m tends to +oo. Moreover, /0 belongs to
L2((0,T); HY(Q)), while o belongs to L2((0,T); WH1(Q)).

Proof. Let us introduce the inflated discrete gradient G's; - of ¢ defined by

A%y, if (z,t) € A, x ("1, 1"
Gz,fu,t):{o A

otherwise,

so that Fy » = —px -Gy . Thanks to Lemma 3.6,

N
G lF2igpe =dd 7 Y. ao(¢h — ¢1)> < dCs,
n=1 o=K|LeX

thus we know that, up to a subsequence, G , converges weakly towards some G in L?(Qr)? as
m tends to +o00. Since ¢7 , tends to log o + V, cf. (74), then the weak consistency of the inflated
gradient [24, 26] implies that G = V(logo + V).

Define now Hy, , = \//EGE@ then using again Lemma 3.6,

N
[Hs < 72igme =d D7 Y. aopi(df — 67)* < dCh,

n=1 o=K|LeX

so that there exists H € L?(Qr)? such that, up to a subsequence, Hy, . tends to H weakly in
L?(Qr)®. But since \/px,; converges strongly towards /g in L*(Qr), cf. Lemma 3.7, and since
G . tends weakly towards V(log o+ V) in L?(Qr)%, we deduce that Hy; , tends weakly in L*(Q7)?
towards /oV(logo + V) = 2V,/o + ,/o0VV = H. In particular, /o belongs to L*((0,T); H*(Q2)).
Now, we can pass in the limit m — +oo in F'y; , = —\/pgng,T, leading to the desired result. [

In order to conclude the proof of Theorem 3.2, it remains to check that any limit value g of the
scheme is a solution to the Fokker-Planck equation (3) in the distributional sense.

Proposition 3.12. Let g be a limit value of (pr,, +,.) as described in Section 3.2, then for all

© € CX(Qx[0,T)), one has

(81) // 00rpdaxdt +/ 0" (-, 0)dx — // (oVV + Vo) - Vdazdt = 0.
T Q T

m>1

Proof. Given ¢ € C2°(Q x [0,T)), we denote by ¢ = ¢(xx,t"). Then multipying (57) by —¢ *
and summing over K € T and n € {1,..., N} leads to
B1+ B+ B3=0,
where we have set
N Spn _ QOn71
Bi=) 7Y mxt—Hpl,  Bo= ) miekrk,
n=1 KeT KeT

and
N

Bs==> 7 > aopi (¢ — o) (e —ep ).

n=1 o¢=K|LEX
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Since pr ., converges in L'(Qr) towards g, cf. Proposition 3.9, and since ¢ is smooth,

B, — // 00y pdxdt.
m—00 QT

It follows from the definition (55) of pY that the piecewise constant function p%-, defined by p%-(x) =
0% if ¢ € T, converges in L'(2) towards ¢". Therefore, since ¢ is smooth,

By — 0%¢(-,0)dz.

Let us define

Bé = / Fy, . - Vpdxdt.
Qr

Then it follows from Lemma 3.11 that

m—0o0

B, — —// (oVV + V) - Vpdadt.
T

To conclude the proof of Proposition 3.12, it only remains to check that

N
Bs —B4| <> 1 > agpl ok — o] daedt.

n=1 o¢=K|LEX

_ _ I
ot -t + / / AVICRE (3793
TmAU tn=1 JA,

Since ¢ is smooth and since d,n g = xx — 1 thanks to the orthogonality condition satisfied by
the mesh,

. n
R / / A,V -ngp|dedt < C,d, (1 + d,)
tn—1 AU

TmAa

for some C, depending only on ¢. Therefore,

N
By — By| < Culr+do) Y 7 D mopl|dhk — 7.

n=1 o¢=K|LEXS
Applying Cauchy-Schwarz inequality, one gets that

|Bs — Bs| < Co(7 + do)Crd |lps sl 1y — 0

m— 00

thanks to Lemma 3.7. O

4. NUMERICAL RESULTS

To check the correctness and reliability of our formulation we performed some numerical tests.
Before that, we are going to present some details on the solution of the nonlinear system involved
in the scheme.
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4.1. Newton method. Due to the explicit formulation of the optimality condition of the saddle
point problem (35), it appears extremely convient to use a Newton method for their solution. Given
un Tl = (¢"_1,p”_1) € R?7 solution of the scheme at the time step n — 1, the Newton method
aims at constructing a sequence of approximations of u” as u™*t! = u™* 4 dt, d* = (dk7d];)
being the Newton direction, solution to the block-structured system of equations

) s = e gl ] = 1)

In the above linear system, fﬁ, and ff, are the discrete HJ and continuity equations evaluated in

u™* and J’;,q&, J];’p, JI:,7¢, and J’:,’p are the four blocks of the Hessian matrix J* of the discrete
functional in (35) evaluated in w™*. The sequence converges to the unique solution u™ as soon
as the initial guess is sufficiently close to it, which is ensured for a sufficiently small time step by
taking u™? = u™~!. The algorithm stops when the /> norm of the discrete equations is smaller
than a prescribed tolerance or if the maximum number of iterations is reached. It is possible to
implement an adaptative time stepping: if the Newton method converges in few iterations the time
step 7 increases; if it reaches the maximum number of iterations the time step is decreased and
the method restarted. Issues could arise if the iterate u™F* reaches negative values, especially if the
energy is not defined for negative densities. To avoid this problem two possible strategies may be
implemented: the iterate may be projected on the set of positive measure by taking u™* = (u™*)7;
the method may be restarted with a smaller time step.

In case of a local energy functional, as it is the case for the Fokker-Planck and many more
examples, the block J f,ﬁ p 18 diagonal and therefore straightforward to invert. System (82) can be

rewritten in term of the Schur complement and solved for df;, as

k k E \—1 7k k _ ek k k-1 gk
(83) [Jd>,¢> - J«t,p (Jtzp) ! Jp,qb] dy = f¢ - J¢,p (Jmp) fp’
while djy = (J5 )7 (£ — T} 4 db).

Proposition 4.1. The Schur complement S* = J’(§,7¢> — J’;_’p (wa,)’1 Jﬁ@ is symmetric and neg-
ative definite.

Proof. S* is symmetric since JZ#, and Jf,,p are, while J’;’p = (wa,)T. The matrix J’;,p is positive
definite since the problem is strictly convex, whereas J 2,05 is negative definite if p?(’k > 0,VK €
T, since the problem is strictly concave, but it is semi-negative definite if the density vanishes
somewhere. Therefore, it is sufficient to show that the matrix J’;’p = (J];’d,)T = M + A" is
invertible. M is a diagonal matrix such that (M)g g = mg, whereas

(A =7 Y a(¢p o™t >0,
o=K|LeXk
and, for L # K,
(AW gL = —Ta,(¢7F — o) <0 ifo = K|L, (A¥) k. =0 otherwise.

Therefore the columns of A* sum up to 0, so that (J’;ﬁp) is a column M-matrix [28] and thus
invertible. O

In case the matrix J k, is simple to invert it is then possible to decrease the computational
complexity of the solution of system (82). Moreover, it is possible to exploit for the solution of
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FIGURE 1. Sequence of regular triangular meshes.

system (83) solvers which are computationally more efficient, since the system is symmetric and
negative definite.

4.2. Fokker-Planck equation. We first tackle the gradient flow of the Fokker-Planck energy,
namely eq. (3). In section 3 we showed the L! convergence of the scheme. Consider the specific
potential V(x) = —gx: for this case it is possible to design an analytical solution and test the
convergence of the scheme. Consider the domain Q = [0, 1]?, the time interval [0,0.25] and the
following analytical solution of the Fokker-Planck equation (built from a one-dimensional one):

1

2)
where o = 7% + %. On the domain Q = [0,1]2, the function o(z,y,t) is positive and satisfies the
mixed boundary conditions (Vo+ oVV)-n|sq = 0. We want to exploit the knowledge of this exact
solution to compute the error we commit in the spatial and time integration. Consider a sequence
of meshes (Tm,fm, (zK) KeTm) with decreasing mesh size hy,, and a sequence of decreasing time

o(z,y,t) = exp(—at + gx)(w cos(mzx) + gszn(my)) + mexp(g(x —

h . .
steps 7., such that % = T’;’% In particular, we used a sequence of Delaunay triangular meshes
such that the mesh size halves at each step, obtained subdividing at each step each triangle into
four using the edges midpoints. Three subsequent partitioning of the domain are shown in figure

1. Let us introduce the following mesh-dependent errors:

€ = Z lp% — o(xx,nT)|mg, —  discrete L' error
KeTm

er~ = max(ey), — discrete L°((0,T); L*(Q)) error,
n

€rr = ZT&?, — discrete L' ((0,7); L*(Q)) error,
n

where o(xk,n7,,) is the value in the cell center of the triangle K of the analytical solution at time
NTpy, n running from 0 to the total number of time steps IV,;,. The upstream Finite Volume scheme
with backward Euler discretization of the temporal derivative, namely scheme (49), is known to
exhibit order one of convergence applied to this problem, both in time and space. This means that
the L>°((0,T); L*(2)) and L'((0,T); L*()) errors halve whenever hy and 7 halve. We want to
inspect whether scheme (36) recovers the same behavior.

For the sequence of meshes and time steps, for m going from one to the total number of meshes,
we computed the solution to the linear Fokker-Planck equations and the errors, using both schemes
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TABLE 1. Time-space convergence for the two schemes. Integration on the time
step [0,0.25].

FV LJKO
h dt €],00 r €1 r €],00 r €1 r

0.2986 0.0500 0.1634 / 0.0350 / 0.1463 / 0.0334 /

0.1493 0.0250 0.0856 0.932 0.0176 0.997 0.0651 1.169 0.0145 1.120
0.0747 0.0125 0.0434 0.979 0.0087 1.015 0.0449 0.535 0.0066 1.134
0.0373 0.0063 0.0218 0.996 0.0043 1.009 0.0297 0.598 0.0033 1.007
0.0187 0.0031 0.0109 0.999 0.0022 1.004 0.0174 0.770 0.0017 0.943
0.0093 0.0016 0.0054 1.000 0.0011 1.001 0.0095 0.870 0.0009 0.947

TABLE 2. Time-space convergence for scheme (36). Integration on the time step
[0.5,0.25].

LJKO
h dt €L r €1 r

0.2986 0.0500 0.1186 / 0.0216 /

0.1493 0.0250 0.0618 0.9411 0.0109 0.9857
0.0747 0.0125 0.0307 1.0110 0.0053 1.0311
0.0373 0.0063 0.0152 1.0116 0.0026 1.0213
0.0187 0.0031 0.0076 1.0078 0.0013 1.0119
0.0093 0.0016 0.0038 1.0042 0.0006 1.0062

(49) and (36). The results are shown in Table 1. For each mesh size and time step m, it is
represented the error together with the rate with respect to the previous one. Scheme (36) exhibits
the same order of convergence of scheme (49). It is noticeable that the rate of convergence of the
former scheme senses a big drop and then recovers order one, especially in the L°°((0,T); L' (2))
error. This is due to the fact that the initial condition o(xk, 0) is too close to zero, and in particular
equal to zero on the set 1 x [0,1], and scheme (36) tends to be repulsed away from zero due to
the singularity of the gradient of the first variation of the energy. In Table 2 we repeated the
convergence test for the time interval [0.05,0.25]: the convergence profile sensibly improves.

To further investigate and compare the behavior of the two schemes, we computed also the
energy decay along the trajectory. We call dissipation the difference £(p) — £(0°°), where o™ is
the final equilibrium condition, the long time behavior. Since we are discretizing a gradient flow,
its dissipation is a useful criteria to assess the goodness of the scheme. The long time value of the
energy is equal to:

&€(lim o) :/ﬂtlggo(glogpfggw)dw
] T _gy_mlog(m) 7w 7
= exp()(T g~ e (- = s ).

mlog(m)
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It is possible to define the equilibrium solution also on the discrete dynamics on the grid. Namely,
the equilibrium solution p*° for the discrete dynamics is

p?{o = Mexp(—VK)7 Vi = V(CBK), VK €T,

as it can be easily checked to be the unique minimizer of the discrete energy &7 = > o E(pr)mx
subject to the constraint of the conservation of the mass,

o
5 —(Er+A > (o — Pi)mi)lpz = (log p% + 14 Vi + A)m =0, VK €T
PK KeT

= pg =exp(=(1+A) = Vi) = Mexp(-Vk), VKET,

with A lagrange multiplier associated with the constraint. M is the constant that makes p*>° have
the same total mass:
et PRMK
Ylker expT VK mK
It is immediate to observe that this is indeed the equilibrium solution for scheme (49), since with
such density the potential is constant:
_ &7(p)

oK = 7 lpe =logpgx + 14+ Vg =logM — Vg +1+ Vg =logM +1, VK €T.
K

M =

For the scheme (36) instead, as it appears clear from Lemma 2.1, whenever p% = p !, VK € T,
as it is the case for an equilibrium solution, the potential is constant. From the potential equation
one gets again
_ &7 (p)
Px =5
PK

In Figure 2 it is represented the semilog plot of the dissipation of the system in the time interval
[0, 3], computed for the two schemes, Er(p) — Er(p>°), and the real solution, £(o) — £(0™°). In
Figure 2a it is noticeable that scheme (36) dissipates the energy faster than the other, being indeed
a bit more diffusive. This is an expected behavior since the scheme is built to maximize the decrease
of the energy and this is actually one of the main strength of the approach. In Figure 2b, one can
see that the two dissipations tend to the real one when a finer mesh and a smaller time step are
used, for both schemes, despite the fact that (36) still dissipates faster. In the end, in Figure 2c¢
it is remarkable that for a very small time step the dissipations tend to coincide, as it is expected.
For the time parameter going to zero the two schemes coincide.

lpee =log M +1,VK € T.

4.3. Porous medium equation. The porous medium equation,
Oro =A™+ V- (0VV),

has been proven in [53] to be a gradient flow in Wasserstein space with respect to the energy

1
4 — - m
(84) E(p) Qm—lp doc—i—/Qdeac,

for a given m strictly greater than one. Our aim is to show that scheme (36) works regardless of

the uniform bound from below on the density. For this reason, we use an initial density p° with

compact support and a confining potential V(x) = ||z — 0.5||3. The equilibrium solution of the

2
m—1 1

gradient flow should then be the Barenblatt profile 0°°(x) = max((3%) = —2=L||z—0.5[3,0)= 1,
with M total mass of the initial condition.
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In Figure 3 the evolution of an initial density close to a dirac in the center of the domain
Q = [0,1)? is shown for the case m = 4. In Figure 4 it is represented the dissipation of the energy,
Er(p) — Er(p™), in semi-logarithmic scale, where p% = p>*(xk),VK € T. The energy &7 is
the straightforward discretization of (84), as it has been done for the Fokker-Planck energy. As
expected, the solution converges towards the Barenblatt profile.

4.4. Thin film equation. In order to show that scheme (36) can be employed also on more complex
problems, we consider the Wasserstein gradient flow with respect to the energy

1

Ep) =5 \Vp|2d:c+/dew,
2 Q Q

which gives rise to a phenomenon modeled by the thin film equation
do=—-V-(eV(A0)) + V- (eVV),

a particular case of a family of nonlinear fourth order equations [44]. The energy &(p) is discretized

as
_ 2
Er(p) = % Z (%) demg + Z prV(TK)my,
oEY KeT

where again we made use of the inflated gradient definition for the discretization of the Dirich-
let energy. Notice that even though the continuous energy functional £(p) is local, the discrete
counterpart is not. The matrix J ]:,’ p i (83) is not diagonal and the Schur complement technique
for the solution of the linear system (82) is not necessarily convenient anymore. In figure 5 it is
represented the evolution of an initial density with quadratic profile and compact support in the
domain Q = [0,1]2. The potential is V(z) = (z — 1)(y — 1).

4.5. Salinity intrusion problem. We want to show now that scheme (36) can be used for the
solutions of systems of equations of the type of (1). We consider the problem of salinity intrusion in
an unconfined aquifer. Under the assumption that the two fluids, the fresh and the salt water, are
immiscible and the domains occupied by each fluid are separated by a sharp interface, the problem
can be modeled via the system of equations

{atf—v- WfV(f+g+b)=0 inQx(0,7),
Og—V-(gV(vf+g+b)=0 inQx(0,T),
completed with the no-flux boundary conditions

Vf-n=Vg-n=0 ondQd x(0,T),

and initial conditions f(t = 0) = fo, g(t = 0) = go, with fo, go € L>=(2), fo, go > 0. The quantities
f, g, and b represent respectively the thickness of the fresh water layer, the thickness of the salt
water layer and the height of the bedrock. Therefore the quantity b+ g represents the height of the
sharp interface separating the two fluids. The parameter v = 2L is the ratio between the constant

mass density of the fresh and salt water. Equation (85) has been proven in [38] to be a Wasserstein
gradient flow with respect to the energy

(86) &0 = [ (5+g+ 07+ 570+07)dz.

The discretization of (86) is again straightforward. In figure 6 it is represented an evolution of
the two surfaces of salt and fresh water (see [1] for a full description of the test case). Given the
particular configuration of the bedrock b, the two surfaces are represented respectively by b + g

(85)
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and b+ g + f. Also this case is not covered from the theoretical analysis we performed on the
convergence of the scheme but still scheme (36) works. As already said, from numerical evidences
the scheme works under much more general and mild hypotheses.
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FIGURE 6. Evolution of the two interfaces of salt (red) and fresh (blue) water.



2.3. Euler flows 183

2.3 Euler flows

Articles:

e A Lagrangian scheme a la Brenier for the incompressible Euler equa-
tions. Found Comput Math 18: 835 (2018). https://doi.org/10.1007/
s10208-017-9355-y. Gallouét T.O. and Mérigot Q.

e Convergence of a Lagrangian discretization for barotropic fluids and
porous media flow. SIAM Journal on Mathematical Analysis (2021) https:
//hal.science/hal-03234144. Gallouét T.O., Mérigot Q., Natale A.

Collaborators: The first paper is a collaboration with Q. Mérigot. It combines
reinterpretation of Y. Brenier’s old ideas and Q. Mérigot’s new method that allows
to deal numerically with semi-discrete Optimal Transport. It was done when I was
a post-doc of Y. Brenier. The second paper is a collaboration with Q. Mérigot and
A. Natale. At this moment A. Natale was a post-doc under our supervision.

Main contributions:

e We constructed and implemented a Lagrangian numerical scheme for the In-
compressible Euler equations.

e We proved its convergence towards smooth solutions thanks to a relative en-
tropy methods. This is not new for Lagrangian methods. Numerically we
also observed a good behavior of the scheme with more rough initial condi-
tions and wider class models based on the Incompressible Euler equations
(with gravity, non homogenous fluid).

e In the second paper we constructed the same type of Lagragian scheme but
for compressible Euler equations.

e We proved the convergence of the scheme towards smooth solutions thanks
to a relative entropy methods.

e We proved that the same approached works also for the Wasserstein gradient
flows associated to the same energy. The proof of convergence is very similar.

e We implemented the scheme in both cases: Euler flows and Wasserstein gra-
dient flows.



https://doi.org/10.1007/s10208-017-9355-y
https://doi.org/10.1007/s10208-017-9355-y
https://hal.science/hal-03234144
https://hal.science/hal-03234144
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Research directions: Research directions around these questions are numerous
and well adapted for Phd subjects. It is one of the main axes of the new Inria
ParMA team, that I will held, based at the Laboratoire Mathématiques d’Orsay
(Paris Saclay University).

The main strength of these Lagrangian methods is that they are based on the physi-
cal energy and a nice geometrical structure for the PDE either Gradient flows Euler
Flows or Conservative flows (where the velocity is given by the rotation of the
Wasserstein gradient of the energy. So the next step is too add more physics in the
model throughout the energy, deduce the numerical scheme and try to adapt the
proof. let us mention some extensions.

e Fluid-structure interactions in the incompressible case. The scheme is very
suited for this interaction. We have to adapt the projection step taking into
account the structure. The proof of convergence works well for exemple if the
motion of the structure is given. Numerically the simulations works well also
with the full model (the motion of the structure is not given), a nice imple-
mentation is to approximate the whole space (fluid+structure) with particules
and enforce a constraint for the points coming from the structure. This work
is in progress.

e Incompressible Navier Stokes equation. The Lagrangian scheme interact per-
fectly with finite volume scheme such as the one presented in Section 2.2.2.
Indeed the Laguerre cells makes an admissible finite volume tesselation and
the quantity required to compute a finite volume approximation of the Lapla-
cian of the velocity are all given by the Laguerre cells. Numerical simulations
are very convincing see for instance the implementation done by B. Lévy in
[14]. From a theoretical point of view the finite volume discretization being
not consistant the proof of convergence is not straightforward but it seems to
work using a nice decomposition. This work is also in progress.

e Adding some interaction terms. The next step would be to add some interac-
tions terms in order to approximate for example Keller-Segel equations. I did
not look too much in this direction yet but the recent work of D. Bresch and
co-authors and S. Serfaty and co-authors [7, 2] are dealing with success with
relative entropy methods and interaction terms. A natural idea would be to
adapt the way they treat these interaction terms in the gronwall argument in
our context. I will submit this subject for a Phd student.

e Particules approximation of the semi-geostrophic equation. The semi
geostrophic equation can be recast as a conservative flow in the Wasser-
stein space. Numerical simulations can be done using a scheme based on
semi-discrete Optimal Transport. The proof of convergence for this scheme
presents some novel difficulties. This is an ongoing research conducted in
collaboration with Q. Mérigot and D. Bourne.
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ABSTRACT. We approximate the regular solutions of the incompressible Euler equations
by the solution of ODEs on finite-dimensional spaces. Our approach combines Arnold’s
interpretation of the solution of the Euler equations for incompressible and inviscid flu-
ids as geodesics in the space of measure-preserving diffeomorphisms, and an extrinsic
approximation of the equations of geodesics due to Brenier. Using recently developed
semi-discrete optimal transport solvers, this approach yields a numerical scheme which
is able to handle problems of realistic size in 2D. Our purpose in this article is to estab-
lish the convergence of this scheme towards regular solutions of the incompressible Euler
equations, and to provide numerical experiments on a few simple test cases in 2D.
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1. INTRODUCTION

The purpose of this article is to investigate a discretization of Euler’s equation for
incompressible and inviscid fluids in a domain Q C R¢ with Neumann boundary conditions:

ow(t,x) + (v(t,z) - V)u(t,x) = =Vp(t,z), forte[0,T], z€Q,

div (v(t,z)) =0 fort € [0,T], z € Q, @
v(t,z) -n=20 for t € [0,T], x € 092, '
v(0,z) = vo.

As noticed by Arnold [2], when expressed in Lagrangian coordinates, Euler’s equations can
be interpreted as the equation of geodesics in the infinite-dimensional group of measure-
preserving diffeomorphisms of 2. To see this, consider the flow map ¢ : [0,T] x Q — Q
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2 THOMAS O. GALLOUET AND QUENTIN MERIGOT

induced by the vector field v, that is:
%(Z)(t, z)=v(t,¢(t,x)) fortel0,T], ze€,
(0, ) = id, (1.2)
at¢(07 ) = p.

Using the formula %det Do(t,z) = div (v(t,x)) det Dg(t, x), the incompressibility con-
straint div (v(¢,2)) = 0 and the initial condition ¢(0) = id, one can check that ¢(¢,-)
belongs to the set of volume preserving maps S, defined by

S = {s € L2, RY) | 54 Leb = Leb} :

where Leb is the restriction of the Lebesgue measure to the domain €2 and where the
pushforward measure s Leb is defined by the formula s, Leb(A) = Leb(s~!(A)) for every
measurable subset A of Q. Euler’s equations (1.1) can therefore be reformulated as

%Qﬁ(t) = _vp(ta ¢(ta IE)) fOI‘ t e [0, T], T € 97
o(t,-) €S for t € [0,T7,

¢(07 ) = ida

atqb(O, ) = 1.

To obtain (1.3) one simply needs to derive (1.2). This equation can be formally interpreted
as the equation of geodesics in S. In particular the pressure term in the evolution equation
in (1.3) expresses that the acceleration of ¢ should be orthogonal to the tangent plane to
S at ¢. Indeed, note that the condition ¢(¢,-) € S in (1.1) encodes the infinitesimal
conditions divo(t,-) = 0 and v(t,z) - n(x) = 0 in (1.3). This suggests that the tangent
plane to S at a point ¢ € S should be the set {vop | v € Haiy(2)}, where Haiy (2) denotes
the set of divergence-free vector fields

Haiv (Q) = {v e L2(Q,RY) | /Qv Vo =0,VYp e CSO(Q)} .

(1.3)

In addition, by the Helmoltz-Hodge decomposition, the orthogonal subspace to Hgqiy(2)
in L2(Q,R?) is the space of gradients of functions. Therefore the evolution equation in
(1.3) expresses that j—;gb(t) L Ty4)S , in other words that ¢ — ¢(t,-) is a geodesic
of S. Note however that a solution to (1.3) does not need to be a minimizing geodesic
between ¢(0, -) and ¢(T,-). The problem of finding a minimizing geodesic on S between two
measure preserving maps amounts to solving equations (1.3), where the initial condition
0t#(0,-) = vg is replaced by a prescribed coupling between the position of particles at
initial and final times. It leads to generalized and non-deterministic solutions introduced
by Brenier [0], where particles are allowed to split and cross. Shnirelman showed that this
phenomenon can happen even when the measure-preserving maps ¢(0,-) and ¢(7,-) are
diffeomorphisms of © [23].

Previous work: discretization of geodesics in S. The first numerical experiments to
recover generalized minimizing geodesics have been performed by Brenier in 1D [9]. He
also proposed a scheme to compute the solutions of the Cauchy problem (1.3) in [5]. In
Brenier’s discretization, the measure-preserving maps are approximated by permutations
of a decomposition of the domain into cubes. The numerical implementation of this idea
relies on the resolution of a linear assignment problem at every timestep, whose cost is
unfortunately prohibitive for domains in dimension higher than one.

The discretization we consider in this article is a variant of this approach which is more
tractable computationally and leads to slightly better convergence estimates. As in [3],
the measure-preserving property (or incompressibility) is enforced through a penalization
term involving the squared distance to the set of measure-preserving maps S. This squared



A LAGRANGIAN SCHEME A LA BRENIER FOR THE INCOMPRESSIBLE EULER EQUATIONS 3

distance can be computed efficiently thanks to recently developed numerical solvers for op-
timal transport problems between probability densities and finitely-supported probability
measures [3, 20, 13, 18]. This alternative discretization has already been used successfully
to compute minimizing geodesics between measure-preserving maps in [21], allowing the
recovery of non-deterministic solutions to Euler’s equations predicted by Shnirelman and
Brenier in dimension two. The object of this article is to study whether this strategy can
be used to construct Lagrangian schemes for the more classical Cauchy problem for the
Euler’s equations (1.1), able to cope with problems of realistic size in dimension two.

Discretization in space: approximate geodesics. The construction of approximate
geodesics presented here is strongly inspired by a particle scheme introduced by Brenier [3].
We first approximate the Hilbert space M = L2(Q, R?%) by finite dimensional subspaces.
Let N be an integer and let Py be a tessellation of Q into N subsets (w;)1<i<n satisfying

1
Vie{l,...,N}, Leb(w;) = NLeb(Q)

hy := max diam(w;) <

1<i<N N1/d
where C' > 0 is independent of N. We consider My C M the space of functions from (2

to R? which are constant on each of the subdomains (w;). To construct our approximate
geodesics, we consider the squared distance to the set S C M of measure-preserving maps:

d3 :m € M, — min ||m — s||3.
seS

The approximate geodesic model is described by the differential equation in the finite-
dimensional space My:

in(t) + Y5 _ o for t € (0,77,
(m(0),7(0)) € M,

Note that the squared distance dS is semi-concave, so that its restriction to the finite-
dimensional space My is differentiable at almost every point. This differential system is
induced by the Hamiltonian H : My x My — R

dg(m)

H(m, ) = 5 il +

We now rewrite the differential system (1.4) in terms of projection on the sets S and
M. Since the space of measure-preserving maps S is closed but not convex, any point
in M admits a projection on S, but this projection is usually not uniquely defined. To
simplify the exposition we will nonetheless associate to any point m € M one of its
projection Ps(m), i.e. any point in S such that ||Ps(m) — m/||y; = ds(m). We also denote
Pyiy : M — My the orthogonal projection on the linear subspace My C M, which is a
linear map. We can rewrite Eq. (1.4) in terms of these two projection operators:

m(t)— Py oPs(m(t))
€2

(1.4)

(1.5)

(t) +
(m(0),712(0)) € M5,

=0, fort>0,
(1.6)

From Proposition 5.2, the double projection Py, o Ps(m) is uniquely defined for almost
every m € My.

Remark 1.1. Equation (1.6) can be rewritten as a system of N particles in interaction,
whose positions are denoted M;(t),..., My(t) € RL Denoting 1,, the indicator function
of the set w; C €2, we introduce

W (M., My) € ®RYN = a3 Mil,,),

(2
and we denote B;(My,...,My) =V, W (M, ..., My). As explained in Proposition 5.2,
the points (B;(Mi, ..., My)); are barycenters of a decomposition of €2 into N cells which
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depend on the solution to the optimal transport problem between Leb and the empirical
measure > 1<i<n On;- With these notations, Equation (1.6) is then equivalent to

{Mi(t) + 5 (M;(t) — Bi(My(t),...,Mn(t))) =0, fort>0and i€ {l,...,N}, wn

(M(0), M(0)) € (RN x (RN

Loosely speaking, equations (1.4)—(1.6) describe a physical system where each particle

M;(t) is subject to the force of a spring with stiffness 1 attached to the point B; (M (¢), ..., My(t))
which varies in time and depends on the position of all the particles. Equation (1.7) is

also the Hamiltonian system associated to H : (RY)N x (RH)V — R

N
H(M, M) = %Z|Mi|2+W(M), (1.8)
=1

In the case of an non-homogeneous fluid with varying volume masse, such as a mixture of
oil and water, an analogue discretization would involve a system of particles with different
masses p;. This corresponds to replacing the Hamiltonian by

N
) 1 )
H(M, M) = 5 X;pirMiIQ + W(M). (1.9)
1=
In this last formulation, it is also possible to add potential terms, such as gravitation. This
will be the case for the simulation of the Rayleigh-Taylor instability in subsection 5.4.

We first prove that the system of equations (1.4) can be used to approximate regular
solutions to Euler’s equations (1.1). Our proof of convergence uses a modulated energy
technique which is similar to that used in [3] and requires C1! regularity assumptions on
the solution to Euler’s equations. See also [10, 12] for related works.

Theorem 1.2. Let Q be a bounded domain of R® with Lipschitz boundary. Let v,p be a
strong solution of Euler’s equations (1.1), let ¢ be the flow map induced by v (see (1.2))
and assume that v, p, v, Op, Vv and Vp are Lipschitz on 2, uniformly on [0,T]. Suppose
in addition that there exists a C* curve m : [0,T] — My satisfying the initial conditions

m(0) = Puy (id),  m(0) = Py (0(0, ),

which is twice differentiable and satisfies the second-order equation (1.4) for all times in
[0, T, possibly up to a countable number of exceptions. Then,

h2
n—o(t, ¢(t, )|y < C1—X + Coe® + C3h 1.10
féﬁ%”m v(t, 6(t, )l < Crg + Coe” + Cshy (1.10)
where the constants Cy, Co and Cs only depend on 2, on the L>° norm (in space) of the

velocity v(t,-) and on the Lipschitz norms (in space) of the velocity and its first derivatives
Vo(t,-),0w(t, ) and of the pressure and its derivatives p(t,-), Vp(t,-), Op(t,-).

The values of C1, C2 and Cs are given more precisely at the end of Section 3. Note
that the hypothesis on the solution m to the differential equation (1.4) is introduced here
mainly for technical reasons. Removing it is not of our main concern in this paper since
we also give a proof of convergence of the fully discrete numerical scheme regardless of this
assumption. It is likely that solutions to (1.4) satisfying this hypothesis can be constructed
through di Perna-Lions or Bouchut-Ambrosio theory [1, 4, 19], see also [10, Appendix].

Remark 1.3. Remark that (1.10) implies the convergence of the associated flows. In
particular integrating inequality (1.10) one can show that

h2
max ||[m(t) — ¢(t)|2g < 2h% + 2T (01]2\[ + Che? + CghN) .
t€(0,T) 5
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Discretization in space and time. To obtain a numerical scheme we also need to
discretize in time the Hamiltonian system (1.6). For simplicity of the analysis, we consider
a simple first-order scheme called symplectic Fuler scheme with timestep 7 > 0. The
double projection Py, o Ps(m) is defined as above. The discrete solution consists of two
sequences M™, V"™ in the finite-dimensional space My, given by:

(MO VO) € My
Vil =V — 5 (M™ — Py o Ps(M™)) (1.11)
Mn+1 - M" +Tvn+1

Note that numerically, the piecewise-constant map M™ : @ — R? (resp. the piecewise-
constant vector field V™ : Q — R?) is simply encoded by an ordered list of N points
(resp. N vectors), so that this scheme can be considered as describing a dynamical system
involving N particles. We have the following theorem, where we denote t" = nr.

Theorem 1.4. Let Q be a bounded domain of R with Lipschitz boundary, let € and T be
positive numbers and let N € N. Let v,p be a strong solution of (1.1), let ¢ be the flow
map induced by v (see (1.2)) and assume that v,p, O, dp, Vv and Vp are Lipschitz on
Q, uniformly on [0,T]. Let (M"™, V"), ~, be a sequence generated by (1.11) from

M = Py, (id), V° = Py, (v(0,-)).
Assuming 7 < e and hy < &, we have

h2 T
max VP —o(t <Cleé+hy+ X +—,
[V = ot (e, ) v y
where the constant C' only depends on €2, on the L norm (z'n space) of the wveloc-
ity v(t,-) and on the Lipschitz norms (in space) of the velocity and its first derivatives

Vu(t,-),0w(t,-) and of the pressure and its derivatives p(t,-), Vp(t,-), Owp(t, -).

In order to use the numerical scheme (1.11), one needs to be able to compute the double
projection operator Py, o Ps or equivalently the gradient of the squared distance dé for
(almost every) m in M. Brenier’s polar factorization problem [7] implies that the squared
distance between a map m : {2 — R and the set S of measure-preserving maps is equal to
the squared Wasserstein distance [24] between the restriction of the Lebesgue measure to
(2, denoted Leb, and its pushforward my Leb under the map m:

dd(m) = min |[m - s||> = W3(my Leb, Leb).
se

Moreover, since m is piecewise-constant over the partition (w;)i<i<n, the push-forward
measure my Leb if finitely supported. Denoting by M; € R? the constant value of the
map m on the subdomain w; we have

m#Leb— Z Leb wl 5M = Z 6M

1<i<N 1<z<N

Thus, computing the projection operator Pg amounts to the numerical resolution of an
optimal transport problem between the Lebesgue measure on €2 and a finitely supported
measure. Thanks to recent work [3, 20, 13, 18], this problem can be solved efficiently in
dimensions d = 2,3. We give more details in Section 5

Remark 1.5. The idea of using optimal transport to impose incompressibility contraints
has recently been exploited as a heuristic for computational fluid dynamics simulations in
computer graphics [14]. From the simulations presented in [14], it seems that the scheme
behaves better numerically, and it also has the extra advantage of not depending on a
penalization parameter €. However, it comes with no mathematical convergence analysis,
and even its (formal) consistence is not obvious. It would therefore be interesting to extend
the convergence analysis presented in Theorem 1.4 to the scheme presented in [14]. This
however probably requires new ideas, as our technique of proof relies heavily on the fact
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that the space-discretization is hamiltonian, an assumption which does not seem to hold
for the discretization of [11].

Remark 1.6. Our discretization (1.4) resembles (and derives from) a space-discretization
of Euler’s equations (1.1) introduced by Brenier in [8]. The domain is also decomposed
into subdomains (w;)1<i<n, and one considers the set Sy C S, which consists of measure-
preserving maps s : {2 — ) that are induced by a permutation of the subdomains. Equiv-
alently, one requires that there exists a permutation s : {1,...,N} — {1,..., N} such
that s(w;) = w(;)- The space-discretization considered in [3] leads to an ODE similar to
(1.4), but where the squared distance to S is replaced by the squared distance to Sy. This
choice of discretization imposes strong contraints on the relative size of the parameters 7,
hy and €, namely that hy = O(e®) and 7 = O(e*). Such constraints still exist with the
discretization that we consider here, but they are milder. In Theorem 1.4 the condition
7 = o(e?) is due to the time discretization of (1.6) and can be improved using a scheme
more accurate on the conservation of the Hamiltonian (1.5). However even with an exact
time discretization of the Hamiltonian, the condition 7 = o(e) remains mandatory, as
explained at the end of Section 4.

2. PRELIMINARY DISCUSSION ON GEODESICS

To illustrate the approximate geodesic scheme we focus on the very simple example of
R seen as R x {0} C R2. The geodesic is given by the function v: [0,7] — R? with

’Y(t) = (t7 0)7 te [OvT]7

7(0) = (0,0), (2.1)
7(0) = (1,0).
As in (1.4) we consider the solutions of the Hamiltonian system associated to:
Hm, ) = Ll ? + 55 0y (). (22)
That is
m(t) = }2 (Pr(m) —m) = ﬁVd%KX{O}(m), t €[0,T],
m(0) = (0, ho), (2.3)
m(0) = (1, ha).

where Pg(m) is the orthogonal projection from R? onto R x {0}. Notice that we assumed
an initial error of hg on the initial position and h; on the initial velocity. In this case the
solution is explicit and reads

€

t t
m(t) = <t, hg cos — + €hq sin ) . (2.4)
€

A convenient way to quantify how far m is from being a geodesic is to use a modulated
energy related to the Hamiltonian H and the solution v. We define £, by

B,(6) = 5lli(®) = SOIP + 55 o) (m (1)) (25)

A direct computation leads to
2

h
E(t) = ?3 + hi. (2.6)

This estimate shows that the velocity vector field 7 converges towards the geodesic veloc-
ity vector fields + as soon as hg goes to 0 faster then e. Our construction of approximate
geodesics for the Euler equation follow this idea. Estimates (2.6) suggests that our con-
vergence results for the incompressible Euler equation in Theorem 1.2 is sharp.

3. CONVERGENCE OF THE APPROXIMATE GEODESICS MODEL

In this section we prove Theorem 1.2.
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3.1. Strategy of the proof. We use a modulated energy approach. Let v be a solution
of (1.1) and m a solution of (1.4) and for any ¢ € [0, T, denote o(t) = Ps(m(t)). In other
words, o(t) is an arbitrary choice of a projection of m(t) on S. Equation (1.4) is the ODE
associated to the Hamiltonian H : My x My — R
dg(m)
H(m, ) = *H I+ =5

We therefore consider a energy involving this Hamiltonian, modulated with the exact
solution v:

dg(m)

2e¢2
The core of the proof is to obtain a control on E, using a Gronwall estimate. As a first
step we collect some lemmas. Lemmas 3.1 and 3.2 concern the projections Iy, and Ilg
and their orthogonality properties. Lemma 3.3 is necessary to ensure that the modulated
energy introduced in (3.1) is well defined (the difficulty is that there is no reason that
m(t,2) C Q, and it is therefore necessary to extend v outside of §2). Then we compute
the derivative of (3.1) and modify its expression so as to identify terms of quadratic order,
which are easier to control. This leads us to (3.7), which expresses the derivative of (3.1)
as a sum of many terms. Each term is then estimated to obtain a Gronwall control. we
keep track of the constants all along the proof.

Fult) = llin(t) — o, m(e) [ + (31)

3.2. Preliminary lemma. Before proving Theorem 1.2, we collect a few useful lemmas.
As before, Q is a bounded and connected domain of R? with Lipschitz boundary.

Lemma 3.1 (Projection onto the measure preserving maps S). Let m € M = L2(Q,R9).
There exists a convez function ¢ : 8 — R, which is unique up to an additive constant, such
that o € M belongs to lls(m) if and only if m = Voo up to a negligible set. Moreover,
m — o is orthogonal to the space Haiy(S2) 0 o, that is

Vo € Han (), / (m(z) — o(2)|v(o(z)))dz = 0. (3.2)
Q
Proof. The first part of the statement is Brenier’s polar factorization theorem [7]. We
first remark that
d3( f — dx > inf —y||*d = W3(my Leb, Leb).
) = inf [ (@) = s@)lPdr = ot f eyl Pan(e,) = Wiy Leb, Leb)

To prove the reverse inequality let Vi be the optimal transport map between my Leb =
> i<icn Om; and Leb. Let L; = Vo }(M;), by construction Leb(L;) = +. For any
i € {1..N} let o; be a measure preserving map between w; and L;, we define a measure
preserving map o € S by o, = 0; (anything can be done on the boundaries of the cells).
By construction m = Vi o o and W3(my Leb, Leb) = ||m — o||?.  The uniqueness of ¢
follows from the connectedness of the domain. Using a regularization argument we deduce
the orthogonality relation

/Q () o(o(x)))dz = /Q (Voo (@)[v(o(@)))dz = /Q (Voo (@) |o(z)) = - /Q pdivo(z) :g

Lemma 3.2 (Projection onto the piecewise constant set My). The projection of a function
g € L2(Q,RY) on My is the following piecewise constant function :

N
) 1
v, (9) = ZGilwm with G; = Leb(wr) /w g(x)dz

=1

and where 1., is the indicator function of the subdomain w;.
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Proof. It suffices to remark that for any m € My, m = ZlgiSN M;1,,,
(imhe = [ (m@)lge)de = 30 (0] [ o)) = ml Gt O
1<i<N Wi i

Lemma 3.3. Let Q C R?, let (V,].]|) be a finite-dimensional normed vector space. There
exists a linear map L : CHVY(Q, V) — CYY R, V) such that for any f € CHH(Q, V),

(i) Lflg=1.
(ii) | Lflleraayy < CHLSllera -
Proof. This lemma is a particular case of Theorem 2 in [16]. We also refer to [11, 15] for
previous results. O

We are now ready to prove Theorem 1.2. In the following the dot refers to the time
derivative and (.|.) to the Hilbert scalar product on M. By abuse of notation we denote
by the same name a C1'! function defined on Q and its (also C1!) extension defined on the
whole space R? using Lemma 3.3. The space R? is equipped with the canonical Euclidian
norm, and the space of d x d matrices are equiped with the induced dual norm. All the
Lipschitz constants that we consider are with respect to these two norms. Finally for a
curve 7 : t € [0, 7] — (¢, -) we denote Lipy 1)(7) = supsefo,r) Lip(V(Z; )

Material derivatives. Given (v,p) € C*([0,T],CH (R4, RY)) x ([0, T],C (R, R?)) and
X € M, we define the two following functions, often called material derivatives:

Dtv(ta X) :8tv(t7X)+ (U(taX) 'V)U(t,X), (3 3)
Remark that Dyv and Dyp are Lipschitz operators with
Lipjo 1 (D¢v) < Lipp,1)(9¢v) + Lipp,1)(v)|| V| Lo + Lipjo, 1y (Vo)|[v| Lo (3.4)
< Lipjo,1)(9v) + Lipjo,1)(v) Lipp, 1y (v) + Lipjo, 11 (VV)|[v| Lo '
Lipjo1)(Dep) < Lipp,11(9ep) + Lipjo,1)(0) | Vpl| Lo + Lippo 11 (V)] oo (3.5)

< Lipjo,11(0:p) + Lipp,11(v) Lipp,1)(p) + Lipp,1(Vp) v 2o~ -

3.3. Proof of Theorem 1.2. We can now go to the proof of Theorem 1.2. Note that
we need to use Lemma 3.3 to define the modulated energy F, in (3.1) since the maps
m(t,-) € My can send points outside of  when (2 is not convex.

3.3.1. Time derivative. We compute %Ev (t) and modify the expression in order to identify
terms of quadratic order. Since the Hamiltonian H (mn(t), m(t)) is preserved, we find
d . . .
S Eo(t) = —{(t), v(t, m(t)) — (i(t) —v(t, m(t)), do(t, m(t)) + (i(t) - V) v(t, m(?))) .

Il 12

(3.6)
Using the EDO (1.4), I; can be rewritten as

)
(m(t) = Puy (a(t)), v(t, m(t)))

= (m(t) — o (t),v(t,m(t))) + (o(t) = Puy (a(t)), v(t, m(t)))
= (m(t) —o(t),v(t, m(t)) —v(t,a(t))),

-~

€213

6211

where we have used that o(t) — Py, (o(t)) is orthogonal to My and that m(t) — o(t)
is orthogonal to Hgiy(2) o o, see Lemmas 3.2 and 3.1. To handle the term I we use
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the material derivatives defined by (3.3). Remark that Euler equations (1.1) implies that
Dyv(t,o(t)) = —Vp(t,o(t)). This leads to

Iy = = (i(t) — v(t,m(t)), v (t, m(t)) + (v(t, m(t)) - V) v(t, m(t)))
— (i(t) —o(t,m(t)), (m(t) —v(t,m(t) - V) v(t, m(t)))

~~

1y
= Iy — (m(t) —v(t,m(t)), Dw(t,m(t)) — D(t,o(t))) + (m(t) —v(t,m(t)), Vp(t,o(1)))

~~

I5 16

We rewrite Ig as

Is = — (m(t) —v(t,m(t)), Vp(t, m(t)) — Vp(t, o(t))) + (ri(t) — v(t, m(t)), Vp(t, m(t)))

17
=1; + % /Qp(t,m(t,w)))dx—/Q(‘)tp(t,m(t,a?)) — (v(t,m(t,z)), Vp(t,m(t,x))) dx
—J(#)

:_dm)+17_/9Dtp(t,m(t,x))dx.

dt

I

Remark 3.4. The quantity I5 + Iy would vanish if (v,p) was a solution to the Euler
equations on the whole space R%. This is not the case in our setting, as the couple (v,p)
is constructed by the extension Lemma 3.3.

Collecting the above decompositions (3.6) rewrites

d

d
T () = I3+ Lot I+ Iy + Is — = T (1), (3.7)

dt

3.3.2. Estimates. Many of the integrals I3, I4, ... can be easily bounded using the energy
FE, and Cauchy-Schwarz’ and Young’s inequalities. First,

(m(t) = o(t), v(t, m(t)) = v(t,o(t)))

I3 <

62
m — 0 2
< Lip(u(e) O =70 < iy ), 0) (33)
Furthermore
14 < sup [Vt )| n(®) — v(tm(1)) [ < Lipoiny () Bu0). (39)

z€RL
Where C' depends only on the dimension d. To estimate I5 and later Ig we use that Dyv
and Dyp are Lipschitz operators with constants given by (3.4) and (3.5). For I5 we obtain
Is < [(1i(t) — v(t, m(t)), Dyo(t, m(t)) — Dy(t, o(t)))]
< Lipp, 1) (Dyo)|Jn(t) — v(t, m(t))|nal[m(t) — o () [[m
< eLipy,1(Drv) Ey(2), (3.10)
where we used dg(m(t)) = [|m(t) — o(t)|lyy < e/ Eu(t) and [|rin(t) —v(t,m(t))||m < /Eu(t)
to get from the second to the third line. The quantity I7 can be bounded likewise:
I < [(m(t) — v(t,m(t)), Vp(t,m(t)) — Vp(t, o(1)))]
< eLip1)(Vp) Eu(1). (3.11)
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Finally to estimate Iy and J we can assume that [, p(t,z)dz = 0 since the pressure is
defined up to a constant. Using that o(t) is measure-preserving, this gives

/Dtp(t,a(t,aj))da: = / op(t,o(t,x)) + (v(t,o(t,z)), Vp(t,o(t,z)))) dx
Q Q

— [ owtta)do+ [ (v(t.2), Volt.2) do =,
Q Q
Therefore, using Young’s inequality,
| Dvtt.mit.o)ds ~ | Diptt,o(t,2))ds
Q Q

_ 1llm(t) — o (t)l72q)
-2 2¢2

1 .
iEv(t) + C(Q) Lipg,j(Dip)€?, (3.12)

Is < < Lipjo,1)(Dep)[|m(t) — o ()l 11 (o)

+ C(Q) Lipjo,m (Dyp)é?

IN

where in this estimates and in the following estimates C'(2) is a constant depending only
on the Lebesgue measure of €. Similarly,

[J(®)] < /Qp(t,m(t,w)))—p(t,U(t,x)))dw < Lipjo,j(p)|lm(t) — o()l|10)

1 .
< S Bu(t) + C(Q) Lipzy (p)e”. (3.13)
We finally remark that
|7(0)| < Lipjo1y(p)hn- (3.14)

Remark 3.5. The last two estimates show that we can add %J into the Gronwall argu-
ment. It is a general fact that the derivative of a controlled quantity can be added. This
is a classical way of controlling the term of order one in the energy.

3.4. Gronwall argument. Collecting estimates (3.8), (3.9), (3.10), (3.11), (3.12), we get

d
7 (Ey(t)+ J(t) <Is+I4+ 15+ I; + Iy

. . . 1
< [2 Lipyo,1)(v) + €Lipjo 1 (D) + eLipjo, 1 (Vp) + 5 | Eu(t)

+ C(Q) Lipy 1y(Dip)€?
Remark that (3.13) implies that for any K > 0,
KE,(t) < KE(t)+2KJ(t)-2K J(t) < 2K E,(t)+2K J (t)+2KC(Q2) Lipo 1) (p)e®. (3.15)
Therefore, setting
C1 =0(Q) (4 Lipyo, 11 (v) + 2€ Lipjo 11 (Dsv) + 2¢ Lipy 11(Vp) + 1),
Cy =C(Q) (Lip[o,T}(Dtp) + C1 Lipp 1y (p)> ;
we obtain
pr (Ey(t) + J(t)) < CL(By(t) + J(t)) + Cae®.
We deduce from the Gronwall inequality that for any ¢ € [0, T:
E,(t) < ((EU(O) +.J(0)) + 52T62> AT — J(b).
Using the estimation (3.13) one more time we obtain
E,(t) <2 (EU(O) + Lipp, 1) (p)h + 52Te2) e + C(Q) Lipjo 7y (p)€”.
Finally, using that
d3(1d
22— 2 2¢2

1
Ey(0) = 51 Pa(vo) — vollds +
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we obtain

i (t) = v(t, m(t)) 5 < 2B (t)

h2 h2 . ~
<224+ X4 Lipjo,1)(p)hn + CoTe? ) 1T
2 2¢2 ’
+ C(Q) Lipo 1 (p)€’] (3.16)
2
< O + Che* + Cihy (3.17)

where N
Ccl =2e0T
Gl = (CoTeT +C(9) Lip 1y(p)
Cy = (1+ Lipp,7)(p))e™”.
In order to estimate ||m(t) — v(t, qb(t))||§,ﬂ we need one additional Gronwall estimate:
[1ia(t) — v(t, d(8)ll3g < 2 [lm(t) — v(t, m()) |y + 2 ot m(t)) — v(t, (t))|lig
< 2B, (t) + 2(Lipp.)(v))? [Im(t) — 6(1) 17
< 2E,(t) + 4(Lipyy 1y (v))? [m(0) — 6(0)]I3

Llp[o T] H/ dS

< 2B, (t) + 4(Lipjo,1y(v))* ki + 4T (Lipp,1) (v / H H;I

2

h2
< 016712\[ + 0/62 + 4(Lip[0 ] (’U))Qh?\[ + CéhN

+ 4T (Lipp, 1) (v / Hm b(s H ds (3.18)

where we used Jensen’s inequality to obtain the second to last line. We conclude thanks
to Gronwall inequality:

h .
rin(t) — v(t, SO < (c T Che? + 4((Lipioyz (0)) 2oy + c§>hN> AT WD 714

h2
< 01715 + Ca€® + Cshy. (3.19)

We used that € and hy are smaller than C(Q2) for (3.17) and (3.19). Observe that the
right-hand side of (3.17) and (3.19) goes to zero provided that h?N and e go to zero. This
finishes the proof of Theorem 1.2.

Remark 3.6. Using (3.4) and (3.5), the constants Cy, Cs are bounded by:

ety C1 < 1+ 4Lip 1) (v) + 2€Lipg 1y(Vp)
+2¢ (Lipjo,1)(v) + (Lip(o,1)(v))? + Lipjo, 1 (V) [0 L) ,
(e[ )Cz < Lipjo,11(p) + Cr [Lipjo,1)(9hp) + Libpo,r)(v) Libjo,7) (p) + Lipo,ry (VP [[vl| <]

A close look to the explicit value of the constants Cy, Cy and €Y, C3, C4, together with a
diagonal argument shows that our scheme can be used to approximate solutions less regular
than those supposed in Theorem 1.2. For example, it is possible to establish the following
theorem: Let v, p be a solution of Euler’s equation (1.1), where v is merely Lipschitz in
space but where there exists (vg, pr)ken a sequence of regular (in the sense of Theorem 1.2)
solutions of (1.1) such that v(0,-) — v(0,-) in M and Lipy(vgx) — Lipp(v). Then there
exists Nj and €y, depending polynomially on the data such that |7 (t) — v (t,me(t)) |3
goes to zero as k goes to infinity, where my, is the solution of (1.6) with initial conditions
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mk(0) = Puy, (1d) and 7,(0) = Pay, (v£(0)) and with parameter € = €. If one allows an
exponential dependence on the data, it is possible to approach any solution whose velocity
v belongs to the L? closure of the regular solutions to Euler’s equation.

4. CONVERGENCE OF THE SYMPLECTIC EULER SCHEME

In this section we prove a statement which is slightly more general than Theorem 1.4
(see Remark 4.3), and which allows a sort of a posteriori estimates. The proof follows the
proof of Theorem 1.2, but one has to deal with some additional term coming from the time
discretization. It combines two Gronwall estimates. The first one is a continuous Gronwall
argument on each segment [n7, (n+1)7], and the second one is a discrete Gronwall estimate
comparing a timestep to the next one. Both steps rely on the same modulated energy.

Theorem 4.1. Let € be a bounded domain with Lipschitz boundary and let €, T positive
numbers and let N € N. Let v,p be a strong solution of (1.1), and let ¢ be the flow
map induced by v (see (1.2)). Assume that v,p,0w,0p, Vv and Vp are Lipschitz on
Q, uniformly on [0,T]. Let (M™, V"), <, be a sequence generated by (1.11) with initial
conditions B
M = Py, (id), V° = Py, (v(0,-)).

Finally let

dg(M™)

o (4.1)

1
H"=HM", V") = QHV"H?MI +
and

K= max (H" — HO) .
neNN[0,T/7]
Then, assuming T < ¢ and hy < €, we have
2

h T
max vVt —o(t", o(t", - <ClEé4+hy+Y+ -4k,
s [V o607, Dl < WAl
where the constant C' only depends on 2, on the L™ norm (in space) of the wveloc-
ity v(t,-) and on the Lipschitz norms (in space) of the velocity and its first derivatives
Vu(t,-),0w(t, ) and of the pressure and its derivatives p(t,-), Vp(t,-), Op(t,-).

4.1. Preliminary lemma. Given a solution of (1.11) and s € [0,1] and n € N, we denote
the linear interpolates between two timesteps n7 and (n + 1)1 by:

{Vn+s —yn— STMTL_PMNOPS(M")

e (4.2)
M = M 4 stV

We consider the Hamiltonian H""* and modulated energy E™"¢ defined by

He = v+ S,
€
Erts = Lyynts _ + Mrts 2 + d(Mnte) (4'3)
=3l v((n+s)r, Mt + 5=
We start with a lemma quantifying the conservation of the Hamiltonian.

Lemma 4.2 (Conservation of the Hamiltonian). For any s € [0,1] and n € NN [0,T/7],

7_2
(1 — 2) H"W < H™, (4.4)
€
H" < Celm (4.5)
2
H" < H' + %H”“, (4.6)

Proof. The proof is based on the 1-semiconcavity of %dé, see Proposition 5.2 for details.
On the one hand the 1-semiconcavity of %dé reads

d3(M"ts)  dE(M™) M"™ — Py, o Ps(M™)\  s°72
) 2¢2 < 8262 T <Vn+1’ 16\72 >+ 2¢2 HVH—HHI%/H’
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where we used that M"™ — Py, o Ps(M™) belongs to the superdifferential of the function
dZ at M™, and the definition of the scheme (4.2). On the other hand, (4.2) again, leads to

HVTH_S”%/JI _ HVnHI%/JI . <V" M"™ — Py OPS(M”)> 4202 2

M™ — Py, o Ps(M™)

2 2 €2 €2 M
Summing both equations and using (4.2) gives
25(s — 1) | M™ = Py, o Ps(M™)|? 2 |ty 2
Hn+8 S H" 4 T S(S 1) H My © S( )HM + SQL HV HM (47)
€2 €2 €2 2
Taking s = 1 in (4.7) proves (4.4). The inequality (4.5) is a direct consequence of (4.4),
while (4.6) follows from the combination of (4.4) and (4.7). O

Remark 4.3. Lemma 4.2 gives an upper bound for x in Theorem 4.1 namely

(1 h%
K < Z ‘HnJrl o HTL} < ;TGTTG 2 <2”V0||I%/JI + 222) )
neNN[0,7'/7]0

Using this upper bound Theorem 4.1 becomes Theorem 1.4 and the condition x = o(1)
becomes 7 = o(e?). However numerically one can expect some compensation in H" and
thus obtain a better “a posteriori bound” for  in order to get rid of the strong assumption
7 = o(e?). Figure 5.4 illustrates the conservation of the Hamiltonian in two test cases.
Notice that this estimate is not a posteriori in the usual sense since the constants in
Theorem 4.1 also depend on the unknown limiting solution. The condition 7 = o(e€) seems
mandatory for the proof techniques to work.

4.2. The modulated energy. Remark that with the definitions of the Hamiltonian and
modulated energy, we have

B = B (U (4 sy, M) % v ((n+ ), M), (4.8)
so that for any s € [0,1] and any n € N,
E"tS = E" 4+ H™ — H" 4 / s (4.9)
where O
= L (e am ) 4 L o (o sy e ]

To evaluate d"%, we introduce o” = Ps(MP) and we will use the compact notation
it =v((n+ s)T, MP), ot = dw((n+ s)r, MP), Vo = Vo((n + s)7, MP),

v = v((n + s)1,0P), o = Ow((n + s)1,0P), Vol = Vo((n + s)7,0%).
We will also use a similar notation for the material derivative of the velocity and for the

pressure and its derivatives.

Remark 4.4. As before, the main idea of the following computation is to try to find
terms of quadratic order in the expression. To control the remaining linear term we have
to rewrite it as a derivative of a small quantity and add it in the Gronwall argument.

d d d
+s _ +s ,nt + + + +
dnts = — <d8V" S,U%nis> - <Vn % dsvz@n‘is> + <”nMns+sa dsvg}nis>

d
-2
=7e " (M" — Py o Ps(M"), v}%s.) — <Vn+8 = e TOW s+ M VU

I
1 I
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Recalling that ¢ = Ps(M™), the term I; can be rewritten as

I1:7'672<M"—PMN(0”) nts >

’ Mn+s
—7'672<M" o ,v%ig>+< — Py (0"), nM'tig>
:T672<Mn_ n7 %s_'_g Un+s>
I3

Here we had to control the fact that, due to the double projection, the norm of the
acceleration ||M™ — Py, o PS(M”)H%/JI is not equal to the squared distance d2(M™). We
used the orthogonality property of the double projection for that purpose. On the one
hand o™ — Py, (™) is orthogonal to My since My is a linear subspace of M. On the
other hand M™ — ¢™ is orthogonal to the tangent space to S at ¢”, see Lemma 3.1.

To handle the term Iy we use the material derivatives defined in (3.3),

d
_ n+s n—+s n+s n+s n+s
I, =— <V — U nrss TOW ks + —dsM -V

_ n+s n+s n+s n+s n+s
I2 - <V - UMn+577_at’UMn+s + TUMn+5 : Van+s>

d
n+s n+s n+s n+s n+s
- <V UMn+.s7 <dSM TUMn+.s : V/UM’VLJrS
Iy
— I4 T <Vn+s o n+s Dt Mn+s Dtanrs > +T <Vn+s o n+s vanrs > )

Mn+s’ o-n+s Mn+s’ o-n+s

I5 Is

We used that Dtvnjfs =-V ijs We now rewrite Ig using %M"“‘S =7yl
_ —+ n—+s n-+s n-+s —+ n—+s n-+s
I6 =T <Vn s UM7L+& 9 vpo-n+s - va7L+S> +T <Vn s UM’IL+& 9 van+s>
I7

— I7 4 <jMn+s’vpn+s > +7_<Vn+s _ Vn+l,Vpn+S > . 7_< n—+s Vpn+s >

Mn+s Mn+s Mn+5 9 Mn+s
+ + + +
- I7 + R / p?wns-‘—sd:c T/(atp%ni—s + < 7\471,84—37 vp?wns+s>)dx
_J’n+a

+ (1= 5)r% 2 (M" — Ry o Ps(M"), Vi)

—~
Ig

d
=17+ Ig— £Jn+s — TADtp%8+sdwa

Iy

We need to estimate all the terms in the following formula.

d
A" =Ig+ Iy + Is+ I7 + Ig + Iy — de”+8 (4.10)
S

4.3. Gronwall estimates on [n7, (n + 1)7]. From now and for clarity we do not track
the constants anymore, and C' will be a constant depending only on T', €2, Lipp 1 (v),
Lipo,1)(p), Lipp,1(VP), Lipj,1(Drv) and Lipp 1(Dsp). The value of the constant C' can
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change between estimates. Using (4.2) and Young’s inequality we obtain for Is:
I3 =71¢ 2 (M™ — o™, v?jﬁs — ol

) Mn_o.nMMn+s_O.nM
<+ Lipo () ol ||

[M" — o™ ||| M™F° — M" || [M" — o™ |[mal| M™ — o™ ||
<rC 2 +7C 2

M"™ — g™ 2 M" — gn
=7¢ <”U’M +T“”"”“’H||V’”1||M>
€ €

< 2rCE" + Cr2% 'H"
< 27CE" + Ct%¢ Y (Hy + k). (4.11)
Since 4 M™ = £V and using the definition of V"*+! in (1.11), I; can be rewritten as

—1 _ n—+s n+s n+1 n—+s n—+s
Ty = —<V —UM,H_S,(V —an+S) -Van+S>

— _ <Vn+s o Un+s (VnJrs o vn+s ) . vvn—l—s > o <Vn+s o Un-i—s (VnJrl o Vn+s) . vvn—i-s

Mn+ts Mn+s Mnts»
A T(L—s)e (Vs s (M™ — Py(o™)) - Vi

Mn+s7
< Lipjo,1j(v) ||V — ol

< Lip[(),T] (U)En—i-s + 7_(1 _ 8)6_2 <Vn+s _ vn+s (Mn _ O_n) . vvn+s >

Mnts» Mnts
<C (En+s 4+t an—l—s o U%is . M —6 Un”M)
<C(Q+7e HE™S + 1 E)
< CE"" +CE" (4.12)
Note that we used that (V"5 —oPFs (0™ — Py (0™)) - Vol 12, ) = 0, which holds true

since 0" — Py, (0™) is orthogonal to My and since Vo}/%, is a symmetric matrix. We
also used Young’s inequality to get from the second to last line. The estimates of I5 and
I7 are similar to those in the semi-discrete case:

—1 n—+s n—+s n+s n—+s
T -[5 S ’<V - UMn+s’ Dtan+s - Dtvgn+s>

< Lipjo,1y(Dw) ||V — o2

Mn+s _ 0_n+s

wl e

SOV =iy [ M7 = 0
< eCE""* (4.13)
The quantity I is of the same kind.
T S (VTS ol Vi = VL)
< eCE""® (4.14)
For the estimation of Iy we use <a” — Py (0™), Vp%f+s> =0 to get
Iy = (1 —s)7% 2 (M" — Py, 0 Bs(M™), Vi f5)
<72 ?||Vp((n+ 8)7)|| oo |M™ = 0|
1. M"™ —o"|lm
< 7% lLlp[O,T}(U)—H ; I
<7CE" 4 727 1C. (4.15)

To estimate J and Iy recall that we have assumed that [, p(t, z)dz = 0, which implies in
particular that [, Dyp(t,o"(t,x))dx = 0. Therefore,

77 < Lipjo,11(Dep)||[M"F* — UnJrSHLl(Q)

1
< iE”“ + O (4.16)

Mn+5
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Similarly
[T = T ((n+8)7)| < ’/Qpﬁjnis — pliidz| < Lip py(p)||[M™F* — 0" 1o
1
< QE”“ + Cé. (4.17)

Note also that J? < Lippo, 1y (p)hn < Chy still holds see (3.14).

4.4. Gronwall argument on [n7, (n + 1)7]. Collecting estimates (4.11), (4.12), (4.13),
(4.14), (4.15), (4.16) and (4.17) and integrating equation (4.10) from 0 to s we obtain

Jms 4 / d"0de < J" + 27CE™ + Cr%e Y (Hy + k)
0
+ TC/ E"040 + rCE™
0

+ 7eC / E"d0 + reC / E"qp
0 0
+7CE™ + 2¢O
+ T / E"040 + 720
2 0
< J" 4+ CTE" 4+ C1e® + C(Hp + k)72 (4.18)

+rC /0 (E"“’ n J“”) d.

Remark that we used (3.15) to add J"+? at the last line. Remark also that we only kept
the first order terms using e < C. Plugging (4.18) into (4.9) we obtain

0
Ents + Jrts < a(s) + 5/ (En+9 + Jn+9)d8) (4.19)
0
where a(s) = E" + J" + H"™ — H" + CTE" + C1e® + C(Ho + k)% !, B =1C
so that by Gronwall lemma,
1
E™HL 4 gt < (1) +/ a(s)Bexp((1 —s)B)ds
0
< [E"+ J"+ CTE" + Cré® + C(Hy + k)77 1] 7

1
+H" g —|—/ (H™** — H™) Crexp((1 — s)CT)ds
0

R

Using Lemma 4.2 and in particular the upper bound (4.6) we find
7_2 s 7_2
R< —H" [ Cref™0-9 < C— (Hy + k) [eCT —1]
€2 0 €2

so that
Emt 4 gt < (14 Cr) (E™ + J™) (4.20)
+CO1eé® + C(Hy + k)12t
+Hn+s _ H" —|—T2€_2(H0 + /{) [eCT _ 1” eCT‘
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4.5. Discrete Gronwall step. From (4.20) and the discrete Gronwall inequality we de-
duce that for any n € NN [0,7/7],

E"+J" < [E°+J°+ CTe* + CT(Hy + k)re ' + H" — H°

T
+72e72(Hy + /’i);
<C[E°+ J°+ &+ (Ho + w)Te t + & +(Ho + k)77 2e“T] T
<C [EO +J%+ 2+ (Hy+ r)re L + K] e“T,

We used the mean value theorem to obtain the second to last line. Using (4.17) one last
time and Hy < C leads us to

E"SC[E0+JO+62+76_1—|—H] + Cé?

[T —1]| 1+ Cr)"eT

h2
§C|:€2+hN+J2V+I€+T:| .
€ €
where the second line incorporates the initial error. It leads
h2
max HV"—v(t”,M")wagc[62+hN+]2V+/£+T].
neNN[0,T'/7] € €
A third Gronwall estimate, similar to the one done to obtain (3.19), concludes the proof:

h3 T
(7 (. )2 < 24 N - ..
nENrg[%?%/T} V" =@, o(t", )lu < C [6 + AN+ 2 TRt 6]

Remark 4.5. A close look at the constant leads to a similar result as the one given

in Remark 3.6: namely the convergence of the numerical scheme towards less regular
solutions of the Euler’s equations.

Remark 4.6. The method of the proof is robust and could easily be adapted to other
numerical scheme. Any improvement to the estimate given in Lemma 4.2 (conservation of
the Hamiltonian) will lead to improved convergence estimates for the numerical scheme.

5. NUMERICAL IMPLEMENTATION AND EXPERIMENTS

5.1. Numerical implementation. We discuss here the implementation of the numerical
scheme (1.11) and in particular the computation of the double projection Py, o Ps(m) for
a piecewise constant function m € M. Using Brenier’s polar factorisation theorem, the
projection of m on S amounts to the resolution of an optimal transport problem between
Leb and the finitely supported measure my Leb. Such optimal transport problems can be
solved numerically using the notion of Laguerre diagram from computational geometry.

Definition 5.1 (Laguerre diagram). Let M = (Mj,..., My) € (RN andlet 41, ..., 9N €
R. The Laguerre diagram is a decomposition of R% into convex polyhedra defined by

Lag;(M, ) = {z € R |Vj € {1,..., N}, llo = Ml + v < o = My > + 95} }

In the following proposition, we denote IIs(m) = {s €S| ||m — s|| = ds(m)}, and for a
bounded subset A C R? with positive measure we set bary(4) := ﬁ(z‘\) [y xde.

Proposition 5.2. Let m € My \ Dy and define M; = m(w;) € R%. Assume that Q is a
bounded and connected domain of R® with Lipschitz boundary. Then, there exist scalars
(vi)1<i<n, which are unique up to an additive constant, such that

1
Vie{l,...,N}, Leb(Lag;(M,v)) = N Leb(2). (5.1)
We denote L; := Lag;(M,1). Then, a function s € S is a projection of m on S if and
only if it maps the subdomain w; to the Laguerre cell L; up to a negligible set, that is:

Is(m) = {s €S| Vi € {1,...,N}, Leb(s(w;)AL;) = 0}, (5.2)
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where AAB denotes the symmetric difference between sets A and B. Moreover, the squared
distance dé is differentiable at m and, setting B; = Leb fL xdx, one has

=S / lz — M| da,
1<i<N (5.3)
Vdi(m) = 2(m — Py o Ps(m)) with Py o Ps(m) = Y Bily,.
1<i<N
Proof. The existence of a vector (¢;)1<ij<n satisfying Equation (5.1) follows from optimal
transport theory (see Section 5 in [3] for a short proof), and its uniqueness follows from
the connectedness of the domain Q. In addition, the map T7": Q — {Mj,..., My} defined
by T'(L;) = M; (up to a negligible set) is the gradient of a convex function and therefore a

quadratic optimal transport between Leb and the measure % Leb(€2) >, das,. By Brenier’s
polar factorization theorem, summarized in Lemma 3.1,

scllg(m) <= m=Tosae <= Vic{l,...,N}, Leb(w;A(T os) ' ({M;})) =
< Vie{l,...,N}, Leb(s(w;)AL;) =0
where the last equality holds because s is measure preserving. To prove the statement on
the differentiability of dé, we first note that the function dé is 1-semi-concave, since

2 2 . 2 2
D(m) := [|m|* = d&(m) = |m||* — min [[m — s|[* = max2(m|s) — ||s|
seS s€eS

is convex. The subdifferential of D at m is given by 0D(m) = {Pu,(s) | s € lIs(m)},
so that D (and hence d2) is differentiable at m if and only if Py, (Ils(m)) is a singleton.
Now, note from Lemma 3.2 that for s € IIg(m)

N Z bary(s(w;))1y, = Z bary (L

1<i<N 1<i<N

Py (

This shows that Py, (IIs(m)) is a singleton, and therefore establishes the differentiability
of dg at m, together with the desired formula for the gradient. O

The main difficulty to implement the numerical scheme (1.11) is the resolution of the
discrete optimal transport problem (5.1), a non-linear system of equations which must be
solved at every iteration. We resort to the damped Newton’s algorithm presented in [17]
(see also [22]) and more precisely on its implementation in the PyMongeAmpere library!.

5.1.1. Construction of the fized tessellation of the domain. The fixed tessellation (w;)1<i<n
of the domain {2 is a collection of Laguerre cells that are computed through a simple fixed-
point algorithm similar to the one presented in [13]. We start from a random sampling
(C91<i<n of Q. At a given step k > 0, we compute (¥;)1<;<ny € RY such that

Wie{1,...,N}, Leb(Lag,(C,v)) = %Leb(Q),

and we then update the new position of the centers (CF+1) by setting C* ™ := bary(Lag;(C*, )).
After a few iterations, a fixed-point is reached and we set w; := Lag;(C*, 1).

5.1.2. Iterations. To implement the symplectic Euler scheme for (1.6), we start with Mi0 =
bary(w;) and V? := vy(M?). Then, at every iteration k > 0, we use Algorithm 1 in [17]
to compute a solution (¢¥¥)1<;<ny € RY to Equation (5.1) with M = M¥, i.e. such that

Vi€ {1,...,N}, Leb(Lag;(M*, ¢%)) = %Leb((l).

1https ://github.com/mrgt/PyMongeAmpere



A LAGRANGIAN SCHEME A LA BRENIER FOR THE INCOMPRESSIBLE EULER EQUATIONS 19
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FIGURE 1. (Top row) Beltrami flow in the square, with N = 900 particles,
7 =1/50 and € = .1. The particles are colored depending on their initial
position in the square. From left to right, we display the Laguerre cells and
their barycenters at timesteps k = 0,24 and 49. The partition (w;)i1<i<n
is induced by a regular grid. (Bottom row) Same experiment, but where
the partition (w;)1<i<n is optimized using the algorithm described in §5.1.1.

Finally, we update the positions (Mik”Ll)lSiSN and the speeds (Vikﬂ)lgiSN by setting

.
VI = Vi 4 S5 (bary (Lag; (M, ¢%) — M) (5.4)
MFHY = MF 4 VR

5.2. Beltrami flow in the square. Our first test case is constructed from a stationary
solution to Euler’s equation in 2D. On the unit square 2 = [—%, %]2, we consider the
Beltrami flow constructed from the time-independent pressure and speed:

po(x1,x9) = %(Sin(wxl)Q + sin(7rx2)?)
vo(z1, z2) = (— cos(mxy) sin(mxs), sin(mwx) cos(mxs))

In Figure 1, we display the computed numerical solution using a low number of particles
(N =900) in order to show the shape of the Laguerre cells associated to the solution.

5.3. Kelvin-Helmoltz instability. For this second test case, the domain is the rectangle
Q = [0,2] x[—.5,.5] periodized in the first coordinate by making the identification (4, zg) ~
(0,z2) for xo € [—.5,.5]. The initial speed vy is discontinuous at xzo = 0: the upper part
of the domain has zero speed, and the bottom part has unit speed:

0.5 if 29 >0
vo(z1,22) = {

lifz9 <0

This speed profile corresponds to a stationnary but unstable solution to Euler’s equation.
If the subdomains (w;)i1<i<n are computed following §5.1.1, the perfect symmetry un-
der horizontal translations is lost, and in Figure 2 we observe the formation of vortices
whose radius increases with time. This experiment involves N = 200000 particles, with
parameters 7 = 0.002 and ¢ = 0.005, and 2000 timesteps. As displayed in Figure 2, the
hamiltonian of the system is very well preserved despite the roughness of the solution.
This behaviour shows that the estimate of Lemma 4.2 might be overly pessimistic, and
requires further investigation.
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FIGURE 2. Numerical illustration of the Kelvin-Helmotz instability on a
rectangle with periodic conditions (in the horizontal coordinate) involving
a discontinuous initial speed. The parameters are given in §5.4.

5.4. Rayleigh-Taylor instability. For this last test case, the particles are assigned a
density p;, and are subject to the force of the gravity p;G, where G = (0,—10). This
changes the numerical scheme to

1
PV = oV (G a8 < M +0G)

ML = MF 4y

The computational domain is the rectangle Q = [—1, 1] x [—3, 3], and the initial distribu-
tion of particles is given by C; = bary(w;), where the partition (w;)i1<i<n is constructed
according to §5.1.1. The fluid is composed of two phases, the heavy phase being on top of
the light phase:

3 if Cia > ncos(mCiy)
pi 1 if Cip < ncos(nCiy)’

where 7 = 0.2 in the experiment and where we denoted C;; and Cjs the first and second
coordinates of the point C;. Finally, we have set N = 50000, ¢ = 0.002 and 7 = 0.001 and
we have run 2000 timesteps. The computation takes less than six hours on a single core
of a regular laptop. Note that it does not seem straighforward to adapt the techniques
used in the proofs of convergence presented here to this setting, where the force depends
on the density of the particle. Our purpose with this test case is merely to show that the
numerical scheme behaves reasonably well in more complex situations.

Software. The software developed for generating the results presented in this article is
publicly available at https://github.com/mrgt/EulerLagrangian0T
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F1cURE 3. Numerical illustration of the Rayleigh-Taylor instability occur-
ing when a heavy fluid (in green) is placed over a lighter fluid (in red) at
timesteps n = 0,200, 400, ..., 2000. The parameters are given in §5.4.
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FIGURE 4. (Left) Value of the Hamiltonian during iterations of the al-
gorithm, for the Kelvin-Helmoltz instability presented in §5.3 and using
the symplectic Euler integrator. (Right) Same figure but for the Rayleigh-
Taylor instability presented in §5.4, using the symplectic Euler integrator
(in blue) and using the velocity Verlet integrator (in red).
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CONVERGENCE OF A LAGRANGIAN DISCRETIZATION FOR
BAROTROPIC FLUIDS AND POUROUS MEDIA FLOW

THOMAS O. GALLOUET, QUENTIN MERIGOT, AND ANDREA NATALE

ABSTRACT. When expressed in Lagrangian variables, the equations of motion for
compressible (barotropic) fluids have the structure of a classical Hamiltonian system in
which the potential energy is given by the internal energy of the fluid. The dissipative
counterpart of such a system coincides with the porous medium equation, which can
be cast in the form of a gradient flow for the same internal energy. Motivated by
these related variational structures, we propose a particle method for both problems
in which the internal energy is replaced by its Moreau-Yosida regularization in the
L? sense, which can be efficiently computed as a semi-discrete optimal transport
problem. Using a modulated energy argument which exploits the convexity of the
problem in Eulerian variables, we prove quantitative convergence estimates towards
smooth solutions. We verify such estimates by means of several numerical tests.

1. INTRODUCTION

The Euler equations describing the evolution of a barotropic fluid in a compact do-
main M C R? with Lipschitz boundary and on a time interval [0, T] are given by the
following system of equations:

{éMmO+V-WU®UW+VP@%:m

(L.1) Op + div(pu) =0,

where p(t,z) > 0 is the fluid density, u(t,z) € R? is the Eulerian velocity and the
function P : [0,00) — R defines the pressure as a function of the density. The first
equation in (1.1) is generally referred to as the momentum equation, whereas the second
is the continuity equation and describes local mass conservation in the fluid. The system
is supplemented by the initial and boundary conditions:

p(0,)) =po, u(0,")=wup, u-ngy =0 onl[0,T]x M,

where ngys is the outward normal to the boundary M. Smooth solutions conserve the
total energy

(1.2) | ghnie+ [ Ui,

where U : [0,00) — R is a smooth strictly convex function, superlinear at infinity, defin-
ing the internal energy of the fluid. This is related to the pressure by the thermodynamic
relations

(1.3) P(ry=rU'(r)=U(r), P'(r)=rU"(r).

Date: September 26, 2023.
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Different choices of the internal energy U lead to different models. The two most
classical examples are:

(1) polytropic fluids, which correspond to U(r) = r™/(m — 1) with m > 1, and
P(r) = r™ (these include isentropic fluids, and the Saint-Venant system mod-
elling gravity driven shallow water flows for m = 2);

(2) isothermal fluids, which correspond to U(r) = rlog(r) —r and P(r) = 1.

Adding a friction term —(pu on the right-hand side of the momentum equation, i.e.
the first equation in the system (1.1), and considering the high friction limit ¢ — oo, one
formally obtains u = —VU’(p), which substituted into the continuity equation yields

(1.4) Op—AP(p) =0.

In particular, the choice U(r) = r™/(m — 1) with m > 1 and P(r) = r™, which is
associated with polytropic fluids, yields the porous medium equation. Similarly, the
choice U(r) = rlogr —r and P(r) = r corresponding to isothermal fluids, yields the
heat equation.

1.1. Lagrangian formulation. For both the compressible Euler system (1.1) and its
high friction limit (1.4), the density evolves according to the continuity equation with
respect to a time-dependent vector field u. Let Sy € M be the support of the initial
density pp and X : [0, T] xSy — M be the flow associated with u, i.e. the time-dependent
map satisfying the flow equation

(1.5) Xy = ul(t, Xy)

with initial condition X = Id|s,, where Id is the identity map on R%. If py and u
are sufficiently regular, then the flow equation (1.5) and the continuity equation have
both a unique strong solution, and the density is the pushforward of py by the flow, i.e.
p(t,-) = Xiupo, where the pushforward is defined by the condition

(L6) (Xepp0)[B] = polX;'(B)]  for any B C M.

In general, equation (1.6) defines Xy4po only as a measure on M. However, if X; is
a smooth invertible map, X;4po is absolutely continuous with respect to the Lebesgue
measure dz, and we identify it with its smooth density.

Using equation (1.5) and (1.6), the total energy of the fluid (1.2) can then be written
in terms of X only as follows:

1 .
(1.7) / 2Xt’2p0d$+/ U(Xt#po) dz .
M M

Let X = L%O(So;Rd). In the smooth setting, we can interpret the energy (1.7) as a
functional on curves of smooth invertible maps in C*°(Sp; M), viewed as a manifold
in X with the induced metric. The associated Euler-Lagrange equations coincide with
Newton’s second law:

(1.8) X, = —VxF(Xy), F(o):= /M U(oypo)dz,

where we identify the gradient VxF(X;) with an element of X (see Remark 2.3 for a
formal computation of VxF(X})). Equation (1.8) is the Lagrangian equivalent to the
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momentum equation in (1.1), and in particular from its solutions one can retrive the
solutions to the Euler system (1.1) using the flow equation (1.5) and the definition of
pushforward (1.6).

In the case of the high friction limit (1.4), the flow evolves according to a gradient
flow dynamics, which correspond to the equation:

(1.9) X; = —VxF(Xy).

Here, equation (1.9) is equivalent to the condition u = —VU’(p), and from its solutions
one can retrive the solutions to (1.4) by pushforward of the initial density as in (1.6).

The point of view described above for the compressible Euler system is one of the
possible generalizations of the approach developed by Arnold for the incompressible
Euler equations (see, e.g., Proposition 2.7 in [18]), which he intrepreted as the geodesic
equation on the group of volume-preserving diffeomorphisms with the L? metric [1]. On
the other hand, the gradient flow structure in (1.9) is the Lagrangian counterpart of the
Wasserstein gradient flow interpretation of equation (1.4), developed in the celebrated
works of Otto [27] and Jordan, Kinderlehrer, and Otto [17].

In this paper, we will construct discrete versions of the systems (1.8) and (1.9) in
which the flow is approximated by a curve of (non-smooth and non-injective) maps
belonging to a finite-dimensional subpace of X. As a consequence of this extrinsic point
of view, we will regard the internal energy F in equation (1.8) as a real-valued functional
on the whole space X, which we set to +00 when o4 pp is not absolutely continuous with
respect to the Lebesgue measure dx restricted to M.

1.2. Space discretization. We now turn to the design of the Lagrangian scheme, i.e.
an evolutive system for a finite number of particles, to approximate both Euler and
gradient flows. In order to define the evolution of the particles we introduce a discrete
equivalent of the Lagrangian variational structure highlighted in the previous section.
This also allows us to preserve at the discrete level the link between the two models
described above.

Let N € N* and consider a partition Py := (F;)1<i<n of the initial support Sp C M
in N regions with hy = max; diam(P;) < N—4 We define Xy C X as the space of
functions that are constant on each subdomain P;, i.e.

XN:Z{XN€X|XN(W):X;VGRd for a.e. we P, 1 <i < Nj.

Then, we discretize the flow X by a curve Xy : [0,7] — Xy, and for any ¢ € [0,7]
we identify Xy (t) with the vector of the position of the particles (X4 (t)); € R
where X4(t) € R? is the image of any point in P; by the map Xy (t) and therefore
carries a mass po[F;]. As in the continuous case the density of the fluid is given by
the pushforward pn(t) = Xn(t)xpo, or more explicitly by the sum of all the particles
weighted by their respective masses:

N
(1.10) pN(t) = ZPO[R‘](SX}'V@) :
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Since py(t) is not absolutely continuous, the internal energy F is identically +oo on
all of Xy, and in order to define our numerical approximation, we need to replace it by
a regularized version. In this paper we consider the Moreau-Yosida regularization of F,
which is given by

X — 2
(1.11) Fe(X) = ggﬁ% + F(o),

for any X € X and for a fixed € > 0. Note that problem (1.11) always admits minimizers
when X € Xy, but these are in general not unique.

In order to mimic the continuous case, the discrete dynamics is thus given by the
Euler (resp. gradient) flow of . in (Xy, L2 ). More precisely, the space discretization
of the Euler system (1.1) reads as follows:

(1.12) Xn(t) = —Pg, VxF(Xn(t), Xn(0)=Idy, Xn(0)=upoldy,

where Px, is the L%O projection onto Xy, and we set Idy = Px,Id|s,. Note that
the left-hand side of equation (1.12) can be identified with the vector collecting the
acceleration of the particles (X4 (t)); € R™. The right-hand side is just the gradient
of F. viewed as a function on Xy, and it is uniquely defined for almost every point in
Xn (see Proposition 5.2 for a precise statement). In particular, we have

XN — Px X%

Xnv — ol2
(1.13) PxyVxFe(Xy)=—"T—, X{E€ argminM
€ cex 2e

+ F(o),
for almost any Xy € Xpy. As in the continuous setting, the total energy of the system
at time t is given by the sum of the kinetic and internal energy, where we replace now
the internal energy by its regularized version:

N1
(1.14) E(t Xn) =) SIXN(O)PpolP] + F-(Xn (1)),

i=1

and this is conserved by smooth solutions of (1.12).

Similarly, the discrete version of the gradient flow (1.9) is given by
(1.15) XN(t) = _PXNvae(XN(t))7 XN(O) =Idy.

Here, the total energy at time ¢ is simply given by the internal energy F.(Xn(t)), and
it is dissipated by smooth solutions of (1.15).

1.3. Time discretization. The variational structure of the space-discrete systems de-
scribed so far can be exploited to design a stable time discretization. The method we
describe here consists in considering different approximations of the energy in each time
step, and is modelled on the strategy proposed by Brenier in [3].

Let 7 > 0 a fixed time step, Ny € N* be the number of time steps with T = 7N,
and t, := n7 for any 0 < n < Np. We define a discrete-time approximation of system
(1.12), by considering the C! curves Xy : [0,T] = Xy satisfying in each time interval
[tn,tn+1) the equation

~ Xn(t) — Pxy X5 (tn)

(1.16) Xy(t) = -
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where

Xn(tn) — o3
(1.17) X§(tn) € argminM

+ Fl(o),
oceX 2e (>

and with the same initial condition as in (1.12). This system is conservative in each
interval [t,,t,+1) for the energy

N

(118) (L Xn) =Y 51X (O PolP]
i=1

Xn(t) = X5 (tn)]2
+HN()%N(H&+;

(X (tn)) -

The total energy & (¢, Xn) defined in (1.14) is however dissipated in general since, by
definition of the regularized energy F, we have

(1.19) Ee(tnr1, Xn) < EX(tnyr, XN) = ELp (tn, XN) = Ec(tn, XN) .

The discrete-time approximation of the gradient flow (1.15) is given by a continuous
curve Xy : [0,7] — X which on each interval [t,,t,+1) is the gradient flow on Xy for
the energy:

[ Xn(t) = X5 (tn)
2¢e

More explicitly, a discrete solution is any CV curve Xy : [0, T] — Xy which satisfies in
each time interval [t,, tp+1),

(1.20) I + F(XK(tn)) -

(1.21) XN<t) _ _XN(t) - iXNX]E\](tn) :

with X5 (¢,) defined as in (1.17), and the same initial condition as in (1.15). Also in
this case the internal energy F.(Xn(t)) is dissipated along the evolution, since we have

X (tusn) = Xl 7
9

(1.22)  Fe(Xn(tnt1)) < (X (tn)) < Fe(Xn(tn))-

1.4. Relation with previous works and convergence results. Using a Lagrangian
formulation for the discretization of problems (1.1) and (1.4) enables us to reproduce
the conservative and gradient flow structure of the corresponding models. In turn, this
allows us to construct stable numerical methods as in (1.16) and (1.21) to discretize their
solutions. Similar strategies were already explored in the 1990s, during the emergence of
particle methods, for example in the context of the discretization of the incompressible
Euler equations in the works of Buttke [1] and Russo [28]. Such methods can be seen as
instances of the more general Smoothed Particle Hydrodynamics (SPH) discretizations,
where the interaction forces amongst the particles are computed by reconstructing the
fluid density through convolution with a fixed kernel (see, e.g., the review articles [24,

| and references therein), and which have been widely used in the context of the
discretization of fluid models.

Recent SPH methods explicitely exploit the variational structure of the models for
the construction of the method itself as in [10]. In the same article, the Authors also
established a general (non-quantitative) convergence result towards measure-valued so-
lutions of problem (1.1) for its discretization in space only. In another recent work [12],
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the Authors proved quantitative convergence estimates with modulated energy tech-
niques but limited to the case P(r) = 72 and for the discretization in space only. This
last work also highlights how the choice of the kernel is crucial to obtain convergence.

The discretization strategy we use in this paper is closely related to the one developed
by Brenier [3], who proposed a discretization of incompressible Euler which replaces the
incompressibility constraint by a potential term given by the L? distance from the set
of measure-preserving maps, discretized as permutations of a fixed regular grid. The
potential term used by Brenier can be reinterpreted as a Moreau-Yosida regulariza-
tion (as in (1.11)) of an energy given by the convex indicator function of the Lebesgue
measure. Gallouét and Mérigot [13] later used a similar approach, but rephrased as a
particle method, which allowed them to employ efficient semi-discrete optimal trans-
port techniques to compute the discrete solution, and at the same time improved the
convergence estimates of [3] using a modulated energy approach. Note that the use of
semi-discrete optimal transport techniques to simulate fluids was first launched by the
work of Mérigot and Mirebeau [25] to solve the geodesic problem associated with the
incompressible Euler equations.

Our convergence results generalize the one in [13] to the compressible and gradient
flow setting. Differently from SPH methods, here the density is reconstructed via a
Moreau-Yosida regularization (i.e. as the push-forward of py by the regularized flow
X%), which eliminates the problem of selecting a kernel, the reconstruction being deeply
linked with the energy itself (see Proposition 5.2). On the other hand, the kernel length-
scale parameter of SPH methods is replaced here by the parameter € in the regularized
functional (1.11).

The main results of this paper are contained in Theorem 1.1 and 1.2 below. The
central issue of the proofs is the construction of an appropriate modulated energy to
measure the discrepancy error between the discrete and continuous solution. In this
work we construct a modulated energy exploiting the convexity of the energy in the
Eulerian setting, which is lost in the Lagrangian formulation, and the particular struc-
ture of the Moreau-Yosida regularization. It should be noted that for convex energies,
modulated energy estimates of the type we use here are classical tools for the study
of problems (1.1) and (1.4) (see, e.g., Chapter 5 in [8]): namely, to prove weak-strong
stability and uniqueness results, and to establish convergence in the high friction limit
from entropy weak solutions of the Euler equations (1.1) with friction to porous media
flow (1.4) [21]. Note also that such tecnhiques are not limited to the cases we consider in
this article, and can be generalized to treat also less regular energies (see, e.g., [15, 22],
for a framework covering the Euler-Korteweg and Euler-Poisson theory).

Another important point is related to the time discretization. The method we use
in this work, described in Section 1.3, directly derives from that used by Brenier in
[3] for the incompressible Euler equations. It is specially adapted to the structure of
the Moreau-Yosida regularization, and consists in devicing a quadratic approximation of
the energy (see equation (1.20)) which dominates the regularized energy over each time-
step. This naturally implies the stability of the discrete solutions (see equations (1.19)
and (1.22)), which is an essential element for the convergence results below. Note that
symplectic integrators [16] could be another natural choice for the discretization of the
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Hamiltonian system (1.12). This choice was explored in [13] for incompressible Euler,
but it is more difficult to analyze due to the lack of an explicit control of the continuous
energy of the system. Another approach which we do not explore in this paper is the
time discretization developed in [14, 7] (see also its numerical implementation in [31])
which is better adapted to the non-smooth setting since it is designed to overcome the
non-uniqueness issues related to the notion of entropy solutions.

The convergence estimate we obtain for the discretization of (1.1) is the following:

Theorem 1.1. Suppose that (p,u) : [0, T]|x M — [0, 00) xR? is a strong solution to (1.1)
such that w-ngpr = 0 on [0, T] x OIM, with U : [0,00) — R being a smooth strictly convex
and superlinear function such that (3.8) holds. Suppose that u € C1([0,T],C*'(M,R%)),
po € CYY(M), and that either pg > pmin > 0 or that U admits a right third derivative
at 0, i.e. [UY'(0)| < co. Suppose in addition that Xy : [0,T] — Xy is a C curve which
satisfies (1.16) for all times in [0, T), with initial conditions X (0) = Idy and X (0) =
w(0,Idn(+)). Then, denoting by X the flow associated with u satisfying X (0) = Id|g,,

. h3 T

(1.23) sup, X (®) = ult; Xn@E)IE + [ Xn () = X Ol < C(F +hy +e+2),
te0,T

where C' > 0 depends only on sup,cpo ) (|u(t)||c21 + [|0cu(t)lc21), pollcrr, and on U,

T and d.

For what concerns the discretization of dissipative problems of the type (1.4), several
Lagrangian discretizations based on their gradient flow structure (1.9) have already been
developed (see, e.g., the method in [6] which is close to SPH methods, or in general the
review [] and references therein). The discretization we consider here has been studied
in [23] (in the time-continuous setting), where the Authors considered more general
energies than those we treat here, modelling for example congestion phenomena, and
proved the convergence of the discrete measures (1.10) to solutions of the associated
PDE in dimesion one. The result requires an a priori estimate on the regularized flow
X§; which is not proven in higher dimensions. Here we circumvent this issue using the
same arguments as in Theorem 1.1, and in particular by a careful choice of a modulated
energy and by exploiting the smoothness of the continuous solutions. The convergence
estimate we obtain for the discretization of problem (1.4) is the following:

Theorem 1.2. Suppose that p : [0,T] x M — [0,00) is a strong solution to (1.9) such
that VU'(p) - ngyr = 0 on [0,T] x OM, with U : [0,00) — R being a smooth strictly
convex and superlinear function such that (3.8) holds. Suppose that u := —VU'(p) is of
class C*1 in space, uniformly in time, pg € CYY(M), and that either po > pmin > 0 or
that U admits a right third derwative at 0, i.e. U} (0)| < co. Suppose in addition that
XN :[0,T] = Xy is a C° curve which satisfies (1.21) for all times in [0, T] with initial
conditions Xn(0) = Idy. Then, denoting by X the flow associated with u satisfying
X(0) = Tdlg,,

h3 T
(1.24) sup / 1K (5) (s, Xn ()| ds+ | Xn(6) = XOI2 < COCN L hyte47),
te[0,7) € €

where C > 0 depends only on supcio 11 VU (p(t))llc21 |lpollcrr, and on U, T and d.
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Remark 1.3. The modulated energy we use to prove the estimates above has an ad-
ditional term, if one compares it to the left-hand sides of equations (1.23) and (1.24),
which is associated with the internal energy F and which is omitted in order to simplify
the statements. This term is discussed in detail in Section 8 and actually implies a
stronger control on the reconstructed density associated with the reqularized flow X5 .

2. MOREAU-Y OSIDA REGULARIZATION

In this section we collect some properties of the regularized energy in (1.11). We
provide an equivalent Eulerian formulation of such an energy using the L2-Wasserstein
distance on the space of positive measures of fixed mass, and we also give a charac-
terization of its gradient in terms of the pressure, which will be useful to prove our
convergence results.

We start by introducing the Eulerian counterpart to the internal energy functional
n (1.8), which we obtain by regarding this as a function of the density rather than the
Lagrangian flow map. More precisely, denoting by M. (R?) the set of positive finite
measures on RY, we define U : M (R?) — R as follows:

p)de if p< dzl M,
()= { Ju 000 e

(2.1) otherwise.

Then, the functional F : X — R in (1.8) can be equivalently defined by
FX) = U(Xep0)-

We define U.(p) : ML (RY) — R as the Moreau-Yosida regularization of U with
respect to the L?-Wasserstein distance, i.e.

. Wi (p,p)
2.2 U(p) = 208 L up).
(2.2) (p) v (1)

The quantity Wa(p, i) is the L?-Wasserstein distance between p and y (see, e.g., Chapter
5 in [29]), and it can be defined via the following minimization problem:

W3(p, ) = min /Ix—yl dy(z,y),
vEIL(p,p)

where II(p, 1) is the set of positive measures on R? x R? with marginals p and ju, and
we set W2 (p, 1) = +oc whenever p and p have different total mass. Since U is strictly
convex and superlinear, for any p € M, (RY) (with finite second moment) the function
minimized in problem (2.2) is lower semi-continuous with respect to the Wasserstein
metric (see, e.g., Proposition 7.7 in [29]) and therefore it admits a unique minimizer
which we denote p®. The link between the Eulerian (2.2) and Lagrangian form (1.11)
of the regularized energy is established in the following lemma.

Lemma 2.1. Let Xy € Xy and pn = (Xn)#po, with py € M (RY) such that py <
de L M. Then, Fe(Xn) = U(pn). In particular, there exists a convex function v :
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R? — R, whose gradient is uniquely defined, such that X5 45 a minimizer associated
with X in problem (1.11), i.e.

Xy — ol

X5 € argmin + F(o),

oeX 2e

if and only if Xy = Vi o X5, up to a negligible set. Moreover, let

W2
b = argmin D2PN 1)

+U(p) .
pEMy(RY) 26

Then, iy = (X3)40.

Proof. Let TI(px, 1) the set of positive measures on R? x R? with marginals py =
(XNn)gpo and p. Since pg is a.c., for any p € M, (R?) with the same total mass
of pg, there exists a o € X such that oyxpy = p, and we can construct a measure
(Xn,0)%po € H(pn, ). This implies that

: |z — y|? | XN — o}
. m _— < —= .
(2.3) 7eH(,1;g,u)/ 5 dy(z,y) +U(p) < 5 +U(o4po)

Therefore, taking the infimum over o on both sides of (2.3) yields U.(pn) < Fo(Xn).

To prove the reverse inequality, consider again py = (Xn)xpo = >_; po[Fi]0 xi, and
let p% the associated minimizer of problem (2.2). By Brenier’s theorem [2], there
exists a unique transport map given by the gradient of a convex function 1 such that
(V) gp5 = pn and Wi (pn, piy) = S |Vep—1d|%dp% . This coincides with the optimal
transport map from p% to py. For any 1 <i < N, denote L; := (V¢)"1(X}) so that
pN[Li] = po[P;], and let o; : P; — L; be any map such that (o;)xpolp, = py|r,- Then
we can take X5 € X to be the map defined by X5/|p, = 0;. Clearly, Xy = Vo X5, by
construction and

— 142
Vo -1dP°

5 P +U(pN) =Us(pN) -

XN — X¢ 2
£ < O ERE x5 ) = [

€ M
Therefore, we have the equality U:(pn) = F-(Xn). Finally, using again equation (2.3)
we deduce that if X3, is any minimizer p5, = (X5 )4p0- O

Using the optimality conditions of the minimization problem (2.2), one can actually
provide an explicit expression for the minimizer p%; corresponding to an empirical mea-
sure py. Such a characterization is proven in Proposition 11 in [30], but we recall the
precise statement in Proposition 5.2 below. In particular, this shows that p%; has a con-
tinuous bounded density on M. In turn, this allows us to prove the following statement
which is a slight adaptation of Lemma 6.1 in [9].

Lemma 2.2. Let Xy € Xy and define X5, and py as in Lemma 2.1. For any v €
CY(M,R?) with v -ngpy = 0 on OM, we have

XN — X3
(2.4) / SN AN o X5 podx = —/ P(py)divedz.
So € M
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Proof. We follow the proof of Lemma 6.1 in [9] and introduce first the flow of v, i.e. for
5 > 0 we define Y : (—8,8) x M — M as the solution to the flow equation Y; = v o Y
for s € (—4,9) and with Yy = Id, the identity map on M. Note that Yy : M — M is a
C' diffeomorphism, since v is C! and it is tangent to the boundary, and we have

(2.5) 05 detVY; = (divv oY) det VY.

Then we define p, = (Y;)xp%, and identifying p5, with its density with respect to
dxz L M we have

/ﬁv -1
2. - Y,
(2.6) Ps = Qetvy, ~ s

which can be directly deduced via a change variables in the integral formulation of the
definition of the pushforward (1.6). Moreover, the function

W3(pn, ps)

g:s€(=0,0) — 5

+U(ps) €R

has a minimum at s = 0. Since p% is bounded, using equation (2.6), (2.5), and the
definition of P in (1.3) we obtain

d Py .
ds s:O/MU(detVYS> etVY, do /M (py)divoda

en L

ds U(ps) =

s=0

We now introduce v5 = (V) Y5)zp%, so that W (pn, ps) < [ |z — y|>dvs(x, y), which
implies

W2(oxps) — W(pws o) < /M IV — Vil2doy — /M Ve — 1dPds5
= [ (=10 (1 s~ 290
M

Therefore,

0<gs) —g(0) < o / (Y, — 1d) - (Id + Ys — 2Va)dpy + Ulps) — Up).
M

Dividing by s, taking the limit for s — 0 and using equation (2.7) gives

—1Id
(2.8) / Vy-1d vdpy < —/ P(py)divodz.
M € M

Since the same also holds replacing v by —v, equality holds and we obtain equation
(2.4) by a change of variables on the left-hand side of (2.8).

O
Remark 2.3. Note that using the same computation of equation (2.7), and performing

a change of variables on its right-hand side, one can formally identify VxF (X)) =
VU (pi) o Xy in equation (1.8) and (1.9).
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3. MODULATED ENERGY

In this section we introduce the two main quantities that we will need to measure the
distance between continuous and discrete solutions of problems (1.1) and (1.4). These
are constructed as discrete versions of the classical relative kinetic and internal energy
of the system expressed in Eulerian variables. Here we adapt these definitions to our
discrete Lagrangian setting and to the regularized energy (1.11).

The relative kinetic energy in the discrete setting is defined as follows:
Definition 3.1 (Relative kinetic energy). Given a curve u : [0,7] — C°(R?%; R?), the
relative kinetic energy of a discrete flow Xy : [0,7] — Xy with respect to u at time ¢
is given by
1 .

(3.1) 13N -
= 3 D IXN () — ult, Xk () Ppo[ P
i=1

Remark 3.2. The choice of the relative kinetic enerqgy in definition 3.1 can be motivated
as follows. The kinetic energy can be viewed as a convex function of the density p and
the momentum m = pu given by

m 2
a2 [ 1t

Then, it is natural to measure the distance between two states (p,m) and (p,m), with
m = pu, by considering the difference between the value of the functional (3.2) at (p,m)
and the linear part of its Taylor expansion at (p,m) in the direction (p — p,m — m).
The resulting quantity is given by

1
(3.3) / ~|u—a|*pda,
M2
which is precisely the Eulerian counterpart to equation (3.1).

In the order to define the relative internal energy in the discrete setting, for any
p,p € CO(M, (0,00)) we first define

(3.4) uielp) = | Ulolp)de.
where
(3.5) U(r|s) =U(r) —U(s) = U'(s)(r — s).

If |U.(0)| < +o0, equation (3.4) defines U(p|p) for any p,p € C°(M,[0,0)). Since we
assume U to be strictly convex, U(p|p) > 0 and it vanishes if and only if p = p.
The relative internal energy in the discrete setting is defined in order to fit the solu-

tions of the numerical schemes detailed in Section 1.3, and in particular the correspond-
ing time discretization, which we recall in the definition below.
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Definition 3.3 (Discrete relative internal energy). Let 7 > 0 a fixed time step, Ny € N*
be the number of time steps with T' = 7Ny, and t,, = n7 for any 0 < n < Np. Given a
curve p: [0,T] — C°(R% [0, 00)), the discrete relative internal energy of a discrete flow
Xn :[0,T] — Xy with respect to p at time ¢ € [t,, tp+1) is given by

Xn(t) — X% (t, 2
(3.6 Folt, Xy = VOO ) o).
where X5 (ty,) is any fixed minimizer of problem (1.11), i.e.
X (tn) — oI

X5 (tn) € argmin + F(o),

oeX 2e
and pRy(tn) = (X5 (tn))#po-

Remark 3.4. In the smooth Fulerian setting the relative internal energy would be given
Just by the functional in equation (3.4). Importantly, even if the potential energy of the
discrete system is a convex functional on X, the discrete relative internal energy in
(3.6) does not correspond to this point of view and should rather be regarded as an
approximation of (3.4). The same holds for the definition of the relative kinetic energy
above, which does not coincide with the one obtained interpreting the kinetic energy
as convex functional on X. This time however there is no approrimation since if we
replaced X by a smooth injective flow we could recover (3.3) from (3.1) by a simple
change of variables.

The convergence proof in Section 4 will rely on a Gronwall argument based on the
discrete relative energies (3.1) and (3.6). It will require us to control the time variation
of the total discrete relative energy by itself. The advantage of adopting an Eulerian
rather than Lagrangian point of view in the definitions above is that, in the Eulerian
case, such a control can be enforced by exploiting simple algebraic properties of the
functions P and U. More precisely, we will need to control the relative pressure

(3.7) P(r|s) = P(r) — P(s) — P'(s)(r — s)

by U(r|s). To this end, we will make the following assumption: there exists a constant
A > 0 such that

(3.8) |\P"(r)| < AU"(r) Vr>0.

This assumption is verified in the classical cases of interest of power laws and of the
entropy. It implies the following lemma, which is an extract of Lemma 3.3 in [15].

Lemma 3.5. Let U and P be smooth functions on [0,00) verifying (1.3) and (3.8).
Then

(3.9 |P(r]s)| < AU(r|s) Vr,s>0.

Proof. We have P(r|s) = (r —s)? fol(l —0)P"((1—6)s+6r)df and similarly for U(r|s).

Hence, using equation (3.8),

1
P(r]s)| < (r — 5)2/0 (1= 0)|P"((1— 0)s +0r)| dO < AU(r]s).



CONVERGENCE OF A LAGRANGIAN DISCRETIZATION FOR BAROTROPIC FLUIDS 13

Remark 3.6. In the following, in order to treat the case of the convergence towards
solutions with vanishing density we will need to add the hypothesis that U admits a right
third derivative at 0, i.e. |UY'(0)] < oo. Note that in this setting, if equation (3.9) holds
forr,s >0, then it holds by continuity for r,s > 0.

4. CONVERGENCE OF THE FULLY DISCRETE SCHEME

In this section we use the discrete relative energies introduced in Section 3 to prove
our convergence results for the space-time discretization of problems (1.1) and (1.4)
defined in Section 1.3.

Since the image of the discrete solution Xy () (i.e. the particles’ positions) may not
be contained in the domain M, an essential ingredient of the proof is the possibility to
extend the exact solution of the continuous models outside the domain. Importantly,
besides keeping the same regularity, the extended density and veloctiy will need to
satisfy the continuity equation also outside the domain. We construct such extended
variables in the following lemma, by exploting the properties of the continuity equation
and using an extension theorem due to Fefferman [11].

Lemma 4.1. Let u : [0,T] x M — R? be such that u-ngpr = 0 on [0,T] x OM, and
po: M — [0,00). If u is of class C*' in space, uniformly in time, and po is of class
CU1, then there exist i : [0,T] x R = R? and j: [0,T] x R — R such that:

(1) @ is an extension of u, i.e. u(t)|pr = u(t) for all t € [0,T], and there exists a
constant C' > 0 only depending on d such that

(4.1) sup [[a(®)|g2s < C sup [Ju(t)llcas
te[0,7] te[0,T]
moreover, if u € C*([0,T], C%>*(M,R%)) then
(4.2) sup ||0va(t)||c2a < C sup ||Owu(t)| g2 ;
te[0,7] te[0,T]

(2) the couple (p, ) solves the continuity equation:
dip+ div(pa) =0 on [0,T] x RY,

and in particular the curve p : t € [0,T] — p(t)|ar is the unique solution to
the continuity equation on [0,T] x M associated with w and initial conditions
p(0) = po; if po = Ppmin > 0, then p > pmin > 0, where ppin only depend on
Pmins S 1) [u(t) |21, T and d; moreover, sup,e(o 1 [|(t)|lc11 only depends
on [lpollcrr, supsepo w21, T, d (and on prin in the case po > pmin > 0).

Proof. The first part is just an application of the construction proposed by Fefferman
in [11] to extend Holder continuous functions. In particular, by theorem 2 in [11], for
any k > 0 there exists a linear bounded operator Ly, : C*1 (M) — C*(R?) such that
the norm of Lj is bounded by a constant depending only on d and k, and for any
f € CHY(RY) one has Ly f|y = f. Then, setting @(t) = Lo u(t) (applied component-
wise) for all t € [0,7T] for a given extension operator Ly, we obtain the estimate (4.1)
by the boundedness of Ly. In the case where u € C'([0,T],C*'(M,R?)), by linearity
of Ly we have 0yt = Lo0yu, from which we deduce (4.2).
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For the second part, we first introduce X : [0,7] x R? — R? the flow of 4, i.e. the
solution to the flow equation X; = a(t, X;) with initial conditions Xy = Id. For all
times ¢ € [0, 7], X; is a C*! diffeomorphism of R? and by construction the C?! norm of
X; and Xt_1 only depend on that of u and on T'. Note, in particular, that the Jacobian
determinant solves

8t det VXt = div ’ll(t, Xt) det VXt s
which implies that for all (¢,z) € [0,T] x R%,

(4.3) max {detVXt(x), detlet(x)} < exp < /0 t div @(t) [l dt) .

Now, if py is not strictly-positive, we define an extension gy : R — R of py on the
whole space by po := Lipo (and note that py may be negative). Then, we define for all
te[0,7T)

- ) —1
4.4 t)=—=—o0X, ",
(4.4) )= vy, o X
and therefore the regularity of p in space derives from that of pg, X, L and det VX,
and from the bound (4.3). Moreover, by direct computation one can check that p solves
the continuity equation with velocity 4. On the other hand, if pg > pmin > 0, we define
po = exp(Lqlog(pp)) and p as above. Then, the lower bound on p can be deduced from
equations (4.4) and (4.3). O

In the following, we finally prove Theorem 1.1 and 1.2, which establish a bound on
the rate of convergence for our space-time discretizations of problems (1.1) and (1.4),
respectively.

Proof of Theorem 1.1. Throughout the proof we will denote by (-,-) and || - || the inner
product and norm on X, respectively, i.e. the L? inner product and norm weighted by
po. Moreover, for any function f : [0,7] — C%'(E) with £ C R? we will denote
by Lipp(f) = supsejo,r) Lip(f(?)) and we will use the same notation for vector-valued
functions.

We denote by @ and p the extensions of u and p, respectively, constructed via Lemma
4.1. Note that if p is not strictly-positive, p may be negative. However, since in the case
we suppose that |U(0)| < +o00, we replace U by a C? extension defined on R (which we
still denote by U with an abuse of notation), e.g., by setting U(r) = Zi:o UJ(rn)(())r"/n!
for r < 0 . Then, U™ (p) is Lipschitz in space, uniformly in time, for n =0, 1, 2.

We define the relative energy as follows:
1
(4.5) Epult, Xn) = Ka(t, Xn) + Fe plt, Xn) + 5[ Xn (1) - X)),

Note that besides the relative kinetic and internal energy, we also included an additional
term in (4.5) given by the squared L? distance between the flows and which will help
us deal with the fact that the image of Xy (¢) may not be included in M. Note also
that while the relative kinetic energy needs to be computed using the extended velocity
field u, for the relative internal energy we can use indifferently either p or p since it is
defined via an integral over the (fixed) domain M.
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The strategy of the proof is the following. First of all, we compute separately the
time derivative of the three terms in (4.5) for ¢ € [ty,tp+1). We then apply Gronwall’s
inequality on the same time interval to obtain a first estimate. Finally, we use a discrete
Gronwall’s inequality for 0 < n < Np to prove the result.

Step 1: Time derivative of the relative kinetic energy. We introduce the material
derivative

Dya(t) = dya(t) +a(t) - Va(t).
Then, using equation (1.12), we have
(4.6)
 Kalt, Xx) = (X(1) — uilt, Xov(1)) — Xn(t) - Ve, X (1), X (1) — lt, X (1))
—((Xn(t) = a(t, Xn (1)) - Va(t, Xn (1)), Xn(t) — @(t, Xn(t)))
— (e (XN (1) — X5 (tn)) + Drti(t, X (¢))), X (8) — a(t, Xn (1))

where we replaced Xy (t) using (1.12), and we removed the projection onto Xy, since
Xn(t) —a(t,Xn(t)) € Xn. Observe that the system (1.1) implies

poDyilt, X (1)) = —poVU'((t, X (1)) .

Then, adding and subtracting VU'(p(t, X (t))) and VU'(p(t, Xn(t))) in the last inner
product in (4.6), we obtain
(4.7)

d

(Xn(t) —a(t, Xn(1) - Valt, Xn(t)), Xn () — alt, Xn(t)))
Dya(t, Xn (1)) — Dea(t, X (1)), Xn(t) — a(t, Xn(1)))
VU (p(t, X (1)) = VU (p(t, XN (1)), Xn () — a(t, Xn (1))

e XN() = XK (t)) — VU (3(t, XN (1)), Xn (8) — a(t, Xn(2)))

—
—
+
—

Step 2: Time derivative of the relative internal energy. First of all, we define
the following quantity which will be useful for the computations below and also later in
the Gronwall argument (see also Remark 4.2 below):

(48) ()= [ U005 — o).

We now compute the time derivatives of the different terms in F; ,(t, Xn) (defined
by equation (3.6)) for ¢ € [ty,t,+1). By the same computations as in (2.7), we have

(4.9) / P(p(t))divu(t)dz .
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For the time derivative of the discrete energy we can arrange the terms in order to
obtain a similar quantity. In particular, we have

— € 2
% <||XN(t) QEXN(tn)H +u(,ﬁv(tn))>
= 5_1<XN(t) — XJEV(tn>v XN(t)>
(4.10) = (XN (t) = Xx(tn), Xn (1) — a(t, Xn (1))

+e XN () — X5 (tn), alt, Xn(t)) — a(t, X5 (ta))
+e XN () — Xn(tn), ult, X5 (tn)))
+e XN (t) — X5 (tn), ult, X5 (tn)))

and note that by Lemma 2.2, the last term in in equation (4.10) can be written as
follows

@) e () = Xt X)) = = [ P v u(t)do.

We write the time derivative of the remaining term in F; ,(t, Xn) as follows:
d d d

(112) & /M U (plt)) (P (tn) — pl0)) e = S () + & /R U)o (1)~ pl1).

Note that here we identify p(t) with a measure on R? extending it by zero, and we will
use the same convention also in the following. Then, we compute

% » U'(5() d(pn (t) — p(t)) =(VU'(5(t)) o Xn(t), Xn (1))

(4.13) — [ ult)- VU p(e)p(t) da

- / U0 div(p()(0) d(px (1) — p1).

Remark that here we used the fact that the continuity equation holds also for the
extended functions (p, %), which is due to the construction described in Lemma 4.1.
Using div(pa) = pdiva + Vp - @ and then using P'(r) = rU"(r), we get
d . - : -
U'(p(t) d(pn(t) — p(t)) = (VU'(p(t)) 0 Xn(t), Xn (t) — alt, Xn(t)))

(a14) /R

- /R P (p()diva(t)d(pn(t) - p(0)

Putting this back into equation (4.12), we find
(4.15)
d

% U (p(1)) (P (tn) = p(t)) dz = Z H"(t) + (VU'(5(1)) o X (2), Xn(t) —a(t, Xn (1))
M

-/ P'(p(t))diva(t)d(pn (t) — piy (tn))

_ /M P (p())div u(t) (o (t) — p(t)) da .
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Note that we have added and subtracted p% () in the last integral, which allows us
to retrieve P(p%(tn)|p) when combining all terms. In fact, replacing (4.11) into (4.10),
and subtracting the contributions from (4.9) and (4.15), we obtain

(4.16)

%J:&P(taXN) = (M XN(E) = XK () = VU (5(t, XN (1)), Xn (1) — a(t, Xn (1))
+e XN () = XR(ta), alt, Xn () — a(t, X5 (tn)))

= [ Pt lp(o)divu(t) do
M

+ / P(p(t))div(a(t))d(pn (t) — piy (tn))
Rd
d

+ e XN () = Xn(tn), 4t X (tn)) = L H(2).

We finally observe that the first term on the right-hand side of equation (4.16) coincides
with the opposite of the last term in (4.7). Therefore the two terms cancel out when
adding the two equations. The decomposition of the time derivative in (4.10) is designed
to exploit this feature, which is a consequence of energy conservation.

Step 3: Gronwall’s argument on [ty,t,+1). Combining

& L 1Xw (1) ~ X = G (t) ~ X (). Xnlh) — X (1)

with equations (4.7) and (4.16), we obtain

&yt Xx) = —{Dyi(t, Xn (1)) ~ Deilt, X (1)), Kn(t) — lt, X (1)

+ <VU (p(t, X (t))) — VU (p(t, Xn (1)), Xn(t) — i(t, Xn (1))
(Xn(t) = alt, Xn (1)) - Valt, X (1)), Xn () — a(t, Xn (1))

(Xn(t) = X (1), Xn(t) — X (1)

XN () = X§(tn), Glt, Xn (1) — a(t, X5 (tn)))

P(p (tn)|p(t))div u(t) dz
P/

+
+
(4.17)

I
+/d

(A(t))div(a(t))d(pn(t) = P (tn))

_ d
+e XN () = Xn(tn), ult, X5 (tn))) — $H"()

d
J1+J2+J3+J4+J5+J6+J7+Jg—aH”()

Applying Cauchy-Schwarz and then Young’s inequality to the first two terms we
obtain

(118) 1+ < 2Lipr(Di) + Lipy (V0" () ( Kalt, X) + 51Xx(0) - X0 )

where Dy and VU'(p) are interpreted as functions on [0, 7] x R?.
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For .J4, we have

Jo = (Xn(t) —a(t, Xn(t)), Xn(t) — X (1))
(4.19) + (u(t, Xn (1) —alt, X (1)), Xn(t) — X(¢))

< Ka(t, Xx) + (1+ 2Lipg () 5 1X(0) — X (1)

Using the estimate (4.19), we find

[ Xn(t) — X(t)||2>

6
> " Ji < (14 2Lipy (i) <Kﬂ(t,XN) + 5

=3
(4.20) _ X<
+ Lipy (1) 1580 = X5 ()]

< (14 A'Lipp(a)&,u(t, XN),

+ ALipr (@)U (p (tn)|p(t))

where A’ := max(A,2), and we used for Js the inequality given in Lemma 3.5 (see also
Remark 3.6). Hence, combining (4.18) and (4.20) we obtain

6
(421) Z J’L S Clgp,u(ta XN) )
=1

where Cy := 2Lipy (D) + 2Lipp(VU'(p)) + A’ Lipp(a) + 1. For J7 we have

Jr < Lipp(P'(5) div @) Wi (pn (), piv (tn))

e Wslen(t), Py (tn))
(4.22) =G <2+ - 2epN )

< (5 + PO Xty

2¢e

where Wi(-,-) denotes the L!'-Wasserstein distance and we have used the inequal-
ity Wilpn(t), p3y(tn)) < Wa(pn(t), p5(tn)) (see Chapter 5 in [29]), and where Cy =
Lipp(P'(p) div a).

For Jg we have

1

=2 /t L (), u(t X5 () A

IR .
<! / X () e, X (t))] 2
(4.23) e Jt,
T . 1 9
< g Es(thN) —minlf + §||u||L°°([0,T]><M)

< (0, Xn) +Cs)

where we used the conservation-dissipation of the energy & (1.19) for the last two
inequalities, and where Cj = ||ul| .. (0.7)x /2 — minld.
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Using the same argument as for J7, we obtain

(H"(8) <[Lipp(U"(5)) 2 + V22 (®): Py ()
(4.24) 1

1
§C4€ + §£p,u(t7 XN) )

where Cy = |Lipp(U'(p))|?.

This last inequality allows us to include H™(t) in the Gronwall argument. In partic-
ular, let E™(t) = &, 4(t,Xn) + H"(t). Combining the estimates (4.21), (4.22), (4.23),
into (4.17), we find

d n CQ T
&E (t) < (C1+ Co)&pu(t, XN) + et (Cs + E.(0, XN))E .
Adding and subtracting 2(C1+Co) H™(t), using the bound (4.24) and rearranging terms,
this implies
d

B (1) <201+ C) BN (1) + (% +2(C1 + C2)Ca)e + (C3 + (0, XN))E

=iC5E"(t) + Cig= + (Cy + €:(0, Xw))

Applying Gronwall inequality over the interval [t,,, s] with ¢, < s < t, 41, we obtain

(i) =l B7(s) < (B*(0) + Cher + (O + £:(0, X)) T exp(C7).

In order to apply a discrete Gronwall inequality, we need to replace the left-hand side
with E" 1 (t,,1) = Epultny, Xn) + H" Y(t,41). This is indeed possible, since by
definition of X3 (¢,41) and continuity of p, py and X5, we have

(4.25)

XN (tng1) — X5 (tat)|)?
Fep(tns1, Xn) + H"  (tny1) = [ XN (Ens1) = X5 (Ens)|

2¢e
- /R U@t Alpn (1) — Laspltnsa)

— € 2
< HXN(tn+1)28 XN(tn)” +U(PN(tn)) —U(p(tni1))

= [ Ul ) i) = Tarpltan)

= Fep(tyr, Xn) + H"(t, 1)

+U(PN (1)) = U(p(tnt1))

Hence we get
2

E" U tpi1) < (E™(tn) 4 Ceet + (C3 + £(0, XN))%) exp(C57) .
Remark 4.2. Note that the quantity
(4.26) Fep(t, Xn)+ H™(t), fort€ [tn, tni1),

can be regarded as a different approzimation of the relative internal energy of the contin-
uous setting (3.4). Using this quantity instead of simply F¢ ,(t, Xn) allows us to relate
the estimates across different time steps as in equation (4.25) wihtout having to deal
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with the discontinuities in time of p%,. Nonetheless, the sum in (4.26) is not positive in
general, which is why we define the relative internal energy by F. ,(t, Xn) only.

Step 4: Discrete Gronwall’s argument. Since ¢y, = 7Ny = T', we obtain

BV (T) < B(0) esplC5T) + (Cae + (Co + £:00, X)) SR AT LT =L

Using once again equation (4.24), this implies

Epu(T, XN) <(E,u(0, Xn) + HY(0)) exp(C5T)
z)exp(Cg,(T +7))—1
(3 C5

+ (CGE + (Cg + 55(07XN))
1

+ §€p,u(T7 XN) + 046 .

Hence, we get

Epu(T, Xn) <2(E,u(0, Xn) + H(0)) exp(C5T)

(4.27) +2(Coz + (Cs + £:(0, Xn)) ) eXp(CE‘(TCB* 7)1

+ 2C4e.

In order to conclude the proof we need to estimate the initial energy £.(0, Xn) and
the quantity &,,(0, Xn) + H°(0). Note that, due to the initial conditions (1.12)

N
£.0,Xw) = Y 3 IXHO P[P + (X (0)

2
< SO ey + UGp(0)) + P3O

2e
52
< C3 +U(p(0)) + T,
2¢
where dp is the error in the initial conditions in the Wasserstein distance, i.e.
(4.28) on = Wa(pn(0), p(0)).

In order to bound the quantity &,,(0, Xn) + H°(0), we first estimate the term

_ W3 (pn(0), p5(0))
2e

+U(P(0)) = U(p(0)) — /Rd U'(5(0))d(pn(0) = 1azp(0)) -

F,(0, Xn) + HY(0)

By definition of p3,(0) we find

W3 (pn(0), p5(0))

o )) < Wg(pN(O)HO(O)) )

+U(p(0)) —U(p(0)) < o
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Moreover,

/Rd U'(p(0))d(pn (0) — 1arp(0))| < Lip(U’(p(0))) Wi (pn (0), p(0))

< Cje+ W3 (pn, pn(0))
2 2e ’

where C := Lip(U’(p(0))). Combining the two estimates and recalling (4.28) we get

2 2 2 2
(4_29) }—p(OaXN) + HO(O) S %E + W2 (pN(EO)ap(O)) — %6 + 5?N

The remaining terms in the relative energy &,,(0, Xy) can be estimated by the fact
that /C(0, Xn) = 0 (due to the initial conditions (1.12)) and the bound

(4.30) on = Wa(pn(0), p(0)) = || Pxy1d —1d[| < v/po[M]hn ,

which follows from definition of hy.

We conclude by replacing the estimates above into equation (4.27) and estimating
the constants using Lemma 4.1. O

We now turn to the proof of Theorem 1.2. We will focus only on the differences with
the proof of Theorem 1.1. In particular the kinetic energy will not be taken into account
in the definition of the energy.

Proof of Theorem 1.2. The proof follows the same line as the one of Theorem 1.1. We
denote by p and @ the extensions of p and u :== —VU’(p) constructed via Lemma 4.1. In
particular, note that @ # —VU’(p) outside the domain. In the case where |UY'(0)| < oo,
we also extend U as a C® function on R as in the proof of Theorem 1.1.

Then we take as relative energy
1
(4.31) Z)(t, Xn) = Feplt, Xn) + 5| Xn(t) = X@)?.

By equation (4.16), the time derivative of Z,,(t, X ) satisfies

(4.32)
8

S 2,1, Xx) + THY = 3 (0 + U316 X)), K () = 8 X0,

where the terms H™(t) and J; are defined as in equation (4.8) and (4.17), respectively.
Adding and subtracting @(t, Xy (t)) and VU (p(t, X (¢)) in the last term we obtain
10

d d .
(4.33) 3 2ot XN) + L H" (1) + 2Ka(t, Xy) = ;4,]

where
Jo == (a(t, X (t)) — @(t, Xn (1)), Xn(t) — a(t, Xn (1)),
Jio == (VU (B(t, X (1)) — VU (p(t, Xn (1)), Xn(t) — a(t, Xn(1))) -
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The estimates for the terms J; are analogous to those in the proof of Theorem 1.1.
In particular, we obtain

6
D Ji < Kealt, Xn) + CLZ,(t, Xn),
i=4

where now Cy := 1 + A’Lipp(@), and as in the previous proof A’ := max(2, A). The
terms J7 and H™ are estimated as in equations (4.22) and (4.24), respectively, with the
same constants Co and Cy. For Jg, proceeding as in (4.23), we obtain

L[t/ 1
st [ (SO + Gl Xl ) a
(3 tn

1 XN () = X5 )I? 1 XN Enrn) = X)) 0 7 o

< _ 2

(4.34) = 2 % % )+ gzl o.ryxan)

1 T 9

<5 (Fe(Xn(tn)) — Fe(Xn(tns1))) + ?6||u||Lw([O,T]xM)
An

= —+ Cf?)z )
2e €

where we used the equation
Cd [ XN() - X5 ()]
dt 2¢
to pass from the first to the second line, and the inequality
XN (tns1) — X5 ()12
2e

to pass from the second to the third line. Finally, the last two terms are estimated as
follows

Jo + Jio < %Ks,a(t,XN(t)) +2(Lipp(a) + Lipg (VU (9) | Xn (1) — X (1)

IXn ()] =

+ U (P (tn)) = Fe(Xn (tnt1))

1
= 5’@;@(15, XN(t)) + C5Zp(t, XN) .

Introducing Z"(t) .= Z,(t, Xn§) + H"(t), and proceding as in the previous proof, we
obtain

d 1 C
TZM(0) + 5Kealt,Xn) S 2Cy+ Co+ C)27(1) + (?2 +2(Cy + Cy + C5)Cy)e
A’I’l
+ — 4+ ng
2e 5
n T A"
= C¢Z (t) + Cre +C3— + —.
€ 2e

Therefore, by the same reasoning as above
1 (T
21X+ 5 [ Kealt: Xn) 2Zpu(0.Xn) + HO0) + Cre+ CoT) exp(CaT)
0

+ L(F(Xn (0)) = Fo(Xn(T))) exp(CsT) +2Cse
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However, note that

W2(p(0), pn(0))
2 ‘
We conclude the proof using (4.29) and (4.30) to bound this latter term as well as
Z,(0, Xn) + H°(0), and using Lemma 4.1 to bound the constants in the final estimate.
O

Fo(Xn(0)) = Fo(Xn(T)) < Fo(Xn(0)) — mindd < U(p(0)) — minid +

Remark 4.3. Note that the dependency of our estimates on hy is only due to the bound
(4.30). In particular, the error estimates in Theorem 1.1 and 1.2 hold also replacing
hy with oy .

Remark 4.4. We observe that we can obtain similar convergence estimates also on the
Lagrangian velocity as it can be easily verified with the following triangular inequality

I Xn(t) = X()]lx < | Xn(t) — alt, Xn(8)lx + [[a(t, Xn () — at, X () ||x
< V2Ka(t, Xn) + Lipp (@) | X (t) — X ()[x -

Remark 4.5. The regularity of the exact solutions required in Theorem 1.1 and 1.2 is
chosen in order to apply the extension Lemma 4.1. However, examining the constants
appearing in the estimates above, one can see that this is stronger than what is actually
required from the extended variables themselves. For example, one can check that the
proof still holds if u is of class C™' on [0, T]x M with CY' divergence in space, uniformly
in time, and admits an extension U with the same reqularity. If M is sufficiently regular,
say simply connected with a smooth boundary, such an extension can be constructed
using Fefferman’s extension theorem [11] as in Lemma 4.1 but applied to the potentials
obtained via the Helmholtz decomposition of u.

(4.35)

5. IMPLEMENTATION

5.1. Computation of the Moreau-Yosida regularization. In this section we de-
scribe how the schemes (1.16) and (1.21) can be implemented. In particular, we show
that computing the gradient vector field driving the dynamics amounts to solving a
semi-discrete optimal transport problem at each time step.

Definition 5.1 (Laguerre diagram). The Laguerre diagram of (zy,...,zy) € (RN
with weights (w1, ..., wy) € RY is a decomposition of M into N subsets (L;); defined
by

Li={zxeM|Vjec{l,...,N}, |z —x|* + w; < |z —x;]* +w;}.

In the following we will identify Xy with (R?)¥, i.e. we regard an element Xy € Xy
as the collection of the particle positions (X% ); € (RY)". With this identification, the
functional F. can be interepreted as a function on (R%)V, and its gradient at a given
point as a vector in (RY)Y. Let us introduce the set

Dy = {(21,...,25) € RYN | ; = x; for some i # j}.

In the following proposition we collect the results of Proposition 11 and 13 in [30]
adapted to our setting. It gives the explicit expression of the regularized density and
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the gradient of the regularized energy appearing in the time-continuous schemes given
by (1.12) and (1.15).

Proposition 5.2. Let X = (z1,...,2n5) € (RON \ Dy, and set py = > PoPi]0z; -
Then the unique minimizer pS; of problem satisfies

p(e) = 2eU) " H((wi — |z —2i*) VU'(0)), Ve L,
where (L;); is the Laguerre diagram associated with the positions (x1,...,zN) and the
weights (w1, ..., wy), which are uniquely defined up to an additive constant by the con-

dition p%[Li] = po|P;]. Moreover, F. interpreted as a function on (RY)N is continuously
differentiable on (RN \ Dy and

:Ci*bi X 1 e
Vo Fe(X) = PO[B}%: bi(X) = po[P']/L rpyde.

Remark 5.3 (Power energies). If the energy is defined by the power function

rm

U(r)=

m—1"
for m > 1, then the minimizer p5; has the following form:

i) = [(med) mle o]y

m 2e

Actually, in order to compute the solutions of the fully-discrete scheme, we do not
need the expression for the gradient in Proposition 5.2, but we just need to identify
Py, X5(tn) in (1.16) and (1.21). For this, assume that (X4 (¢,)); € (RN \ Dy and
let (L;); be the Laguerre diagram associated with p3;(t,). Then, for any Yy € Xy, we
have

X5 (tn) - Ynpodz =D Yy - / X5 (tn)pode =D Vi - / zp5y (tn) dz .
So i P; i L;
Therefore,
Px X5 (tn)(w) = bi(Xn(tn) Ywe P,
where b;j(Xn(t,)) € R? is the barycenter of p%(t,) restricted on L;.

Remark 5.4 (Initialization by optimal quantization). The partition Px of the support
So € M of pg which is required to define the space Xy (see Section 1.2) can be itself
defined as the interesection of a Laguerre diagram (L;); with So. For instance, assuming
the masses to be equal, i.e. m; = po[M]/N fori=1,...,N, one can select the vector of
positions (z1,...,2x) € (RDN defining the diagram to belong to the argmin of

Wio- . ux) € RN Wz(z ”O[M]ayﬁpo) ,

N

so that there exists a vector of weights (w1, ..., wy) € RN such that po|L;] = po[M]/N.
Then one can define the initial conditions Xn(0) by Xn(0)|r, = x;, and therefore
pn(0) = >, poz[\],\/[]ém. With, this choice on = Wa(pn(0), po) < N~V (see, e.g., [20]).
In view of Remark 4.3, this ensures the convergence of the schemes independently of the
size of the partion hy.
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5.2. Time integration and linear potentials. The schemes (1.12) and (1.15) can
be easily generalized to the case when the energy of the system contains an additional
linear term of the form
/ Vidp,
M

where V € CLY(M) is a given function. At the discrete level, it is more convenient to
treat this term independently of the Moreau-Yosida regularization, i.e. by adding to the
discrete energy the term

(51) VdeZ/ VOXNdp(),
R4 M

where V is a C1! extension of V, e.g., constructed using Fefferman’s extension theorem
[11]. Then, in view of Proposition 5.2 the discrete scheme (1.12) would be replaced by

~XR () = bi(Xn(tn))

for all @ € {1,...,N} and t € [tn,tnt+1), where b; is defined as in Proposition 5.2.
Therefore for each time-step one needs to:

(5.2) Xy(t) = - VV(Xx (1),

(1) find the optimal density p%(¢,) and the associated barycenters b;(Xn(t,)): as
in [19], this is done by applying a damped Newton’s method to solve the system
of optimality conditions p%(tn)[L;] = po[P;] from Proposition 5.2;

(2) solve N decoupled systems of ODEs in (5.2), which can be done explicitly for
particular choices of V.

The same holds for the scheme (1.15) upon replacing X4 (t) by X4 (t).

Finally, note that even with the additional term (5.1), the proofs of convergence above
still apply without modifying the relative energies and with only minor modifications. In
particular, the constant in Theorem 1.1 and 1.2 would additionally depend on Lip(VV).

6. NUMERICAL TESTS

In this section we demonstrate numerically the behavior of the scheme in terms of
convergence with mesh and time-step refinement. The tests presented hereafter corre-
spond to the internal energy/pressure function

(6.1) U(r) = P(r) =12,

for which the Euler equations (1.1) yield the shallow water equations without rotation
and the gradient flow (1.4) yields the porous medium equation with a quadratic non-
linearity. Note, however, that in tests below the vector field VU’(p) is not Lipschitz (in
fact, it is discontinuous at the boundary of the support of p), so they are outside the
limits of applicability of our theorems. For all the tests the discrete initial condition
are determined by optimal quantization with respect to the Wasserstein distance as in
Remark 5.4.

For the computation of the Moreau-Yosida regularization, we used the open-source
library sd-ot, which is available at https://github.com/sd-ot.
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1/VN AX rate AU rate
1.25e-01 4.71e-02 - 1.66e-02 -
6.25e-02 2.78e-02 7.62e-01 9.39e-03 8.21e-01
3.12e-02 1.55e-02 8.44e-01 5.11e-03 8.77e-01
1.56e-02 8.24e-03 9.08e-01 2.72e-03 9.12e-01

TABLE 1. Errors and convegence rates for the Barenblatt solution of the
porous medium equation, with e = /7 = 1/V/N.

6.1. Convergence: porous medium equation. The porous medium equation (1.4)
associated with the energy (6.1) admits the following exact solution

(6.2) pltoz) = — (02 - 161ﬂ|x|2)
.

on any time interval [to, T, with top > 0. Initial conditions are given by optimal quan-
tization of the Barenblatt profile at given time. Equation (6.2) describes the evolution

of the so-called Barenblatt profile. The internal energy decays according to
167C°
Ut) = -
3Vt

whereas the Lagrangian flow is given by

(6.3) X(t,2) = <t> "

to
Here we take tg = 1/16, T'=1 and C' = 1/3, and we monitor the following quantities:
(6.4) AX = [ Xn(T) = X(T, Xn(0) |z, AU = [U=(pn (T)) = U(T)] .

Note that AX is an order one approximation of the L? distance between the discrete
and continuous flows appearing in the convergence estimates. For a given number of
particles N, we take ¢ = /7 = 1/v/N, which implies a rate of convergence of 1/2
according to Theorem 1.2 (see also Remark 5.4). In Figure 1 we show the density p%,
for fixed N and at different times and the associated Laguerre diagram. Table 1 collects
the errors and the associated convergence rates which confirm our estimate. Figure
2 shows the time evolution of the internal energy, which decreases monotonically in
accordance with the stability estimate (1.22).

6.2. Convergence: Euler equation. We perform two different convergence tests for
the Euler model (1.1). For the first we construct an exact solution of the equation by a
time rescaling of the Barenblatt solution above, i.e. we take

4 1
6.5 ta)=———(C? = ——_|2]?) .
(6:5) oAt ) 1+2t+5t2< 4(1+2t+5t2)|x|>+
This is an exact solution of the model associated with the Lagrangian flow

(6.6) X(t,z) =axVbt2+ 2t + 1
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6.0e-02
[ 0.05
—0.04

—0.03
—0.02

I: 0.01
0.0e+00

FIGURE 1. Evolution of the density p%; for the Barenblatt solution of

the porous medium equation for N = 576, and ¢ = /7 = 1/v/ N. Upper
row: weights evolution; lower row: Laguerre diagram evolution.

N =64

0.08 —- N =256 -

k -=-=- N =1024

0.06 — N = 4096
0.04 AL l

0.25 050 0.75
t

FIGURE 2. Time evolution of the discrete internal energy U (pn(t)) for
the Barenblatt solution of the porous medium equation (the red line
corresponds to the exact energy evolution).

and the initial conditions X (0, ) = z. In this case the exact kinetic and internal energy
evolutions are given by

_ AmCY(10t + 2)? . 647C6

(6.7) K(ﬂ—m’ ()ZM'
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1/VN AX rate AE rate
1.25e-01 4.36e-02 - 2.46e-02 -
6.25e-02 2.77e-02 6.53e-01 1.68e-02 5.52e-01
3.12e-02 1.61e-02 7.83e-01 1.02e-02 7.13e-01
1.56e-02 8.80e-03 8.7le-01 5.71e-03 8.44e-01

TABLE 2. Errors and convegence rates for the Barenblatt solution of the
Euler equations, with ¢ = /7 = 1/v/N.

For this test, we take to = 0, T'= 0.6 and C' = 1/3, and we monitor the flow error AX
defined in equation (6.4) and the total energy error

(6.8) AE =|E(T, Xn) — E(T)],
where E(T') = K(T) + U(T).

For the second test, we add to the system a linear confinement potential
(6.9) V(z) = gm?.

Then, we consider the exact solutions associated with the steady density

(6.10) p(z) = <02 — 116|w|2>

+
and the rigid rotation given by the flow
- [ cos(t) sin(t)
(6.11) X(t,z) = R(t)x, R(t) = < “sin(t) cos(t) )

Both the kinetic and internal energy are constant during the evolution and they are
given by

647C° 167CS
(6.12) K(t) = 7; L Ut) = 7; .
For this test we take to = 0, T =1 and C = 1/3, and we monitor the same quantities
as above.

As before, for a given number of particles N, we take ¢ = /7 = 1/+/N, which
implies a rate of convergence of 1/2 according to Theorem 1.1 (see also Remark 5.4).
Tables 2 and 3 collect the errors and the associated convergence rates for the two tests
and confirm our error estimate. Figures 3 and 4 show the time evolution of the total,
kinetic and internal energy; note that the discrete total energy decreases monotonically
in accordance with the stability estimate (1.19).
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FIGURE 3. Time evolution of the discrete total energy &.(t, Xn) (left),
kinetic energy (center), and internal energy U.(pn(t)) (right) for the
Barenblatt solution of the Euler equations (the red line corresponds to
the exact energy evolution).
1/VN AX rate AE rate
1.25e-01 7.28e-02 - 3.00e-02 -
6.25e-02 3.76e-02 9.55e-01 1.59e-02 9.18e-01
3.12e-02  1.92e-02 9.71e-01 8.16e-03 9.61e-01
1.56e-02 9.84e-03 9.61e-01 4.28e-03 9.29e-01
TABLE 3. Errors and convegence rates for the rigid rotation solution of
the Equation equation, with ¢ = /7 = 1/v/N.
R 0.09 1 RS2 004517 L N =64
0014 % N S~ o T — 0.040 4 "= N =256
WO\, T m——y 0.08 4+ ~. == -—= N =1024
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FIGURE 4. Time evolution of the discrete total energy E.(t, Xn) (left),
kinetic energy (center), and internal energy U.(pn(t)) (right) for the
rigid rotation solution of the Euler equations (the red line corresponds
to the exact energy evolution).
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Chapter 3

Unbalanced Optimal transport,
geometry and PDE

3.1 Regularity theory and geometry of unbalanced optimal
transport.

Articles:

e Regularity theory and geometry of unbalanced optimal transport. Submit-
ted 2023 Gallouét T.O., Ghezzi R. et Vialard EX. https://hal.science/
hal-03498098vl.

Collaborators: Roberta Ghezzi and Francois Xavier Vialard

Main contributions:

e We investigate the regularity of optimal transport maps for Unbalanced op-
timal Transport, making the link with regularity of a classical Optimal Trans-
port problem.

e We provide an equivalent of the Brenier Polar Factorization Theorem in the
UOT case.

e We explicit the link between c-convexity and a cone-distance convexity
linked to UOT.

e We also explicite the link between c-convex functions and cone-distance con-
vex functions.

e It allows us to show for instance that the MTW condition on the Cone with
the cone distance implies the MTW condition for the cost associated cost c on
the base space.

Research directions: A natural follow-up of this paper is to understand how to
use this new polar factorization theorem in order to compute numerical approxi-
mations of some PDE, in the spirit of what we have done in Section 2.3 with La-
grangian numerical scheme. We also want to pursue this investigation onto the link
between the geometry of the underlying space and the one on the cone space. Our
main motivation is to provide more efficient numerical methods for some problems
related to UOT.
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REGULARITY THEORY AND GEOMETRY OF UNBALANCED OPTIMAL
TRANSPORT

THOMAS GALLOUET, ROBERTA GHEZZI, AND FRANCOIS-XAVIER VIALARD

ABSTRACT. Using the dual formulation only, we show that regularity of unbalanced optimal trans-
port also called entropy-transport inherits from regularity of standard optimal transport. We then
provide detailed examples of Riemannian manifolds and costs for which unbalanced optimal trans-
port is regular. Among all entropy-transport formulations, Wasserstein-Fisher-Rao metric, also
called Hellinger-Kantorovich, stands out since it admits a dynamic formulation, which extends the
Benamou-Brenier formulation of optimal transport. After demonstrating the equivalence between
dynamic and static formulations on a closed Riemannian manifold, we prove a polar factorization
theorem, similar to the one due to Brenier and Mc-Cann. As a byproduct, we formulate the
Monge-Ampére equation associated with Wasserstein-Fisher-Rao (WFR) metric, which also holds
for more general costs. Last, we study the link between c-convex functions for the cost induced
by the WFR metric and the cost on the cone; the main result is that weak Ma-Trudinger-Wang
condition on the cone implies it for the cost induced by WFR.
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1. INTRODUCTION

In the past few years, optimal transport has seen an impressive development mainly driven by
applied fields in which real data require robust and largely applicable models. In many applications,
data are modeled by probability distributions. To compare two such distributions, optimal transport
(OT) provides a distance which is geometrically meaningful. Indeed, OT lifts a distance on the base
space to the space of probability measures. In OT, the underlying idea consists in explaining variation
of mass between measures via displacement, thereby having a global constraint of equal total mass
for the two measures. The last constraint can easily be alleviated with global renormalization but

The second author is supported by project “ConDiTransPDE”, Control, diffusion and transport problems in PDEs
and applications, project number E83C22001720005, funded by Universita degli Studi di Roma “Tor Vergata”, Rome
Ttaly.
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the obtained model will not be able to account for possible local change of mass. Considering this
shortcoming [20, 4], it was natural to enrich the model using local change of mass as proposed by
the last author and co-authors and independently by others in [8, 9, 25, 30].

When looking for a generalization of optimal transport to unnormalized measures, there are at
least two possible directions. The first one consists in extending the Kantorovich formulation of opti-
mal transport, which is static in contrast to the Benamou-Brenier formulation. This idea amounts to
relax the marginal constraints using some divergence such as the relative entropy (Kullback-Leibler).
By doing so, it is not trivial to know whether the resulting functional gives a proper distance between
positive densities. The second one is to start by the dynamic formulation of Benamou and Brenier
[3], which is of interest since it uncovers the Riemannian-like structure of the Wasserstein metric for
the L? cost. A natural Riemannian tensor on the space of densities which is one-homogeneous with
respect to rescaling of mass is the Hessian of the entropy, known as the Fisher-Rao metric when
restricted to the set of probability densities.

The latter idea was the starting point of the concurrent works [3, 9, 25, 30] that introduced what
is now called unbalanced optimal transport and which has seen several applications in data sciences.
Arguably, the most significant result on this model is the equivalence between the static formulation
and the dynamic formulation [9, 30]. Importantly, the article [30] gives another characterization of
unbalanced optimal transport as a standard optimal transport problem on the cone over the base
manifold with second order moment constraints. This formulation was exploited in [19, 41] to refor-
mulate the Camassa-Holm equation as a standard incompressible Euler equation on an extension of
the cone. Then, generalized flows & la Brenier were studied in [18] for the Camassa-Holm equation
and its higher-dimensional extension. Other interesting extensions and related works of the unbal-
anced framework include the projection of this distance to the set of probability measures using
homogeneity property [28] and gradient flows that retain more convexity than standard Wasserstein
gradient flows [27, 26]. The dynamic formulation of unbalanced optimal transport has also drawn
some interest [5, 2], also for defining new metrics between metric measure spaces [34, 39]. Applica-
tions of unbalanced optimal transport are numerous [15, 36, 38, 39, 15], in particular in data science
and computer vision, since this model is more robust in some sense than standard optimal transport
and computationally feasible using entropic regularization [10].

An open question in this unbalanced framework is the issue of regularity. In the context of
standard optimal transport, regularity appeared after Brenier stated the existence of an optimal
transport map under mild conditions in Euclidean space. Since then, an “implicit” regularity of
optimal transport was discovered in [7] and following works, see [13] for a recent overview. Regularity
does not hold in general but it is observed when the underlying densities are regular and have convex
support in Euclidean space. These results are based on Monge-Ampere equation and they have
triggered a number of works concerned with extensions to Riemannian manifolds [32].

Contributions and structure of the article. In this paper, we address the question of
regularity of unbalanced optimal transport. We focus on two important instances of the problem
which give rise to a metric on the space of positive Radon measures, namely the Wasserstein-Fisher-
Rao (or Hellinger-Kantorovich) and the Gaussian-Hellinger distances. Obviously, there is not just a
single map as in standard optimal transport. However, the objects of interest are still encoded via
optimal potentials, on which regularity can be studied. Alternatively, regularity can also be tackled
from the primal formulation. Indeed, a plan which minimizes the primal formulation of unbalanced
optimal transport is an optimal transport plan between its marginals.

From the above remarks, it is expected that regularity of the potentials is inherited from regularity
theory for optimal transport. This fact is proven in Section 2 in Theorem 4 by studying the dual
formulation and in particular its first-order optimality condition which encodes optimal transport
between the optimal marginals of the primal formulation. Starting from the general formulation
of [30], our regularity theorem requires Lipschitz regularity of the optimal potentials. Existence of
Lipschitz potentials is proven in Section 2.2, under geometric conditions on the measures. Under
these conditions, we obtain our results for Gaussian-Hellinger and Wasserstein-Fisher-Rao in Section
2.3. In particular, Gaussian-Hellinger is regular on the sphere and the Euclidean space, whereas
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Wasserstein-Fisher-Rao is regular only on the sphere but not on the Euclidean space. We then focus
in Section 3 on the Wasserstein-Fisher-Rao metric for which we show the equivalence between static
and dynamic formulations on a closed Riemannian manifold. To derive our main contribution in
this section, we take advantage of a geometric point of view to show a polar factorization [0, 32]
theorem on a semi-direct product of groups, which is the natural extension of the diffeomorphism
group to the unbalanced setting. Such a decomposition inherits the regularity results of unbalanced
optimal transport. Last, we study c-convex function for the cost on the cone and the cost induced
by the Wasserstein-Fisher-Rao metric. Our main result is to show that the so-called weak MTW
condition on the cone implies the same condition for the cost induced by Wassertein-Fisher-Rao.

2. REGULARITY OF UNBALANCED OPTIMAL TRANSPORT

2.1. From optimal transport regularity to unbalanced optimal transport regularity. In
what follows, we use the notation X,Y for two spaces that are either Euclidean spaces, bounded
convex sets of Euclidean spaces, or Riemannian manifolds. In fact, results in this section apply to
the more general setting of [30] but since we are interested in regularity theory, we choose to focus
on the aforementioned cases.

We consider the general case of an entropy function, that replaces the relative entropy.

Definition 1. An entropy function F : R — [0, 4+00] is a convex, lower semi-continuous, nonnegative

function such that F(1) = 0 and F(x) = 400 if # < 0. Its recession constant is F._ = lim,_, ;o Er),

r

Proposition 1. The Legendre-Fenchel transform of F, denoted by F*, has a domain of definition
dom(F*) = (—o0, F.. | and it satisfies

(2.1) OF*(dom(F™*)) C R>q.
Moreover, if OF(0) = 400, then OF*(dom(F*)) C Rso.

Remark 1. The hypothesis OF(0) = +oo is satisfied, for instance, by the choice F(x) = xlog(z) —
x + 1, arguably the most important and most frequent entropy function used in unbalanced optimal
transport. In this case, the Legendre-Fenchel transform is F*(x) = e* — 1.

Definition 2. Let F' be an entropy function and p, v be Radon measures on a Riemannian manifold
M. The Csiszar divergence associated with F' is

(2.2) Dp(p,v) = /M F ( j‘y‘gg) dv(z) + F., /M dut

where p! is the orthogonal part of the Lebesgue decomposition of p with respect to v.

For F(z) = xlog(z) —x+ 1, Dp is also known as Kullback-Leibler divergence or relative entropy,
and it reads

du du
2.3 KL = | —1 — ] d — |ul.
(23) (o) = [ oron (1) av -
Given F, the resulting divergence D is jointly convex and lower semi-continuous on the space of
pairs of finite and positive Radon measures, see [30, Corollary 2.9]. We can now define the primal

formulation of unbalanced optimal transport, which is similar to the Kantorovich formulation of
optimal transport. We denote by M (X) the space of finite and positive Radon measures on X.
As is standard in optimal transportation, we need a cost function, which can be unbounded in our
setting.

Definition 3. A function ¢: M x M — RU {+oo} is a cost function if it is bounded below.

Definition 4 (Kantorovich UOT). Let (po, p1) € M4 (X)xM(Y) and Fy, F; be entropy functions.
The unbalanced optimal transport problem is defined as

(2.4) UOT(po,p1) = inf DFo(vo,po)JrDFl(%pl)Jr/ c(z,y)dy(z,y),
YEM4L (X XY) XxY

where 79,7y, are marginals of 7, and ¢: X x Y — RU {400} is a cost function.
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The distance between two Dirac masses can be computed explicitly: let pg = rd,, p1 = 56y, in
order to compute UOT(pg, p1) one has to compute the local quantity

(2.5) D((z,r), (y,s)) = zé%iu rEy(z/r) + sFi(z/s) + c(z,y)z .

This quantity can be computed explicitly for the Kullback-Leibler divergence for both Fy and F
and is equal to D((x,7), (y,8)) = 7 + s — 2y/rse~°@¥)/2; it will be useful for example to derive the
Monge formulation of UOT.

The UOT problem has many equivalent reformulations, in this section, we rely on the dual
formulation of (2.4) given by the Fenchel-Rockafellar theorem.

Proposition 2 (Dual UOT). The dual formulation of (2.4) is
20)  SGoa)=  swo o [ Fa@)dn) - [ FrEam)da)
(20,21)€CH(X)xCp(Y) X Y

under the constraint
(2.7) zo(x) + 21(y) < ez, y).

For a proof in the general case, see for instance [30, Proposition 4.3].

Our goal is to show that regularity of unbalanced optimal transport follows from regularity of
standard optimal transport for the cost ¢. This result can be expected since once the optimal
marginals vo,y1 are fixed in (2.4), optimizing on the plan 7 (with fixed marginals) is indeed a
standard optimal transport problem between 7y and 7; for the cost c.

Lemma 3 (Linearized UOT). Assume that the entropy functions F; are differentiable on their
domain. Let (z§,27) € Cp(X) x Cp(Y) be a pair of optimal potentials for the dual problem (2.6)
satisfying range(—z}) C dom(F;). Then (z§,27) is a solution of the standard optimal transport
problem
(2.8) swp [ @) dp@) + [ 2 dnl)

X

(20,21)ECH( X)X Cp(Y) Y

under the constraint zo(x) + z1(y) < c(x,y) where p; = F;'(—zF)p; fori=0,1.

K2

Proof. Let (6z0,021) € Cp(X) xCy(Y') denotes the first order admissible variations of zy, z1 satisfying
the inequality constraint zo(x) + dzo(x) + 21(y) + 021(y) < ¢(x,y). Given some potentials (zq, z1) €
Cy(X) x Cp(Y), one can differentiate the dual functional (2.6) to get

[ @ (2@ dmla) + [ 800 F; (<10 dinlo).
At (2§, 27) the optimality implies for all admissible (dz§, d27)
/X(SZG(HC)F&"'(—ZS)dPo(iC)+/Y5Zf(y)Ff'(—Zf(y))dp1(y) <0,

or equivalently by linearity
/X (2 + 825 () By (—=) dpo(z) + [/ (21 + 825 (0) F' (=21 () dpu () <

/ (@) FY (—#) dpo(x) + / SWF (-2 ) dor (v),
X Y

for all (2o, z1) = (2§ + 028, 27 + 02F) satistying Zo(x) + z1(y) < c(z,y). It exactly says that (2§, 27)
is optimal in the constraint problem (2.8).

O

Remark 2. An immediate consequence of this proof is that the corresponding Radon measures p;
have the same total mass. Indeed, given a pair of potentials (z0,21) satisfying (2.7), for every A € R
the pair (zo9 + A, 21 — ) still satisfies (2.7). However, the linearized objective functional differs with
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the term X(|po| — |p1|) where | -| denotes total mass. This term can be made arbitrarily large unless
|po| = |p1], thus contradicting the fact that the linearization is bounded.
Remark 3. Following Lemma 8 and Brenier’s work [0, Section 1.4], a potential zy solution of

Proposition 2 can be taken as a definition of variational solutions for a UOT-Monge-Ampére equation
given by :

F'(—=25)po(@) .
Fr'(=21(y))p1 o p(2)
See Proposition 16 for more detailed computation in particular cases like Gaussian-Hellinger or
Hellinger-Kantorovich problems.

(2.9) det [~ V2z0(2) + (Vi,0) (@, ¢(2))] = [det [(Va,y0) (2, ¢ ()]

Regularity results for such optimal potentials are therefore regularity results for these PDE. The
following definition is useful to state the main result of this section.

Definition 5. Let (pg, p1) € M4 (X) x ML (Y) be two measures which are absolutely continuous
with respect to a reference volume with densities (pg, p1) € C**(X) x C**(Y) for a given non-
negative integer k, a € (0,1). We say that (po,p1) is a k-regular pair of measures if, for every
0 <1 < k and every pair (Ag, A1) € Cb®(X) x Cb(Y) of positive functions bounded away from zero
and infinity, the optimal potentials, for the classical balanced optimal transport problem between
the pair go = Aopo/|Aopo| and p1 = Ai1p1/|Aip1|, are of class C!F2«,

This definition/assumption encapsulates the regularity of balanced optimal transport needed for
its extension to the unbalanced setting. This condition is realized in [12, Theorem 3.3] for C*
positive densities whose support is a convex domain and which are bounded away from zero and
infinity. More generally, this definition fits well with the regularity theory developed for Monge-
Ampere equation. Indeed, there is often geometric assumptions on the support of the measures, for
instance convexity in the Euclidean case, which are left unchanged under pointwise multiplication
with a positive function.

‘We now state the main result of this section which says that unbalanced optimal transport inherits
the regularity of standard optimal transport associated with the cost c.

Theorem 4 (Reduction to standard optimal transport). Assume that

(1) the Fenchel-Legendre transform of the entropy functions have domain [0, +00), are C**1 on
(0,00) and OF;(0) = 400, i =0,1;

(2) the pair of measures (po, p1) is k-reqular;

(3) the optimal potentials for unbalanced optimal transport (z§,z%7) are Lipschitz continuous.
Then, the optimal pair (25, 27) is of class CKT2Y(X) x CF+2e(Y).

Assumption (1) ensures that the resulting marginals are sufficiently smooth and with unchanged
support, i.e., the multiplicative term F;*'(—z¥) does not vanish. Existence of Lipschitz potentials
is in general a consequence of Lipschitz continuity of the cost. However, for unbounded costs, it
requires more assumptions, as detailed in the next section for the Wasserstein-Fisher-Rao metric.

Assumption (2) says that a theory of regularity for a class of optimal maps in the case of classical
optimal transport is available. This is true for example under conditions on the Ma-Trudinger-Wang
tensor see [43, Chapter 12] for instance. Some links between the MTW tensor on the underlying
space X and the MTW tensor on the cone over X is discussed in Section 4.

Proof. The proof is a straightforward bootstrap argument based on the combination of Lemma 3
and Hypothesis (2). Since the optimal potentials are Lipschitz, Lemma 3 gives that these potentials
are optimal for a classical balanced optimal transport problem between a new pair of densities
which inherits smoothness from the potentials and the initial densities, namely p; = F'(—2)p;.
Hypothesis (1) gives that F}*'(—z;) is C! if z; € C! for [ < k. Tt implies that the regularity of j5; is
given by that of z;. At the initialization step of the bootstrap, they are only Lipschitz, then applying
Lemma and Hypothesis (2), the optimal potentials gain in regularity to be C*!. Then, in turn, we
obtain that the marginals p; are C™"(%:3)  Tterating this bootstrap argument gives the result, the
optimal potentials are C*+2:® and the optimal marginals j; are C*. |
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2.2. Existence of Lipschitz potentials for unbounded costs. The choice of cost ¢ in formula-
tion (2.4) may vary. For instance, in usual applications outside mathematics, the Euclidean squared
distance is often used. From the mathematical point of view, the case of

(2.10) c(z,y) = —log (cos2 (d(x,y) A g))

stands out since it appears in the static formulation of the Wasserstein-Fisher-Rao metric. Impor-
tantly, this cost is unbounded as well as its gradients, since it blows up when d(z,y) is close to 7/2.
In this section we prove existence of Lipschitz potential for the maximization problem in (2.6), (2.7)
for unbounded costs under an admissibility assumption on the source and target measure. Such
condition may be interpreted by saying that pure creation/destruction of mass is forbidden or, in
other words, mass transport must be performed between the source and target measure on the whole
supports.

For simplicity, we consider the case where M is either a compact Riemannian manifold or a
convex and compact domain in Euclidean space. Let us recall the notion of conjugate function. Let
c¢: M x M — RU{+oo} be a cost function. The c-conjugate of a function z : M — R is defined by

&) = inf c(r,y) —2(y).

We now define a class of functions that will be considered in this section as costs. In particular,
such costs can be unbounded.

Definition 6. A function ¢ : M x M — RU{+o0} is a locally Lipschitz cost function if it is bounded
below and if, for every L € R, the restriction of ¢ on the sub-level ¢=!((—o0, L]) is Lipschitz.

Obviously, the Lipschitz constant on a sub-level may depend on the chosen L.

Definition 7 (Admissible measures). A pair of Radon positive measures (p1, p2) is admissible if,
denoting K; = Supp(p;), K; # 0 i = 0,1, and there holds

2.11 max | sup inf c(z,y), sup inf c(z, < 00.
11) (sop int e, sup inf cto)

We denote this finite number by ¢y (p1, p2)-

When considering the distance as cost function, being admissible simply means that the supports
of the source and target measure have finite Hausdorff distance.

Proposition 5. Let Fy, Fy be entropy functions that have finite value at 0. Let (pg, p1) € M, (M)?
be a pair of admissible measures. Then there exists an optimal pair (29,21) € C(M)? for the
mazimization problem in (2.6). Moreover, z; is locally Lipschitz on K;, i = 0,1 and z; = Z.

Let us first prove an auxiliary technical lemma.

Lemma 6. Let (po,p1) be an admissible pair of measures. Then, there exist x1,...,25 € M and
T1, ...,k > 0 such that po(B(z;,7;)) > 0 and for any y € Ky, there exists t € {1,...,k} such that
SUPgeB(w;,r;) C(I7 y) <cH (pO, Pl) +1.

Proof. Recall that K;, i = 0,1, is the support of p;. Since the pair (po, p1) is admissible, for every y €
K, there exists B(zy,r,) and B(y, d,) small enough such that sup,, ep(o, r,).y€B(y.8,) (@1, ¥1) <
cu(po,p1) + 1 and po(B(xy,my)) > 0. As K, is compact, there exists a finite number of points
(yi)i=1,.. k such that Ky C U¥_ B(x,,7,). Therefore with z; = x,, and r; = r,,, for i = 1,... k,
the announced result is satisfied. g

Proof of Proposition 5. Recall that S(zg,21) denotes the functional in the maximization problem
(2.6). Remark that §(0,0) = 0, hence the supremum in (2.6) is nonnegative. Moreover, taking
the c-conjugate of zp improves the value of S, i.e., S(20,2%0) > S(20,21). Iterating this alternate
optimization enables to restrict the optimization set to pairs of potentials that satisfy z; = 2y and
20 = %1 (indeed, the c-conjugate is an involution on its range). We prove that the set

(2.12) E = {(20,21) € C(M)?| (2.7) is satisfied, S(z0,21) > 0 and z; = 2, 20 = 21}
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is equibounded and equi-Lipschitz, i.e., there exists a constant L > 0 such that for every pair
(20, 21) € &, 20|supp(po) aNA 21|supp(p,) are locally L-Lipschitz.

Let us start by equiboundedness of £. Consider B(z;,r;) for i = 1,...,k given by Lemma 6 for
the measure py such that

inf min c(y,z;) <cg+1.
yeSupp(p1) i=1,....k (v, i) < en

Since Fj(z) > (z,0) — Fp(0) = —Fp(0), for every ¢ € 1,..., k, there holds
0 < 8(20,20) < —po(B(wi, i) F5 (=2) + Fo(0)po(M) + F1(0)p1 (M)

where Z = max(supreB(xi,m z0(x),0). As a consequence, denoting § > 0 the minimum of po(B(z;,7;))
for i =1,...,k, one has, since Fjj(—2) > 0,

(2.13) — Fo(0)po(M) — F1(0)p1 (M) < —0F5(=2).
Moreover, since F§(z) > (x,1) — Fy(1) = z, the following lower bound

—Fp(0)po(M) — F1(0)p1 (M)
1)

holds. Set k = (—Fy(0)po(M) — F1(0)p1(M))/6. Denote by o "< infyeps min; ¢(z, 2;), then

7>

2o(y) < inf e(z,y) — z0(2)

<a—kK.

where z; is chosen such that c(x;,y) < cu(po,p1) + 1. Hence %y is bounded above. As a direct
consequence, zg is bounded below. By symmetry of the hypothesis on pg, p1, we obtain that there
exists A, B, depending only on pg, p1, Fi, F} and ¢y (po, p1) such that B < zp < Aand B < Zp < A,
for every (29, 29) € €.

We now prove that there exists a uniform constant L such that for every pair (29,21) € &, 2; is
Lipschitz continuous with constant L. Let (zp,21) € £. By definition of £, zg = ;. Since z; is
bounded above by A, the infimum is attained at a point y(z) such that c¢(z,y(z)) < B — A,

Zo(x) = c(z,y(2)) — 21(y(2))
and moreover, for every z’ € M,
Zo(2") < e(2’,y(@)) — z1(y(2)) -
Subtracting the two previous formulas gives
Zo(2") — Zo(x) < (2, y(x)) — c(z, y(2)) -
Let L be the Lipschitz constant of ¢ on the sublevel ¢~1((—o0, B — A]), then
|20(2") — 20()| < Ld(z,2') .

Therefore £ is not empty, equibounded and equi-Lipschitz. As a consequence, existence of an
optimal pair (2g, z1) for (2.6) with the required properties is obtained with a standard argument based
on Ascoli-Arzela theorem for compactness and dominated convergence theorem for the convergence
of the functional S. O

As concerns uniqueness, an obvious sufficient condition is given by the following statement.
Proposition 7. If F} and Fy are strictly convez, the optimal pair (zo,z1) is unique po and p1 a.e.
Proof. The maximization problem (2.6) is strictly convex. O

Collecting the previous results leads to existence and uniqueness of optimal Lipschitz potentials
for (2.4).
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Corollary 8. Let Fy(x) = Fi(z) = xzlog(z) —z+ 1 and
(2.14) clar,y) = gda,y)%, or c(z,y) = ~log (cos? (d(z, ) A 67/2)

for some § > 0. Then, for every pair of admissible measures, there exists a unique pair of Lipschitz
continuous optimal potentials for the dual formulation (2.6).

Note that any pair of measures is admissible for the quadratic cost.

Combining Theorem 4 and Corollary 8, regularity results for the costs in (2.14) can be inferred
in different ways depending on the choice of the ambient space M. When M = R?, the quadratic
cost supports regularity theorems for optimal transport. For the second cost in (2.14), regularity
results also hold for M = S¢ the unit sphere of dimension d and for the sphere of radius 1,2
(see Section 2.3). In [30], such cases are named after Gaussian-Hellinger for the quadratic case,
and Hellinger-Kantorovich for the other cost. The latter is also known as Wesserstein-Fisher-Rao
distance (see for instance [8, 9]).

2.3. Two important costs for regularity of unbalanced optimal transport. We discuss the
case of two important costs in unbalanced optimal transport. The first one is the most commonly
used in practical applications, the Euclidean squared cost. The second one arises naturally from the
dynamic formulation which was originally proposed to introduce this model.

Gaussian-Hellinger distance: Euclidean space and spheres. Regularity in these two cases is
an immediate consequence of Theorem 4 and the regularity of optimal transport, for which sufficient
conditions ensuring assumption (2) in Theorem 4 are well-known. We simply detail the case of the
Euclidean space, for which the following statement holds true, as a consequence of [12, Theorem
3.3].

Corollary 9. Let X,Y be convexr sets in R and let (u,v) € M (X) x M (Y) be a pair of
measures which are absolutely continuous with respect to the Lebesgue measure, with densities (f,g)
bounded away from zero and infinity. Assume the entropy functions Fy, F1 have strictly convex and
differentiable Fenchel-Legendre transforms with infinite slope at 0.

If (f,9) € CF(X) x C*(Y) for some positive integer k and o € (0,1), then, the pair of
optimal potentials (z0,21) in the dual formulation (2.6) for the quadratic cost %Hx —y||? belongs to
CF2:0(X) x C**22(Y) and Vzy is a C*T1-diffeomorphism between X and Y .

Wasserstein-Fisher-Rao distance. We consider the case of a d-dimensional Riemannian manifold
M having constant sectional curvature, i.e., M may be the Euclidean space, a d-sphere, or the
hyperbolic space and

(2.15) c(z,y) = —log (cos (d(x,y) A ;)2> .

Here we provide sufficient conditions to ensure assumption (2) in Theorem 4 based on the study of
Ma-Trudinger-Wang tensor for the cost (2.15) on such manifolds.

Since [31], the study of the so-called Ma-Trudinger-Wang (MTW) tensor allows to provide suf-
ficient conditions to imply regularity of potential functions in optimal transport, see [13, Chapter
12].

In particular: MTW weak condition states that MTW tensor must be nonnegative for every
pair of points and every pair of c-orthogonal vectors; MTW strong condition states that MTW
weak condition holds true and the tensor vanishes only at vanishing vectors. MTW tensor for costs
of the type c¢(x,y) = l(d(z,y)) was analysed in [29] for even smooth functions ! : R — [0, +00)
having invertible derivative. In particular, authors characterize MTW weak and strong conditions
on manifolds with constant sectional curvature in terms of some computable explicit functions,
see [29, Theorem 5.3].

Proposition 10. Let M be a Riemannian manifold with constant sectional curvature and let ¢ :
M x M — RU{+o0} be as in (2.15).
Then
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(i) MTW weak condition for c fails if M is either the Euclidean space R?, either the hyperbolic
space H? or the d-sphere of radius R > 1 with the induced metric;
(ii) MTW weak condition holds for ¢ if M is the d-sphere of radius 1 with the induced metric;
(iii) MTW strong condition holds for ¢ if M is the d-sphere of radius R = 1/2 and |v| = \/g(v,v)

denotes the norm with respect to the metric tensor on M with the induced metric.

Let us make simple comments on these results. Since the cone construction is curvature decreasing,
one cannot expect the MTW weak condition to be satisfied when the Riemannian manifold has
nonpositive curvature, such as the Euclidean space or the hyperbolic space. However, in nonnegative
curvature, there is a better chance to observe regularity for the cost (2.15). We further generalize
this connection in Section 4.

Proof. We start by recalling the main results in [29]. Consider a cost function J(z,y) = I(d(z,y)),
where [ : R — [0, +o0o[— R is a smooth, even function such that I”(s) > 0. Set h(s) = (I')~1(s).
Then the J-exponential map can be computed as

h(lv
J- expx(v) = €XPy ( Tl}Dv) ’
where exp,, denotes the Riemannian exponential on M and |v| = y/¢,(v,v) denotes the norm with
respect to the metric tensor on M. By definition, the MTW tensor is

3
MTW,(u,v,w) = 7585263|8:t:0J(expw(tu)7 J-exp, (v + sw)),

where € M, and u, v, w are tangent vectors at z. Define A(s) = h(ls), and

scoth(h(s)), if M =R9,
B(s) = 1 usy- if M = H?,
scot(h(s)), if M is the unit sphere.
By [29, Proposition 5.1], whenever u and w are J-orthogonal, the MTW tensor can be simplified to

3
MTW, (u,v,w) = =3 (a(|v)|uol*|wol* + B(lo)luol*|wr]* + y(Jv]) fur [*fwo|* + d(|vl) ur [*fwi )

where u = ug + u1, w = wo + w1, ug, wo € span{v},u;,w; € (span{v})* and coefficients are given
by

s?A"(s) + 6(A(s) — B(s)) — 4s(A'(s) — B'(s)) ’

(2.16) a(s) = L
(2.17) B(s) = SA/(S)—Q(i(S)—B(s))7
(2.18) v(s) = B(s),
(2.19) 5(s) = BT@

in terms of functions A, B defined above. By Theorem 5.3 in [29], the MTW tensor satisfies MTW
weak condition if and only if, for every s € [0,|l'(D)|], with D the diameter of M, four inequalities
hold

(2.20) B(s) <0, v(s) <0, 6(s) 0, a(s) +d(s) < 2/B(s)v(s).
Moreover, MTW strong condition holds if and only if the four inequalities are strict for every
s € (0, [I"(D)]].

Note that cost ¢ in (2.15) is of the type I(d(x,y)), for I(s) = —log(cos?(s)). We compute explicitly
functions A, B for the hyperbolic space and for the Euclidean space. In both cases, 5(0) > 0, whence
MTW weak condition fails.

When M is the d-sphere of radius R € (0,+00), we interpret the cost ¢ in (2.15) as ¢(z,y) =
Ir(d(z,y)) where lg(z,y) = —log(cos?*(Rs)). Hence we set B(s) = scot(hg(s)), with hg = (I5)~!
and apply [29, Proposition 5.1] to compute the MTW tensor on the d-sphere of radius R by means
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of the MTW tensor on the unit d-sphere with rescaled distance. Note that MTW conditions (weak
or strong) must hold for s € [0, |I(D)|], where D = 7 is the diameter of the unit sphere.

Computing explicitly, &(0) = 3(0) = v(0) = §(0) = & (1 — #z). Therefore we conclude that when
R > 1 MTW weak condition fails. On the other hand, an explicit computation gives

for R =1, a(s) = B(s) =v(s) =d(s) =0,
forR:%, a(s) =p(s) =v(s) =4d(s) = —1.

Hence for R =1 MTW weak condition holds and MTW vanishes on c-orthogonal vectors, whereas
for R =1/2 MTW strong condition holds. O

We end this section with remarks concerning MTW conditions on the d-sphere of radius R €
(0,1) \ {1/2} with the induced metric. Using (2.16), (2.17), (2.18), (2.19), an easy computation
gives

an(s) = 2 %cot (]1% arctan(s/(?R))) _ SQ%RQCﬁ <11% arctan(s/(2R))> ,

S

Bals) = 832 <s cot (; arctan(s/(ZR))) - 232) ,

8

n(s) = o G% arctan(s/(2R))) <s cot @ arctan(s/(ZR))) - 2R2> ,

Snls) = écot (Il%arctan(s/(ZR))> 2 2<11%arctan(s/(2R))).

— 82—|—4R2 Ccsc

A simple computation allows to prove that for R € (0,1/2) the functions Sr and g are non positive
for every s € (0,2Rtan(wR)). To see this, consider the auxiliary function

£(s) = s cot G{ arctan(s/(ZR))> _oR2.

Then Br(s) = 3%5(5) and Yr(s) = (Szzﬁ;)Z)? CSCQ(arcmng/@R))))Q). We are going to show that,
for every R € (0,1/2) and every s € (0,2Rtan(mR)), £{(s) < 0. Note that for R € (0,1/2),
M) € (0,7). Hence £(s) < 0 182 equivalent to scot(w) < 2R? which in turn
is equivalent to %WR)) > arccot(22-). Using arctanz = arccot(1/z), the last inequality is
equivalent to arccot(2R/s) > Rarccot(%). Set v = 2R/s and define k(v) = arccot(v)— Rarccot(Rv).
To show that £(s) < 0 it is sufficient to prove that k(v) > 0 on (0, +00). This is an easy consequence
of the fact that k(0) =7/2(1 —=T) > 0, lim,_, y k(v) = 0 and
R2

T I+ R202 1402

K (v) < 0,v € (0,+00).
To test the last two conditions in (?7?), let us plot the O-level sets of the functions dg(-), (g +
6r — 2v/Br7r) () in the region (R, s) € (0,1) x (0,25). We plot also the function w(R) = |I5(7)| =
|2R tan(w R)|. Recall that the MTW strong condition holds if the four functions Br(-), Yr(-), dr(*),
dr — 2+/Bryr)(:) are strictly negative for every s € (0, |2R tan(mR)|].

3. THE WASSERSTEIN-FISHER-RAO METRIC

In this section, we detail the case of the Wasserstein-Fisher-Rao (WFR) metric on a smooth
compact Riemannian manifold M, which is the cornerstone of unbalanced optimal transport as
introduced in [25, 8, 30]. Recall that the Wassertein-Fisher-Rao corresponds to the cost function
given in 2.15 and to the Kullback-Leibler divergence for the marginal penalization (i.e., both entropy
functions are given by F(x) = xlog(z) —xz+1. First we prove the equivalence of several definitions of
this metric. In particular we introduce an equivalent of the Monge formulation of standard OT to this
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unbalanced setting. Using this formulation we prove the existence of unbalanced optimal transport
maps and an unbalanced version of Brenier polar factorization Theorem on the automorphism group
of the cone C(M) see Theorem 18. A regularity theory for such maps is obtained in section 2 and it
is linked to an unbalanced Monge-Ampere equation, see section 3.4.

3.1. Equivalent formulations of WFR metric. Asin classical optimal transport, the Wasserstein-
Fisher-Rao metric can be defined in many ways. Here we detail five of them, namely: Monge,
Kantorovich, semi-couplings, dual and dynamical formulation. The Kantorovich formulation is the
one introduced in Definition 4 and the dual formulation is given in Proposition 2. For the sake of
clarity we instantiate them hereafter. The starting point of all these formulations is certainly the
dynamical formulation of the WFR metric which appears as a generalization of Benamou-Brenier
formula by introducing a source term in the continuity equation. This is the formulation we first
present below.

In the sequel, let (M,g) be a compact Riemannian manifold, let vol denote the Riemannian
volume on M and let div denote the divergence of a vector field with vol.

3.1.1. Dynamical formulation of. Given pg,p1 € My (M) and a,b > 0, we start by the following
optimization problem

e 3 [ ([ 0@ + vt ane) a

under the constraints of the generalized continuity equation, with time boundary conditions

Op + div(pv) = ap, p(0,-) = po, p(1,-) = p1.
Here the control variables are a, the growth rate (also called Malthusian parameter) and v, a vector
field, both depending on time ¢ and position z € M.

Remark 4. For a =0, the dynamic formulation above is the well-known Benamou-Brenier formu-
lation of the optimal transport problem [3].

We now give the definition, relying on convexity, which allows to account for every positive Radon
measure and not only those with density with respect to the reference volume measure.

Definition 8 (Dynamical formulation of WFR metric). Let pg, p1 € M4 (M), the WFR metric is

defined by
WFRQ(ﬂO? pl) = piIrrl1f,u, j(p7 m, :u) )

where

(3.1) T(p.m, 1) =a / /M g;l(m(t x )m(t 2) 4, (2 +b2/ /M p(t x) o(t, )

over the set (p, m,u) satisfying p € M+([O, 1] x M), m € (I'$,([0,1] x M,TM))* which denotes
the dual of time dependent continuous vector fields on M (time dependent sections of the tangent
bundle), u € M([0,1] x M) subject to the constraint

(3.2) /[o,uxMatf do+ /[0’1]XM<m<vl-f) fdp) = /M L) dpy /M £(0,-) dpo

satisfied for every test function f € C*(]0,1] x M, R). Moreover, v € M ([0,1] x M) is chosen such
that p, m, u are absolutely continuous with respect to v and p, m, i denote their Radon-Nikodym
derivative with respect to v.

Note that due to the one-homogeneity of the formulas with respect to (p, m, i), the functional J
is well-defined, i.e., it does not depend on the choice of the dominating measure v. Moreover, the
divergence is defined by duality on the space C'(M). Formula (3.1) in Definition 8 is called dynamic
since the time variable is involved and only length-space structures can be defined in this way. It is
of interest to show that the variational problem admits a so-called static formulation that does not
involve the time variable.
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3.1.2. Semi-couplings formulation. The semi-couplings formulation already appears in [9] and in

another form in [30]. In both references, equivalence between semi-couplings and dynamical formu-

lation is proved in the Euclidean case. We now extend those results to a Riemannian setting.
Given pg, p1 € M4 (M), set

def. 2 ~ ~
L(po. p1) = {(70’71) € (M (M) puro = po, Pi1 = p1} 7

where p' and p? denote the projection on the first and second factors of the product M?2. Moreover,
consider the cone

€ (M) ={(z,r) |z € M,r >0},
endowed with the Riemannian metric
ey = aZTng + 4b? er,

where ¢ is the Riemannian metric on M, and a,b appear in the definition of WFR metric. Finally,
denote by d(ar) the distance on €' (M) associated with the Riemannian metric h.

Theorem 11 (Semi-couplings formulation of WFR metric). The WFR distance satisfies

. do dv .
: FR? = d2 - d
(3:3) WER(po, p1) wm?eurr%po,m)/w @ (M) ((x, & ), (v, d&) A(x,y)

where 7 is any measure that dominates yo,v1-

X def. do dyy .
S ) d:f/ d2 x, T~ ) ) ~ d xZ,
(o, 71) 2 Gean ( dv) (y dv) Y(z,y)

is well-defined, i.e., it does not depend on the choice of the measure 4. Indeed, the square distance
function d?g( M) is two-homogeneous with respect to dilation of the mass variables, since Ay zr) =

The functional

a?(A\r)2g, +4b2X%2dr2. As a consequence of Rockafellar’s theorem [35, Theorem 5], S is convex and
lower-semicontinuous on the space of Radon measures as the Legendre-Fenchel transform of a convex
functional on the space of continuous functions.

Our proof of Theorem 11 is an adaptation to the Riemannian case of the one in [9, Theorem 4.3],
to which we refer the reader for technical details. The same reasoning, based on a simple regular-
ization argument which is intrinsic on Riemannian manifolds, applies under minor adaptations to
the standard Wasserstein distance W5 on Riemannian manifolds, see for instance the comments in
[44, Remark 8.3]. A different proof of the equivalence between dynamical and semi-coupling formu-
lation for the Wasserstein distance W5 in the Riemannian setting is given in [I1] which uses the Nash
isometric embedding theorem.

Proof of Theorem 11. First of all, the set I' is weak™ closed, the functional S is weakly continuous and
lower semicontinuous. Therefore, the fact that the minimum for S is attained follows by application
of the direct method of calculus of variations. In the following, we denote by S2%(pg, p1) the right
hand side of (3.3).

Since d(ar) is a distance on €’(M), one can prove that S is a distance on M (M) and S is
continuous w.r.t. the weak* topology, as done in [9].

We claim that, for every pair of measures (pg, p1) that are finite linear combination of Dirac
masses, the inequality

S%(po, p1) = WER?(po, p1),

holds. To see this, note that for pg = >, a;0,, and p; = Zj bjdy,, for finite sets of points

{zi,y;}i; € M, the minimization problem (3.3) can be reduced to a linear optimization prob-
lem in finite dimension. Indeed, the optimal semi-couplings can be proved to have support on the
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product of the support of py and p;. As a consequence, the optimal semi-couplings can be written
as ¢ = Do mﬁjé(%y‘i) for k = 0,1. Then, one has

SZ(POaPl) = ng@”(M) ((xlvmzo,])v (ijmij))
,J

2 ZWFR2(m?,j6$ivmz{j6yj) > WFRQ(/)Ovpl) ’
i.j

where the first inequality comes from the fact that the distance on the cone (with mass coordinates)
for a geodesic (x(t),m(t)) is given by the evaluation of WFR on the path m(t)d,«). The second
inequality is given by subadditivity of WFR?. Since linear By density of finite linear combination of
Dirac masses and weak* continuity of both WFR and S, the inequality S2(po, p1) > WFR?(po, p1)
holds on (M (M))?.

We now prove the reverse inequality which follows using the convexity of (po, p1) — WFR?(pg, p1).
By subadditivity of WFR?, one has, for every py € M (M)

(3.4) WER?(po + p2, p1 + p2) < WFR?(po, p1) .

Using the triangular inequality and the fact that the WFR metric is bounded above (up to a
multiplicative constant) by the Hellinger distance, we also have, for 1 > 0

(3.5) WER(po, p1) < WFR(pg + €1 vol, p1 + 1 vol) + 2cst /&7 .

Let us be more precise on the previous inequality: Consider now a path p, m, ; which is a solution to
the continuity equation (3.2), then so is the path p 4 &1 vol, m, u satisfying the boundary conditions
p(0) = po, p(1) = p1. Note that &1 vol is constant in time and space. In addition, it is obvious that

j(p+51V017m7:u) Sj(p’may’)

To prove the final result, it suffices to prove that S(pg + €1 vol, p1 + 1 vol) < J(p+evol,m, 1) + &
for any €9 > 0. This will be done via a smoothing argument which is standard in the Euclidean case
using convolution but has never been adapted, to the best of our knowledge, to work on Riemannian
manifolds (see [14, Remarks 8.3]).

Our goal is to prove that there exists a path of smooth quantities (p., me, pe) for which 7 (pe, me, pc)
is close to J(p, m, ) and p, is strictly positive and the time endpoints of the path are close in the
weak-* topology. The conclusion can then be obtained by integrating the flow defined by the vector
field (mo/pe, pe/pe). It gives that S(p:(0), pe(1)) < T (pe, me, pie) and the conclusion is similar to
the Euclidean case [9, Theorem 5].

By compactness of M, it is sufficient to locally smooth the path on M by iteration of this
smoothing. Therefore, we will work on a chart U around a point zg € M. By Moser’s lemma, it is
possible to choose the chart such that the volume form is the Lebesgue measure.

Averaging over perturbations of identity: We construct perturbations (of compact support)
of the identity which will be local translations around xg and which will play the role of the trans-
lations in the standard convolution formula. We consider a ball B(zg,ro) and a function u whose
support is contained in B(xg, 7o) and is constant equal to 1 on B(zg,r1) for 0 < r1 < rg. For a
given vector v € R?, we consider the map ®,(z) = x +u(z)v which is a smooth diffeomorphism. We
extend @ to the whole manifold M by defining it as identity outside of U.

Let & : R™! — R, be a smooth symmetric function whose support is contained in the unit
ball and such that [k(y)dy = 1 and define for ¢ > 0, k.(z) = k(z/c)/e?*! whose support is thus
contained in the ball of radius . We define the mollifier k. x acting on f € C([0,1] x U,R) by

(3.6) (ke*f)(s,x):/R/ng(s,v)f(t—i-s,@;l(x))dvds,

which is well defined for ¢ small enough, extending the function outside the time interval [0, 1]
as a constant. Moreover, for e sufficiently small, it coincides with the usual convolution on a
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neighborhood of zy. By duality, it is well defined on Radon measures and extends trivially to vector
valued measures as follows:

(3.7) (ks*p)(s,x):/R/Uks(s,v)((bv)*(p(t+s))dvds,
(3.8) (ke*m)(s,x):/R/Uk’s(s,v)Ad:‘ml(m(t+s))dvds.

We consider the path (®,).(p) which satisfies the continuity equation for the triple of measures

(((I)U)*(p), Ad;;l(m), (@U)*(u)) and average over v to consider

(3.9) (PesMe, pie) = (ke * py ke xm, ke x 1)

As a convex combination, this path satisfies the continuity equation and the boundary conditions
are close in the weak-* topology when e tends to 0. An important remark is that, for ¢ small
enough, ke x Ady, 1 (m) reduces to the standard convolution on m in a small neighborhood of zo
since D®, = Id in a neighborhood of z( since u = 1 on B(xg,71).

Use of convexity of J: For notation convenience, we denote by f the integrand of J and
we make the abuse of notation to use p, m, u instead of their corresponding densities w.r.t. v a
dominating measure.

Under the change of variables y = ®,1(x) (we use one homogeneity hereafter) leads to

(3.10) j(p57m5,ua) :/ f(-T; (p€7m67,u€)) dy(x) <

[0,1]x M
/R/U /[0 .y ke (s,0) f(®y(y), (p(t + 5), DD, (t, y)m(t + s), u(t + 8))) dv(t,y) dt dsdv.

Moreover, since the metric g on M is smooth and in particular uniformly continuous on M and
since || D®,, —Id || < cst||v|| for a constant that only depends on u, we thus have, for any 3 > 0, the
existence of § > 0 such that if ||v]| < § then,

(3.11) lg(2)(w, w) = g(Py(2))(DPy(2)w, DOy (z)w)| < &2 g(x)(w, w),
for every w € T,, M. Therefore, a direct estimation leads to
(3.12)
/RXM ke (s,0) f (®u(2), (p(t + 5), m(t + ), u(t + 5))) dv(t, z) — /[O .y f (@, (p(t), m(t), u(t))) dv(t, )

< ed(p,m,p),
and as a consequence the desired result,
(3.13) T (pesme, pe) < T (pym, p) + €27 (p,m, 1) .

Since this averaging reduces to standard convolution in the coordinate chart U in a small neigh-
borhood of zg, it implies that (p., me, pe) is smooth in a neighborhood of g and p. > &1 vol. By
compactness of M, iterating a finite number of times this argument gives the desired path. O

Next, we prove the equivalence of these two formulations with a particular UOT problem intro-
duced in Section 2.

3.1.3. Kantorovich formulation and dual formulation. Asin [9] the application of Fenchel-Rockafellar
duality Theorem gives the dual formulation of WFR. This is summarized in the following proposi-
tion.

Proposition 12 (Dual formulation of WFR). On (M, g), it holds

(3.14) WER po,p0) = sup [ ofa)doo(a) + [ 0l5)doiw)
(pp)eC(M)2J M M
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subject to V(x,y) € M?,

(3.15) {Wc) <1, 9y <1,

(1= ¢(2))(1 =¥ (y)) = cos? (d(z,y) A (7/2)) .

A reformulation of this linear optimization problem is

(3.16) WFR?(pg, p1) = sup / 1—e @ dpy(x) + / 1—e W dpy(y)
(z0,21)€EC(M)2 J M M

subject to V(x,y) € M?,
(3.17) zo(z) + z1(y) < —log (cos® (d(z,y) A (7/2))) .

Interestingly this last formulation is exactly the dual formulation of UOT defined in Proposition
2 with the cost ¢(z,y) = —log (cos? (d(z,y) A (7/2))) and dual entropy functions Fj(z) = Ff (z) =

F*(z) = e* — 1. As noticed in Remark 1 the associated entropy function is therefore F'(z) =
xzlog(z) — x + 1 leading to the Kullback-Leibler divergence, which reads

[ du dp
(3.18) KL(p,v) = / Elog (dy) dv + |v| — |-

Existence of Lipschitz solutions to the dual problem has been proved under admissibility condition
on the measures in Section 2.2. Without these assumptions, existence of potentials can be proved
in a less regular space of functions in [30, Section 6.2].

Proposition 13 (Kantorovich formulation of WFR). With the same notations as above it holds

(3.19)  WFR?(po, p1) = KL(plv, po) + KL(p2y, p1)

wGJVilIif(M"’)
~ [ Toxteost(dla) A (x/2)) dr(an).

3.2. A Monge formulation. OT supports an interesting geometric framework. Indeed, the push-
forward action of the diffeomorphisms group on the space of densities is a (formal) Riemannian
submersion to the space of densities endowed with the Wasserstein metric, see [21, 14] for more
details. This structure also exists in the case of UOT, as already explained in [19]. We briefly recall
it hereafter.

3.2.1. The formal Riemannian submersion and Monge formulation of WFR. Recall that a Riemann-
ian submersion is a submersion ™ between two Riemannian manifolds M and N, such that dr is an
isometry between the orthogonal of its kernel and its range. An important property of Riemannian
submersion is that every geodesic on N can be lifted (called horizontal lift) to a unique geodesic on
M (having the same length), up to the choice of a basepoint in M. In the following, the roles of
M and N are taken by Diff (M), the group of diffeomorphisms of M and Dens, (M) the space of
probability densities on M. We choose the reference volume form py on M and define

mo : Diff (M) — Dens, (M)

(%) = @xpo
which is a (formal) Riemannian submersion of the metric L2(M, po) on Diff (M) to the Wasserstein
Wy metric on Dens,(M). Using the horizontal lift property of geodesics mentioned above, the
Benamou and Brenier dynamic formulation [3] can be rewritten on the group Diff (M) as the Monge
problem,
(3.20) Watpapr? = _int [ 81000, o) avol(a) s g = pi

eeDiff(M) | Jq
In the unbalanced case, the group Diff (M) is replaced with the semidirect product of groups

between Diff (M) and the space of positive functions on M which is a group under pointwise multi-
plication. It is not a direct product but a semidirect one, where the composition law is defined such
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that the map 7 given by
m1 1 (Diff (M) x C(M,R+¢)) x Dens(M) + Dens(M)

™1 (9. N), 0) = 0 (Ap)

is a left-action of the group Diff (M) x C(M,R~) on the space of densities. Similarly to the optimal
transport case, this action is actually a Riemannian submersion between L2(M,M x R-o) and
Dens(M) endowed with the WFR metric. Note that the L? metric is defined by a density (the
initial density) on M and a metric on M X Rs¢ (see [16] for more details) and this Riemannian
metric is completely specified by the unbalanced optimal transport model, namely

d 2
(3.21) 9(zm)(dz, dm) = a®mda® + L
m

Up to the change of variable m = r2, we find that the metric can be rewritten as
(3.22) Y(wm(dz, dr) = a®r? da® + 4b* dr?,
which is called a cone metrict. Since it is a classical formulation of this metric, we adopt this change
of variable in the rest of the paper. In particular, the action is changed into
7 (Diff (M) x C(M,R<q)) x Dens(M) — Dens(M)
(9,0, 0) E 0. (W),

and the metric on M x Ry is the cone metric (3.22). We now adopt the notation (M) for the
M x Rsq equipped with the cone metric. In fact, as done in [19] we can identify this semidirect
product of groups with the automorphism group of the cone %’ (M) (since it has a multiplicative
group structure in the Rs o component). Thus, to shorten the notations, we use Aut(%(M)) instead
of Diff (M) x C(M,Rs0). We now state the (formal) Riemannian submersion result obtained in [19].

Proposition 14. Let pg € Dens(M) be a positive density and w be the map
7 Aut(%(M)) — Dens(M)
m(, A) = @2 (Npo) .

Then, 7 is a Riemannian submersion between Aut(%€'(M)) endowed with the metric L*(M, po, € (M))
and Dens(M) with the WFR, metric.

For details about the proof, we refer the reader to [19]. This proposition can be used to deduce
a static or Monge formulation of the variational problem.

Definition 9. Let (po, p1) € M (M?). The Monge formulation of WFR is given by

(3.23) M-WFR?(pg, p1) = <3££>{/M % [(2,1), (@(x), A(@)] dpo(z) © @.(X2po) =p1} ’
= o {diut(%”(M)) [(1d, 1), (2, M)] + @x(X2po) :pl}

where the infimum is taken over (¢, A) € Diff (M) x C'(M,R<¢) and (Id, 1) denotes the identity in
Aut(%(M)).

This Monge formulation extends to more general divergences and costs. Indeed, one can formulate
M0OT o, p0) = inf { [ Dy (1), (ol0) A (o) + 0. 00) =1 }
) M

where

(3.24) Dean((z,7), (y,5))* = inf r?Fo(z/r?) + s*Fi(2/5%) + c(z, y)z.

z€R~o

1t is interesting to check that other Riemannian metrics on the cone can be chosen provided they are two-
homogeneous in the radial variable. Some of the results of this article carry over such cases.
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Importantly, the quantity? D (ary is not necessarily a power of a distance on the cone but it is the
case in the three following situations. When Fjy = F} is the relative entropy, two cases are known,
c(x,y) = —log(cos(min(d(z,y), §))?) for which Dy ar)((z,7), (y,s)) is almost the distance on the
cone but not exactly? since Do ar)((z,7), (y,5))? = r? + s — 2rs cos(min(d(z, y), 5)). The equality
between the two seemingly different Monge formulations actually holds.

The Gaussian-Hellinger case is recovered for c¢(z,y) = d?(z,y) which gives D any ((w,7), (v, 5))? =

72 + 52 — 2rse~U=¥)’/2 The last known case is for partial optimal transport where the divergences
are taken as the total variation of measures given by the entropy function F(z) = |« — 1| and the
c = di. Then, for ¢ > 1, Dy ((w,7),(y,5))? = 7+ s — (min(r, s)) min(0,2 — d(z,y)?) gives a
distance.

A consequence of the semi-couplings formulation is the relaxation inequality M-WFR? (po,p1) >
WEFR?(po, p1): for any ¢ consider y(z,y) = (z, ¢(x)) po, y0(2,y) = V(. y) and 11 (z,y) = N*(2)y(z,y).
The converse inequality does not hold in general since in the case of unbalanced transport not only
the particles can split but also they can reach the apex of the cone. However under our admissibility
condition on (pg, p1) we prove that M-WFR?(pg, p1) = WFR?(po, p1) in Proposition 17.

3.3. Kantorovich relaxation: the conic formulation. This yet another but important formula-
tion was introduced in [30] and can be interpreted as a natural Kantorovich relaxation of the Monge
formulation. Indeed, instead of making the map ¢ stochastic, one makes both the map and the
rescaling stochastics. From a cost on the cone defined by minimization in (3.24), one defines the
conic formulation

(325) C_OT(p()apl) = inf D‘()”(M)((Iﬂ"): (y7 8))2d7((xar): (y7 S)) )
v€le Je(amyxe(a)

where I'c denotes the set of positive Radon measures v on the product of cones such that

{PO(I) = fR 7‘2[]717] (z,dr),
p1(y) = Jp 8*Pi)(y, ds).

These constraints are moment constraints instead of marginal constraints in standard OT. Moreover,
this formulation does not require the plan to be a probability measure on the product space although
it can also be restricted to the set of probability measure by action with dilations, see [30, 18]. In
fact, formula (3.24) is 2-homogeneous so that the mass can always be rescaled pointwisely. Last, the
moment constraint is the natural relaxation of the action by pushforward and rescaling . (A%po).
Note that from the numerical point of view, introducing this additional radial variable is costly, yet
it is amenable to entropic regularization, see [37]. The proof of equivalence with the formulations
introduced above can be found in [30]. For our purpose and to prepare the discussion of ¢-convex
functions in Section 4, we simply note that the dual solutions of this problem are also dual solutions
of an OT problem; the optimal potentials take the form 72p(z) and s2q(y) for functions p, ¢ defined
on M. These potentials are necessarily 2-homogeneous functions in the radial variable.

(3.26)

3.4. Monge solution and polar factorization on the automorphism group. The geometric
structure used to show Brenier’s polar factorization theorem [0] in standard optimal transport relies
on the Riemannian submersion and solution of Monge problem. Thanks to results given in Sec-
tion 3.2.1 and after finding a solution to the Monge problem M-WFR, we generalise in this section
polar factorization to the unbalanced framework.

2Note that with respect to the first section we made the slight change of variable with the square root to remain
consistent with the definition of the group action.

3For the cone distance, the minimum is taken with 7 rather than 7 /2, this difference is explained by the fact that
at the level of the measures, the transformation can occur simultaneously for both Dirac masses.
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3.4.1. Monge solution of WFR. To show the existence of a solution to Monge problem (3.23) we
start by solving WFR/(pg, p1), in the dual form (3.16), (3.17) and we provide geometric properties
of such solution (see Proposition 16). To prove Proposition 16 there are two different arguments:
one is based on results in Section 2 and the existence of Lipschitz potentials; the other one mimics
the standard case of optimal transport with minor adaptions due to the cost. This latter approach
leads to a pair of approximately differentiable potentials. For completeness we give both proofs.

Lemma 15 (sub-differentiability). Let y € M, the function g defined on M by g(z) = cos? (d(z,y))
is sub-differentiable.

Proof. The function d?(-,y) is super-differentiable see [32, Proposition 6] for instance. Therefore
d2 s2(5y) = (d(z,y) A (m/2)) is also super-differentiable and the function g is sub-differentiable as
the combination of a decreasing C' function and the super-differentiable function dfr /2(~, y), see [32,
Lemma 5]. O

Proposition 16 (Brenier’s variational solution of WFR-Monge-Ampere). Let (po, p1) € M (M?)
and let (z9,21) be the generalized optimal potentials for WFR?(po, p1). Suppose that (po,p1) is
admissible and pg < vol, then zg is po a.e. unique and approzimate differentiable on Supp(po). The
optimal plan v in the formulation (13) is unique, with marginals o = e *°pg, 71 = e *'p1 and
concentrated on the graph of

(3.27) z = p(x) = exp)’ (— arctan (”V'Z;(I)) ”gzzg;J = c-exp(—Vzo (7)),

that is w0 = 71 and v = (Id X@).v0. Finally

(3.28) WEFR?(po, p1) = /M 1—e @ dpy(z) + /M 1—e W dp(y).

Note that (zp,21) may not be continuous as needed in (3.16) but (3.28) still holds true. The
approximate differentiable proof of this proposition (being more technical) is given in Appendix A,
we prefer to discuss the corresponding formulation of the Monge-Ampere equation hereafter and a
simple sketch of proof following the results in Section 2.

Direct proof. Corollary 8 gives a pair of Lipschitz potentials (zg,2) solution of WFR?(pg, p1).
Lemma 3 proves that this pair is also solution of a classical Optimal Transport problem between vy =
e *pg, 11 = e *'py for the cost ¢(x,y) = —log (cos® (d(x,y) A (7/2))). The hypothesis on py and
Classical optimal transport theory arguments gives the existence of a map ¢(x) = c-exp(—Vzo(z))
solution of this OT problem. In particular ¢.yy = 71. O

Remark 5. Note that the map ¢(x) = c-exp(—Vzo(x)) is a solution to a standard OT problem
from vo = e *0pg to y1 = e py for the cost c(x,y) = —log (cos? (d(z,y) A (r/2))). Therefore,
OT regularity theory applies to zy with fized marginals ~vo,7v1. In particular, higher reqularity of zo
increases reqularity of vo and 1 and, in turn, a bootstrap argument improves regularity of zo (see
also the strategy in the proof of Theorem ).

As a consequence of the underlying classical OT structure, the potential found in Proposition 16,
denoted by z, is a solution of a Monge-Ampere equation with a right-hand side that also depends

on the potential. We recall how to derive the equation supposing that z is C2. Remember that

c(z,y) = —log(cos?(dr/2(z,y))) and p(z) = exp} (— arctan (||Vz(z)|) 327(? , therefore
IVz()ll

W%V <;d727/2(17>80(1))> = (Vao)(z, ()
and the sub-differentiable equality (A.4) reads
(3.29) Vz(z) — (Vo) (x, p(x)) =0.

2V2 tan(dy j2(z, o()))
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Observe that by definition of c-exp, (v) = [(=V¢)(x,-)] " (v) (3.29) is exactly
o(z) = c-exp(—Vz(x)).
Differentiating (3.29) and taking the determinant yields
(3.30) det [~V22(2) + (Vi,0) (2, ¢(2))] = |det [(Vaye) (2, ¢(2)]] |det(Vep)] .

Notice that the c-concavity property of z implies that —V?2z + (V2 ¢)(x, ¢(x)) is a nonnegative
symmetric matrix. To obtain the equation on z, observe that ¢, ((1+ 1||Vz|[?)e=%*py) = p1 (see
the proof of Proposition 17 below for details) or equivalently

f

1
_ 2z - 2
|det(Vy)| =€ (1 + 4HV2|| ) Jop’

for smooth z and smooth positive measures pg and p; with densities f and g with respect to the
volume measure vol. Together with (3.30), we obtain the WFR-Monge-Ampeére equation defined by
(3.31)
2 2 _ —2z(x) 1 2 f(@)
det [~VZz(2) + (Vi,0) (2, ¢(2))] = |det [(Vayc)(z, (x))]| e L+ 2 Ve(@)|” | ——,
4 gop(x)

where ¢ is given by (3.32) and satisfies the second boundary value problem: ¢ maps the support of
po towards the support of p;.

Remark 6. Another possibility is to write directly the Monge-Ampére equation satisfied by p as an
optimal map pushing vo to v1 that is

e=%0() po (z
det [~V22(2) + (Vo) (2. 0(@)] = [det (Vo) ()] — <m>>pfi ;(x) ,
Using zo0(x) + z1(p(z)) = c(z, p(x)) and 1+ 1[|Vzo(z)||* = e“®*@) one recovers the WFR-Monge-
Ampére equation (3.31).

Remark 7. Following Brenier [6, Section 1.4] Proposition 16 can be taken as a definition of vari-
ational solutions for the WFR-Monge-Ampeére equation (3.31) with second boundary value problem.
The question of regularity of such a solution of a WFR-Monge-Ampére equation is a consequence of
the results proved in Section 2. In particular as we saw it depends on the regqularity of classical OT
and therefore on the study of the Ma-Trudinger- Wang tensor associated to ¢ see [11], [42, Section 12].

Thanks to Proposition 16 we are now able to prove the existence, under some assumptions on the
initial density, of a solution to the Monge problem M-WFR.

Proposition 17 (Solution to the Monge problem M-WFR, and equivalence to WFR). Let pg, p1
be admissible and such that po has density w.r.t. the volume measure on M. Then, there exists
a po a.e. unique c-convex function on M, z, approximatively differentiable pg-a.e., such that the
associated unbalanced transport couple (p, ) defined by

(3.32) () = expl ( arctan (190 M)
and
(333) A@) = 0 14 1T

is a solution of the Monge problem (3.23) and satisfies

(3.34) 7[(: A)s po] = @« (Np0) = . ((1 + iwzu%e—%p(]) =p1.

Moreover, (¢, \) is the unique py a.e. unbalanced transport couple associated to a c-concave potential,
also unique, such that w[(p, A), po] = p1. The potential z is characterized by

(3.35)  M-WER?(po, p1) = WFR?(po, p1) = / 1—e " dpo(x) + / 1—e > Wdp(y),
M M
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Proof. Eristence: Let (2, 21) be the optimal potentials for WFR?(pg, p1). From Proposition 16, we

know that  — ¢(x) = expM (— arctan (Wz(z’(x)”) ngﬁg;“) is well defined pg a.e. and @.(v) =71

where v; = 0;p; = e % p;, i = 0,1. Therefore
p1 =01 'y =07 o (0) = o7 Lo (oopo)

= @« (€707 0 ppo) = i (€77 pg) = s (e—ZOeC('a%"('”e—ZopO)

2
Y 1= R A
= Px <€ 220 <1 + 4||V202> PO) = Px (6 o4/1+ 4||VZ()||2> Lo
o | 1 <
=7 |:(90:6 4/1+ 4||VZ0||2> 7P0:| .

We used that pp a.e. 20(x) + 21(p(z)) = c(z,0(z)), 1 + tan?(z) = 1/cos?(z) and thus 1 +
i”@zo(a:)Hz = ec(%(@) | Equation (3.28) is exactly (3.35).

To prove uniqueness, consider z to be a c-concave function, such that (¢, \) are well defined
through (3.32), (3.33) and 7[(¢, A), po] = p1. Then, we claim that v = [Id x¢].(e"*pp) is an optimal
plan for WFR?(pg, p1) in (13). Indeed, let us check that v satisfies the optimality conditions of [30,
Theorem 6.3(b)].

e + is concentrated on the set of equality for a pair (z, 2¢) of c-concave functions. By definition
of ¢, it holds py a.e. and therefore 79 = e~?pg a.e.

(3.36) 2(x) + 2(p(x)) = ez, 0(2)) -

Thus, (z, 2°) satisfies for all (x,y) € M x M, z(z) + 2°(y) < c¢(z,y) with equality v a.e.
e The marginals are absolutely continuous with respect to pg and p;. It holds true for vy =
e ?po. Note then that py a.e.

1 = c
N(@) = e (14 L [Va(@)|]?) = e ),

It yields

ZC(W(I))Q—Z(I)pO) = ezc¢*(70) =e* v,

p1= . (Npo) = p.(e
thus v, = e *"p; and ~ is optimal for WFR?(pg, p1).

In particular it implies M-WFR?(po, p1) = WFR?(po,p1). The computation (A.5) yields (3.35)
and uniqueness of the generalized optimal potentials for WFR?(pg, p1) in Proposition (16) implies
uniqueness of (z,p, A).

O

3.4.2. Polar factorization. We are left with proving a polar factorization theorem for the automor-
phism group of the cone Aut(%(M)).

Definition 10. The generalized automorphism semigroup of € (M) is the set of measurable maps
(denoted by Mes below) (p, A) from M to € (M)

(3.37) Aut((M)) = {(,A) € Mes(M, M) x Mes(M,Rx0)} ,
endowed with the semigroup law

(1, A1) - (2, A2) = (10 2, (A1 0 p2)A2) .

We also consider the stabilizer of the volume measure in the automorphisms of € (M). It is
defined by

(3.38) Autyo) (€ (M)) = {(s,\) € Aut(€'(M)) : 7 ((s,A), vol) = vol} .
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By abuse of notation, any (s,A) € Auty (% (M)) will be denoted (s, Jac(s)) meaning that for
every continuous function f € C(M,R)

(3.39) /M f(s(x))\/Jac(s)deol(x) = /M f(z)dvol(z)

Theorem 18 (Polar factorization). Let (¢, \) € Aut(€'(M)) be an element of the generalized auto-
morphism group of the half-densities bundle such that py = mo [(¢, A), vol] is an absolute continuous
admissible measure. Then, there exists a unique minimizer, characterized by a c-concave function
20, to the Monge formulation (3.23) between vol and p1 and there exists a unique measure preserving
generalized automorphism (s,+/Jac(s)) € Autye (€' (M)) such that vol a.e.

(340) (¢7 )‘) = eXp(g(A/I) (_;@pzm _pzu> © (57 Jac(s))

or equivalently

(3.41) (P, \) = (gp, e 70\ /1+ |@zo||2) - (s,1/Jac(s)),

where p,, = €*° —1 and

(3.42) o(x) = expi‘/[ (— arctan <;||@Zo(x)|> ||§ZOE ;|>

Moreover (s,+/Jac(s)) is the unique L?(M, € (M)) projection of (¢, \) onto Autye(€(M)).

Proof of Theorem 18. We denote py = vol and p; = o [(¢, A), po]. Let (z0,21) be a solution of
WFR?(pg, p1) and  be an optimal unbalanced transport plan. By symmetry, (z1,2) is a solution
of WFR?(p1, po) and ~* is an optimal unbalanced transport plan. Let finally (g, Ao) and (@1, A1) be
the two transport couples given by application of Proposition 16 to (po, p1) and (p1, po). We divide
the proof into four small steps. We also denote dom(f) the domain of definition of the function f.

Step 1: g and ¢; are inverse maps. On U = @gl(domNVzl) N dom(Vzy) which has full v,
and therefore py measure (we use here the admissible condition to say that vy and py have the same

support), we have
2o(x) + z1(po(x)) = c(z, po(x))

and thus ¢; (@o(z)) = 2. Similarly, it holds ¢o(¢1(y)) =y on V = ] (dom Vzo) Ndom(Vz;) which
has full p; measure.

Step 2: (¢, Ao) and (p1, A1) are inverse in Aut. From Step 1, p; a.e. it holds ¢ (1(y)) = y.
Thus, p; a.e.
(905 A0) - (01, A1) = (0 © 91, A0 0 p1A1) = (Id, (Ao 0 1) A1) -
Moreover by (3.34) of Proposition 17 applied twice
[(9007 )‘0) (41017 )7 Pl] =7 [(()DO; >\0)7 ™ [(‘pla >\1)7 Pl]] =7 [(9007 )‘O)a PO] =pP1-

It implies that
7 [(Id, (Ao © 1) A1), p1] = 7 [(¢0, Xo) - (1, A1), p1] = p1 -
In other words, we have p; a.e. (Agop1)A\; =1 and p; a.e.

(¢0;Xo) - (p1, A1) = (Id, 1).
Step 3: polar factorization. Let (s, As) = (o1, A1) - (0, A) = (p1 00, A1 0 dA). By construction,
one has

m[(8,As), pol = 7 [(p1, A1) - (95 A), po] = 7 [(p1, A1), 7 [(&, A), pol] = 7 [(01, A1), p1] = po -
Therefore, (s, ) belongs to Autye and A\s = y/Jac(s) holds in the weak sense (3.39). Thus

(¢, A) = (Id, 1) - (&, A) = (@0, Xo) - (#1, A1) - (&, A) = (p0, Ao) - (s, 1/ Jac(s)).
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It proves the polar factorization.

Step 4: Uniqueness. The pair of c-concave potentials (zg, 1) is optimal for WFR(po, [(¢0, o), po]) =
WFR(po, p1) and therefore by Proposition 17, z; are unique p; a.e.. We deduce that the projec-
tion (s,+/Jac(s)) = (¢1,A1) - (¢, A) is also unique py a.e.. Indeed the positivity of A implies that
Supp(A2pp) = Supp(po), thus ¢ maps Supp(pg) onto Supp(p;) and the uniqueness of 1 and Ay, p;
a.e., implies the uniqueness of s and \/Jac(s), po a.e.. To prove that (s, \/Jac(s)) is the L2(M, €' (M))
projection of (¢, \) onto Autye (% (M)), we observe

inf / di ar) ((457 A)s (o, v JaC(U))) po > WEFR?(po, p1)
(0:1/Tac(@)) € ATTvol (€(M)) J M

= /M d%ary (90, M), (1, 1)) po
= [ iy (6020 (5. VT, (5. Ta5D)
= [ Ean (6.2, (5, VT .

which gives the result. O

As in OT, Theorem 18 could be extended, for example, to any admissible p; without the absolute
continuity assumption. In such a case, one looses uniqueness of the measure preserving generalized
automorphism (s, v/Jac(s)). An other extension is to project on the subset of Aut(%(M)):

Attty o (€ (M) = {(s,A) € Aut(€(M)) |7 ((s,A), p0) = o} .

in the spirit of [44, Theorem 3.15]. The proof is similar to the one given above. Last, linearization
of this polar factorization leads to an Helmholtz decomposition for velocity vector fields. As explain
previously this last three results are not limited to the case of WFR. A similar analysis for the
Gaussian-Hellinger case is even easier to compute. For instance for Gaussian-Hellinger in R¢ the
optimal potential z would be semi-concave, thus ¢ a gradient of a convex function:

(3.43) o(z) =z — Vz(x),
and
(3.44) Mz) = =@+ HIT=@)1

This formulation can be particularly adapted for statistical or numerical applications. We leave
these for future works.

4. THE MA-TRUDINGER-WANG TENSOR IN THE WFR CASE. SOME RELATIONS BETWEEN
¢c-CONVEX FUNCTIONS AND d¢-CONVEX FUNCTIONS

In this section we investigate the link between c-convex functions on the base space M and d?g( M)
convex functions on % (M). As a consequence, we provide a relation between the MTW-tensor on
M for the cost ¢ and the MT'W-tensor on ¢ (M) for the cost d?g( M) Since for instance the connexity
of the c-subdifferential is a synthetic formulation of MTW.(0). For simplicity, we denote by de the
distance on € (M).

We prove two fundamental facts. Lemma 19 states that a function is c-convex on M if and only if
its (suitably defined) lift is d2-convex on ¢’ (M). Lemma 20 is concerned with explicit computations
along c-segments.

Let us recall the definition of cost-convex functions.

Definition 11. [43, Definition 5.2] Let X x Y C M x M be a subset and ¢ be a cost function on
X xY. A function f: X — RU {+oo} is c-convex if it is not identically +oo and if there exists a
function g : Y — R U {zxoo} such that, for every = € X,

flz) = Slelgg(y) —c(z,y).
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The c-subdifferential of f at point Z, denoted by O.f(Z), is the set of y € Y such that, for every
x e X,

f(@) = f(@) + c(@,y) — c(z,y).

In the sequel we set cosi(z,y) := cos (min(d(z,y),%)) and we consider the cost c(z,y) =

—log(cos? (z,y)). The corresponding distance on the cone is given by
d?@”((x7 7’), (y7 S)) = 7‘2 + t2 —2rt COS+($, y)
Definition 12. Given a function f : M — R we define the lift of f to ¥ (M) as the function
Fr:C(M)—Ras
Fp(z,r) =r2(ef@ —1).

This definition is natural with formulation 3.16 of WFR in mind seen as a dual formulation on

the cone.

Lemma 19. Let X XY C M x M and f : M — R. Then f is c-convex on X XY if and only if
Fy is d2-conver on (X x Ry) x (Y x Ry). In particular, given (Z,7) € X x Ry, y € 0.f(Z) if and
D Pinally (Fy)%%e = Fye.

only if (y,s) € 8dggFf(i7F) where s = mems

Proof. By Definition 11, it is sufficient to prove the second statement.
The function f is c-convex on X x Y, if and only if for every & € X the c-subdifferential of f at
Z is not empty. In particular, for every & € X there exists y € Y such that, for every x € X,
= f(z) —log(cos (z,y)) + log(cos? (z, y)),
or, equivalently, for every x € X,
2 —
(4.1) of@)=1@) 5T Y)
cos? (z,y)

Let now 7 € Ry. Then (y,s) € 042 Fy(,7) if and only if, for every (z,r) € X x Ry, the following
inequality holds true

(4.2) P 1) > P ("D —1) + a5 ((@,7), (y,9))) = dF (2.7, (4, 9)))-
Using the definition of d¢, (4.2) is equivalent to
(4.3) r2ef@ > 72l @) _ 97 cos (d(Z,y)) + 21 cosy (d(z, y)).

Adding s% cos? (z,y)e /@) + 5% cos? (z,y)e~/® to both sides of (4.3), the inequality becomes

2 _ N2
ef @ (r — scosy (z, y)e*f(x)) — /@ <f — scosy (T, y)e*f(r))

2 /=
2 2 —f(x COS+(I7 y) xz)— f(z
(44) + S COS_,’_(.Z',y)e f( ) <Cosi(x’y)ef( ) f( ) — 1) 2 0

For Fy to be dZ-convex, (4.4) must be satisfied for every (z,r) € X x R;. When this is the case,
evaluating (4.4) at © = T implies that, for every r € R,

1\ 2 N\ 2
(4.5) (7" — scosy (7, y)e*f(m)> — (F — scosy (7, y)e*f(x)) > 0.
For a given 7 € Ry (4.5) holds for every r € Ry if and only if
e
S s @)

Thus, the (unique) value of s has been identified and we now evaluate (4.4) at this value. Inequality
(4.4) holds for every (z,r) € X x Ry if and only if

2 2 (5 B
(4.6) ef @ (7‘ — scosy (z, y)e_f(z)) + 5% cos? (z,y)e @ (W&f@)_ﬂm - 1) > 0.
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If (4.6) holds true for every (z,7) € X x R, , then evaluating at r = s cos, (,y)e™/®) we infer that

)
81T Y) r@-1@ _ 1 > g
cos? (z,y) -

must be satisfied for every x € X, that is to say (4.1), i.e., y € 0.f(T).

The other direction is obvious since in Formula (4.6) the first term is a square and the second
term is nonnegative due to (4.1). The proof of (F}) % — Fe is done similarly or can be seen as a
consequence of the identification of the subdiffentials. O

The next lemma makes a link between the notions of c-segment on M and d?g—segment on €(M).
Let us recall the definition of cost-segments on a manifold.

Definition 13. [43, Definition 12.10] Let ¢ : M x M — R be a cost, T € M, and consider the
parameterized segment between qg,q1 € Tz M given by [0,1] > ¢ — ¢ = (1 — t)go + tq1. The
c-segment, whenever it is defined, is given by the parameterized curve

[0,1] 3t s := —(Vae(Z, ) ;.

In this case, we refer to ¥ as the base point of the c-segment. Recalling that, by definition,
c-exp; (v) = y if and only if —V,¢(Z,y) = v, c-segments coincide with the image under c-exponential
map of segments in the tangent space. In the sequel we also use the notation [yo,y1]5(t) for the
c-segment given by c-exp;(q:), where y; = c-expz(¢;),? = 0, 1.

Lemma 20 (Link between cost-convex segment). Let y; = [yo,y1]%(t) = c-exp;(qt) be a c-segment

2
on M. For every ¥ € RY, ag > —2F there exist sg,s1 € Ry such that [(yo,so),(yl,sl)];(,’”—f(t) =
dZ -eXP(z ) (pt,ao) is a dZ-segment of € (M). Moreover sy, py are given by

2F+ao
Pt‘(

4.7 = -~
@) 7 2cos (Tye)

) @ ,)
T+ 9 ) qe.
2
Conversely, let [(yo, So0), (yl,sl)]g’?’ (t) = d2 -eXP(; ) (pt,a0) be a degnpy-segment of € (M) with
ag > —2F. Then [yo,y1]S(t) = c-exp,(q;) is a c-segment of M with the choice q; = =2

272 +Fag

We can state a longer but more exhaustive statement. Let t — y; € M be the c-segment
on M with endpoints yo,y1, base point Z, given by the image under c-exp; of the segment ¢ =
(1 —1)go +tq1 € TzM. For every 7 € R% and for every ag > —27 there exist s9,s; € Ry such that
the curve t — (y;, s¢) € € (M), with

277 + ap
St = 5 =
2cos4 (Z, 1)
is the dZ-segment with endpoints (yo, So), (y1,51) and base point (Z,7), given by the image under
dZ -expy;  of the segment

a
pt = (7724‘?077) Gt, Q¢ = ag.

Conversely, let t — (y;, 5¢) € €(M) be the dZ-segment with endpoints (yo, $o), (y1, s1), base point
(z,7), given by the image under d% -eXP(; ) of the segment (p, a+), with pr = (1 —t)po+tp1 € Tz M
and a; = a9 > —27. Then t — y; € M is the c-segment of M with endpoints yo,y1, base point Z,

given by the image under c-exp; of the segment ¢, = QFQQi;u().

Proof. Recall that ¢(z,y) = —log(cos? (z,y)) and dZ((z,r), (y,t)) = r* 4+ t* — 2rt cos; (z,y). Thus,

—Vae(Z, 2) = Bm[log(cosi(g’c, 2))] = QM
cos4 (T, z)

—Vir) dZ((z,7), (2,8)) = 2(Fs0,[cos, (T,2)], —F + s cosy (T, 2)) .
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Therefore, a curve t +— y; € M is the c-segment [yo,y1]S(t) if and only if there exist qo,q1 € TeM
for which y; satisfies
9 a:r [COS+ (j: yt)]

cos (7, 1)
where y; = c-exp;(¢;),i = 0,1 (for simplicity set ¢; = (1 — t)go + t¢q1). Similarly, a curve ¢t —
(ye,8t) € € (M) is a dZ-segment if and only if there exist ag,a; > 0 and pg,p1 € Tz M for which
(yt, s¢) satisfies

(19) {—ar A2((2,7), (g, 51)) = 27810 [cosy (T, 1)] = (1 — t)po + tpr

(4.8) (L —=t)go +tq1 = —Vaue(T,yr) =

7
=0 d2((Z,7), (ys, 1)) = —2F + 284 cos4 (T, y¢) = (1 — t)ag + tay .
Let t — y: = [yo, y1]5(t) = c-expz(qt), with ¢+ = (1 —t)qo + tqn € Tz M. For simplicity, we look for
solutions of (4.9) where ag = ay. If t — cosy (T, y:), the second equation gives
oF
(4.10) = 0t
2cos (2, 41)

which is strictly positive if ag > —27. Plugging such choice of s; in the first equation of system (4.9),
we look for pg,p1 € Tz M satisfying

ap + QF
cos (7, yt)
Using (4.8), the identity above reads

Ozlcosy(Z,y¢)] = (1 = t)po + tp1.

r _
§(a0 +27)q: = (1 — t)po + tp1,

which is satisfied by the choice p; = 5 (ap + 27)g;, i = 0, 1.
Conversely, assume a dZ-segment is given by

t e (yese) = (o, s0), (w1, 81)]&%;) (1) = d%-exps ) (pea0) ,
where p; = (1 — t)po + tp1 and ag > —27. Then the pair (y;, s¢) satisfies (4.9). Define ¢; = a()gﬁtzf%
Since t — p; is affine, so is t — ¢;. Moreover by (4.9), ¢ satisfies
G = Oy [1og(cosi(d(i,yt)))] = —V.c(Z,yt).
Therefore t — y; is a c-segment between endpoints yg,y; and with base point Z. (]

A direct consequence of the correspondence between c-segments and d2-segments is the following.

Corollary 21 (Link between cost convexity domains). Let Y x Ryg C € (M) be a dZ-convex set
with respect to (Z,7) € €(M). Then'Y C M is a c-convex set with respect to T € M.

Proof. By definition see [13, Definition 12.11], Y x Ry C ¢(M) is dZ-convex set with respect to
(z,7) if every pair of points in Y x Ry can be joined by a dZ-segment with base point (z,7). Take
Yo,y1 € Y such that there exists qo,q1 € TzM with the property y; = c-expz(¢:),i = 0,1. Let
ag > —27 and define

bi = (FZ + %F> Gis 1= 07 la

2
6 = e .,
2cos4 (7, i)

By construction, the d%-segment
t— (yi, S¢) := d?g -exp(ji)((l —t)po + tp1, ao)

is contained in Y x R, and has endpoints (yo, s0), (y1, $1). By Lemma 20, the curve ¢ — y; coincides
with the c-segment c-exp;(q;), where ¢; = (1 — t)qo + tq1. O
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A synthetic formulation for the sign of the MTW,,s tensor is also given by the quasi or plain
convexity of a particular functional, the so-called support function (see Lemma below) along a cost-
segment see for instance [43, Theorem 12.36, Proposition 12.25(i)] [23, Theorem 2.7][?, Section
1.5.b,c,d]. We turn now to the second crucial lemma of this section which makes the link between
this support function defined on the base space and the one defined on the cone.

Lemma 22. Assumet — y; = [y, y1]S(t) € M is a c-segment with base point T and let hy : [0,1] —
R denote the support function on y;, namely

hx(t) = C(jvyt) - C(I,yt) :
Let t — (yt,8¢) = [(yo, 80), (yhsl)]g‘%(t) be any dZ-segment associated to [yo,y1]S(t) throughout
Lemma 20 and denote by H(, ) : [0,1] — R the corresponding support function,
Hp oy (t) = d%((,7), (ye, 5¢) — A% ((2,7), (ye, 50))-
Then hy and H ) satisfy the following identity

H(Z7T)(ﬁ) — 72 + r? 1
aoT + 272 '

ha(t) = 2log <

Remark that for hy, H(, .y to be well defined the cost ¢ must satisfies some smoothness condition
such that ¢; is in the definition domain of c-exp.

Proof. By definition
hz(t) = C(fv yt) - C(I, yt) = - IOg(COSi (j:7 yt)) + 10g(COS§_($, yt))
(4.11) = 2log (COS+(““)) .
cost (3> 1)
The support function on %' (M) is given by

H(a:,r)(t) = d?g (Z,7), (yt,5t)) — d?g((l‘,?‘), (Yt 51))

=72 — 1% 4 2rs, cosy (, ;) — 278y cosy (T, yp).

Since (yt, s¢) is a dZ-segment, it satisfies (4.7), whence
~ aoT + 272 a
2T’St = = = — )
cos (T, y)  cosy (T, yr)

where @ = ag7 + 272 > 0. Thus
Hy,(t)— 7 +r2=a (7:005+(d(3_37yt)) _ 1) )
7 cost (d(Z,yt))

Finally
~ _ _ d(w,yt))
log (Hy () — 7 +7r°+a) —loga=lo (iCOSJr( — ,
5 (er 1) ) o8 =108 o @)

which provides the statement thanks to (4.11).

O

Thanks to the link we made between c-convex functions/c-segment on the cone and on the base

manifold, we are able to provide an example of answer to the question raised in [22, Example 3.9]
which is

It remains interesting to find more general sufficient conditions on a Riemannian
manifold (M, g) and function f ”...” for f(d(x,y)) to be strictly or weakly regular
i.e MTWy4)(0) holds.
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We prove hereafter the following sufficient condition: if the cost on the cone satisfies M TW g2, (0),
then it MTW,(0) holds where c(z,y) = —log(cos? (d(z,y))). Recall that this cost is associated
with the Wasserstein-Fisher-Rao metric, see Corollary 8. Importantly, this proof holds for any cost
d(x,y) on the base manifold as long as V,d(z, -) is injective and continuous with inverse continuous
on a small neighborhood of all yg € M. We have two proofs of this result based on two different
synthetic formulations of MTW,.(0). One is based on the quasi-convexity of the c-segment the other
one on the assumption (C) that we now recall.

Definition 14. [43, p.288] A cost c on M x M satisfies Assumption (C) if for every c-convex function
f and for every x € M in its domain, the c-subdifferential 0. f(z) is connected.

Lemma 23. If d2 satisfies assumption (C) on € (M) then c satisfies assumption (C) on M.

Proof. To prove assumption (C) for ¢, let f: M — R be a c-convex function. (Note that on both
M and % (M) connectedness is equivalent to path-connectedness.) Take y1,ys € 0.f(Z). Then, by
)
cost @)
is connected, hence there exists a continuous path t — (yi,s) € adggFf(:i,f), with endpoints

(Yo, $0), (y1,51). Again, by Lemma 19, (y, s¢) € 8dggFf(:i,F) if and only if

Lemma 19, (yi,s;) € Oqz Fy(Z,7), where s; = By assumption (C) on dZ, daz Fy(z,7)

5 el (@)

S x 5 St = ———————.

o (@) ! cos+(Z,yt)

In particular, ¢ — y; is a continuous path in 9.f(Z) between endpoints yo,y1, whence O.f(Z) is
connected. O

We can now state and prove the main Theorem of this section. Recall that a cost ¢ satisfies the
MTW weak condition if and only if, for every pair of points the MTW tensor associated with ¢
computed at any pair of c-orthogonal vectors is nonnegative (see also Section 2.3).

Theorem 24. If d2 on ¢ (M) satisfies the MTW weak condition, then the cost ¢ on M satisfies
the MTW weak condition.

We give two proofs of Theorem 24.

Proof 1. Recall that, under some convexity assumptions, [43, Theorem 12.42] states that assumption
(C) is equivalent to MTW weak condition. Both costs dZ on 4(M) and ¢ on M satisfy the
requirements in [13, Theorem 12.42]. Therefore, applying the result to dZ we deduce that dZ
satisfies assumption (C). By Lemma 23 also ¢ satisfies assumption (C) on M. Applying [43, Theorem
12.42] to ¢ we conclude that c satisfies MTW weak condition. O

Proof 2. By the results [13, Proposition 12.15 (i), Theorem 12.42], under the same convexity as-
sumptions, MTW weak condition for a cost is equivalent to the quasi-convexity of the support
function along any cost-segment, see [23, Theorem 2.7],[?, Section 1.5.b,c,d]. [43, Theorem 12.36,
Proposition 12.25(i)] Assume d2, satisfies MTW weak condition on 4’ (M). Then, the support
H, o (t) = dZ.((z,7), (yt, 1)) — dZ((z,7), (ys, 5¢)) function along any dZ-segment ¢t — (yt,s:) is
quasi-convex, i.e.,

H(z,r) (t) < max (H(m,r) (O)aH(x,r)(l)) .

Let ¢+ y; € M be a c-segment, x € M. By Lemma 20, y, is the projection on M of a dZ-segment
t + (yt, 5¢). Moreover, by Lemma 22, the support function ¢ — h,(t) along y; and t — H, ,(t) are
related by

Hi, () — 72 +1r?
h(t) = 2log < ( a)gf+ 572 1> .

By hypothesis, H(, ,(t) is quasi-convex. Since log is an increasing function, max (H(Lr) (0), Hizr (1))
H,.(j) is equivalent to max (h;(0), k(1)) = hy(j). Since agf + 27”0, quasi-convexity of t —
H ;) (t) implies quasi-convexity of ¢ — h,(t). Finally, we apply [43, Proposition 12.15 (i), Theorem
12.42] to the cost ¢ and we deduce that ¢ satisfies MTW weak condition. O
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Note that this theorem can be checked by direct computations* however the above proof uses a
synthetic strategy as illustrated in [413, Chapter 26].

Remark 8. With Theorem [13, 12.42] in mind a summary of this section could be the following,
which give some weaker results: Lemma 22 states an equivalence for ¢ to be reqular on M and for d2,
to be regular on a specific set of d2-segments of €' (M). Whereas Lemma 19 states an equivalence
for ¢ to satisfies assumption (C) on M and dZ to satisfies assumption (C) on a specific class of
d?g—convea: functions of €(M). Both these conditions imply the weak Ma-Trudinger-Wang condition
MTW (0). Therefore assumption (C) or reqularity for d2 on a subdomain on these specific sets are
enough to ensure that MTW,(0) holds true on a subdomain on the base space. To prove Theorem
24 we also used the reverse results that assumption (C) or regularity for dZ on a totally dZ-convex
set D are implied by MTdeg(O).

Using the link between c-segments on the cone and on the base manifold, we could prove Theorem
24. We can also use such a strategy to derive a result on cross-curvature. Cross-curvature is
essentially the curvature tensor of the Kim-McCann metric without the orthogonality condition,
see [24]. Tt is also referred to as MTW(0,0) [?, Section 1.5.b,c,d]. Thus, asking nonnegativity of
the cross-curvature is a stronger condition than asking for MTW (0) to hold true. However, this
condition is known, as proven in [24], to pass to Riemannian submersions and products of manifolds,
i.e. nonnegativity of cross-curvature is preserved, which may not be the case for the nonnegativity
of the MTW tensor.

Theorem 25. If the cross-curvature on the cone € (M) is nonpositive, it is also the case on M for
the cost —log(cos? (d(z,y))).

Proof. A synthetic formulation for the sign of the MTW, tensor is given given by the convex-
ity /concavity of the support function along a c-segment [?, Section 1.5.b,c,d] or [23, Theorem 2.10].
The convexity is equivalent to a nonnegative cross curvature whereas the concavity is equivalent to a
nonpositive cross curvature. Using Lemma 22 and the fact that log is a concave increasing function
we get that ¢ — H, ,(t) concave implies ¢ — h,(t) is also concave and prove the first part of the
Lemma. (]

Obviously, this result is not of direct interest for smoothness of unbalanced optimal transport
since it requires nonnegativity of the cross-curvature tensor rather than nonpositivity.

Remark 9. Aslog is concave we cannot prove here a result similar to Theorem 24, that would pushed
the monnegative cross curvature from the cone towards the base space. More precisely a consequence
of Lemma (19) would be if the cross-curvature on the cone is nonnegative, log(te/o®) + (1 —t)eft (z))
is c-convezx if fo, f1 are c-convexr. However, we do not know if it implies nonnegativity of the cross-
curvature on the base manifold, i.e. tfo + (1 —t)f1 is c-conver.

5. FUTURE DIRECTIONS

We have shown, not unsurprisingly, that regularity for unbalanced optimal transport can be
reduced to the one of optimal transport through linearization of the dual problem. Regularity,
being a structural result in itself, is interesting outside analysis. For instance, regularity of optimal
transport maps is the key to be able to mitigate the curse of dimensionality of statistical optimal
transport as done in [10] and to obtain minimax rate of convergence for the statistical estimation
of optimal potentials [33]. Our results should allow similar gains in the statistical estimation of
unbalanced optimal transport. We focus on Wasserstein-Fisher-Rao metric since it is the natural
length space associated with the problem. This particular case leads us to examine the MTW
condition of the induced cost. Interestingly, we showed that when the weak MTW condition on
the cone is satisfied, the same holds true for the MTW condition for the induced cost on the base
manifold. A similar result holds for cross-curvature, whose nonnepositivity on the cone implies
nonpositivity of the corresponding cost on the manifold. This is an example of answer to a question

AWe tried unsuccessfully to prove this result relying on symbolic computations.
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formulated in [22]. Another open application of polar factorization can lead to new numerical scheme
for the Camassa-Holm equation as done for incompressible Euler in [17].
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APPENDIX A. PROOFS

Proof of Proposition 16 (Approzimate differentiability). The proof is an adaptation of [30, Theorem
6.7] using arguments in [32, 42]. In particular we use the notation of [30]. Let (2o, z1) be a generalized
optimal potential pair for WF?(pg, p1) and ~ an optimal coupling [30, Theorem 6.3]. We define the
associated densities o; = e7*, i = 0,1. Since py and p; are admissible [30, Theorem 6.3,b] implies
Supp (pi (v) = 'yo) = Supp(po) and Supp (pz (v) = 'yl) = Supp(p1). Therefore, there exist Borel sets
A; C Supp(p;) with p;(M \ A4;) = 0 such that

(A1) oo(2)a1(y) > cos®(dr/2(z,y)) inAg x A4y,
(A.2) oo(2)o1(y) = cos®(dx/2(z,y)) v—a.e.inAg X A; .
To construct the set of approximate differentiability let

Arp={y€e M;oi(y) >1/n}
and consider, the function

cos?(dr/2(x,y))
So,n = —_— .

YEAL n Ul(y)

By construction, sg, is bounded, Lipschitz and thus differentiable vol a.e. Still by definition, we
have ¢ > sg,, and thus the sets Ao, = {z € M ; 0o(z) = so,n(z)} are increasing. Since (A.2) is
valid 7 a.e. the set ()7, (X \ Ag,n) is po negligible. Let

. vol(B(z,r) N Ag,p)
/ _ . VO. 5 L1Ad
. {m € Ao Jimy = B )

= 1 and sg,,is differentiable at x}
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be the set of points of Ay, with vol density 1. Remark that (), (X \ 4j,,) is also po negligible.
Let (7,9) € Ay, X A1n be such that
50, (%)a1(§) = cos?(dr/2(2,9)) = 00(Z)01(7) -
Using (A.1), it holds, for all z € A;
o1(y) = cos?(dry2(,9)) /s0.n(x) -

In particular, cos®(d /2(x,))/s0,n (2) achieves its maximum at 2, implying 0 € V3 (cos?(dx /2 (-, 7)) /50, (-))-
Since sg ,, is differentiable at Z, it yields that d?(-,y) is super-differentiable. By Lemma 15, it is also
sub-differentiable and thus differentiable at Z. It holds

(A:3) 0=V cos’ (\f 397/2(%:7 ))) /30() = c08*(drj2(2,5)) V50,0(2) /55 (2)

(A4) = —Qﬁtan(dﬂ/g(x,y))mm\/éy)v < dﬂ/Q(x,y)> —Vinsg,(z).

Let —V (der/g(’ ’)) = vzy € TeM be the unique vector such that § = exp} (vz_y), the last

equality reads

~ ~ Vi —sij
VZQ(E) = —Vth'o(.’Z') = —v1n507n(,@) = —Qtan(”Uj%gH) ” 7_?”
T—Y

Therefore, g is unique p; a.e. and given by

5= exp (vs105) = exp! (—arctan (”Wg“)”) %(‘”)”) ~ o(@).

Vzo(Z)
It implies that + is concentrated on the graph of ¢ in particular v = (Id, ¢), 7o and @sy0 = 71. The
strict convexity of KL implies that the marginals vy and 7; are unique [30, Theorem 6.7] thus
d’Yo

Z0 = —log(do) = —log(- =

is unique pg a.e. and - is also unique. Note that we used the admissible condition to say that o is
po a.e. positive. In order to prove (3.28), we start from (13) and a direct computation yields

(A.5)
WFRA (0. p1) = KL(30.p0) + KL(w.p0) + [ clann)d(a.)

= / log (e7*°) e~ dpo+ [ (1—e ) dpo + / log (e7*) e~** dpy +/ (I—e"?)dpm
M M M
[ )

M2

X
X
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3.2 Unbalanced gradient flows and more general reaction dif-
fusion PDE

Articles:

e AJKO splitting scheme for Kantorovich-Fisher-Rao gradient flows. SIAM
Journal on Mathematical Analysis, Vol. 49, Issue 2. (2017) https://arxiv.
org/abs/1602.04457. Gallouét T.O. et Monsaingeon L.

e An unbalanced optimal transport splitting scheme for general advection-
reaction-diffusion problems. Journal of Differential Equations ESAIM: Con-
trol, Optimisation and Calculus of Variations (2018) https://hal.science/
hal-01508911. Gallouét T.O., Laborde M. and Monsaingeon L.

Collaborators: The first article is written with L. Monsaingeon and the second
one with both L. Monsaingeon et Maxime Laborde. We were somehow at the same
career level.

Main contributions:

e Using the inf-convolution structure we proposed and proved that a splitting
scheme made of one JKO step in the Wasserstein space followed by one in the
euclidian converge towards Unbalanced Wasserstein Gradient flows.

e In the second paper we proved that the previous approach works well for
more general reaction-diffusions equations, where the energy used in the
Wasserstein JKO step and the Euclidian step are different. The Unbalanced
metric is used as a common metric that can handle all estimates together.

e We construct and implement a numerical scheme for this splitting method.

Research directions: Thanks to the spitting scheme approach detailed in this sec-
tion many of the technics developed for Wasserstein Gradient flows such as higher
order scheme can be used for more general reaction diffusion equation. We need
to understand how in interplay with the reaction step of the scheme.
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A JKO SPLITTING SCHEME FOR KANTOROVICH-FISHER-RAO
GRADIENT FLOWS *

THOMAS O. GALLOUET! AND LEONARD MONSAINGEON?

Abstract. In this article we set up a splitting variant of the Jordan-Kinderlehrer-Otto scheme in
order to handle gradient flows with respect to the Kantorovich-Fisher-Rao metric, recently introduced and
defined on the space of positive Radon measure with varying masses. We perform successively a time step
for the quadratic Wasserstein/Monge-Kantorovich distance, and then for the Hellinger /Fisher-Rao distance.
Exploiting some inf-convolution structure of the metric we show convergence of the whole process for the
standard class of energy functionals under suitable compactness assumptions, and investigate in details the
case of internal energies. The interest is double: On the one hand we prove existence of weak solutions for
a certain class of reaction-advection-diffusion equations, and on the other hand this process is constructive
and well adapted to available numerical solvers.

Key words. Unbalanced Optimal transport, Wasserstein-Fisher-Rao, Hellinger-Kantorovich, Gradient
flows, JKO scheme

AMS subject classifications. 35K15, 35K57, 35K65, 47J30

1. Introduction. A new Optimal Transport distance on the space of positive Radon
measures has been recently introduced independently by three different teams [13, 14, 25,
28, 29]. Contrarily to the classical Wasserstein-Monge-Kantorovich distances, which are
restricted to the space of measures with fixed mass (typically probability measures), this
new distance has the advantage of allowing for mass variations, can be computed between
arbitrary measures, and does not require decay at infinity (such as finite moments). In
[13, 14] the distance is called Wasserstein-Fisher-Rao and is introduced with imaging appli-
cations in mind. In [28, 29] the distance is referred to as the Hellinger-Kantorovich one, and
was studied as a particular case of a larger class of Optimal Transport problems including
primal/dual and static formulations. The second author introduced the same distance in
[25], with applications to population dynamics and gradient flows in mind. In this paper we
propose the name Kantorovich-Fisher-Rao for this metric (KFR in the sequel), taking into
account all contributions.

On one side we aim here at understanding the local behavior of the KFR metric with
respect to the by now classical quadratic Monge-Kantorovich/Wasserstein metric MK and
the Hellinger/Fisher-Rao metric FR. On the other side we want to use this information to
prove existence of weak solutions to gradient flows while avoiding to look too closely into
the geometry of the KFR space. Moreover our constructive approach is naturally adapted to
available numerical schemes and Monge-Ampére solvers.

A possible way to formalize abstract gradient flow structures is to prove convergence of
the corresponding Minimizing Movement scheme, as introduced by De Giorgi [15] and later
exploited by Jordan-Kinderlehrer-Otto for the MK metric [21]. Given a metric space (X, d)
and a functional F' : X — R, the JKO scheme with time-step 7 > 0 writes

(1) " € Argmin {1d2(1:, ™)+ F(x)} .
zEX 2T
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Letting 7 — 0 one should expect to recover a weak solution of the gradient flow
(2) () = — grad, F(z(t)).

Looking at (2), which is a differential equality between infinitesimal variations, we guess
that only the local behavior of the metric d matters in (1).

The starting point of our analysis is therefore the local structure of the Kantorovich-
Fisher-Rao metric, which endows the space of positive Radon measures p € M™ with a
formal Riemannian structure [25]. Based on some inf-convolution structure, our heuristic
considerations will suggest that, infinitesimally, KFR should be the orthogonal sum of MK and
FR:

KFR? ~ MK? + FR?.
More precisely, we will show that in the tangent plane there holds

®3) | gradges F(p)II* = || gradu F(p)|I* + | grades F (o)

at least formally for reasonable functionals F, and this is in fact the key point in this
work. The notion of metric gradients and tangent norms appearing in (3) will be precised in
section 2. This naturally leads to a splitting approach for KFR Minimizing Movements: we
successively run a first time step for MK, leading to the diffusion term in the associated PDE,
and then a second step for FR, leading to the reaction term in the PDE. This can also be
viewed as replacing the direct approximation “by hypotenuses” in the JKO scheme (with the
KFR distance) by a double approximation “by legs” (each of the legs corresponding to one of
the FR, MK metrics). Formula (3) also indicates that the energy dissipation D(t) := —4E =
|#|2 = | grad F|? will be correctly approximated in (2). One elementary Monge-Kantorovich
JKO step is now well known, see for instance [38] and references therein. On the other hand
the Fisher-Rao metric enjoys a Riemannian structure that can be recast, up to a change of
variable, into a convex Hilbertian setting, and therefore the reaction step should be easy to
handle numerically.

Here we show that the classical estimates (energy monotonicity, total square distance,
mass control, BV...) propagate along each MK and FR substeps, and nicely fit together in
the unified KFR framework. This allows us to prove existence of weak solutions for a whole
class of reaction-advection-diffusion PDEs

Op = div(pV(U'(p) + ¥ + K x p)) — p(U'(p) + ¥ + K * p)

associated with KFR gradient flows

O = —eaden (o). F(p) = [ {U()+ W)+ 5K =0},

The structural conditions on the internal energy U, external potential W, interaction kernel
K, and the meaning of the metric gradient gradyg; will be precised later on. Moreover we
retrieve a natural Energy Dissipation Inequality at least in some particular cases, which is
well known [3] to completely characterize metric gradient flows.

Our splitting method has several interests: First we avoid a possibly delicate geometrical
analysis of the KFR space, in particular we do not need to differentiate the squared KFR
distance. This is usually required to derive the Euler-Lagrange equations in the JKO scheme,
but might not be straightforward here (see Section 3 for discussions). Secondly, the approach
leads to a new constructive existence proof for weak solutions to the above class of PDEs,
and can be implemented numerically (see [24] for an early application of this idea). For
one elementary MK step many discretizations are now available, such as the semi-discrete
scheme [32, 6], the augmented Lagrangian procedure [5], or the Entropic relaxation [36].
The Fisher-Rao minimizing step should not be difficult to implement, since the problem is
convex with the good choice of variables.



Finally it is worth stressing that the KFR distance is, by construction, well adapted to
handle general transport and reaction processes in a unified framework. One very natural
extension of this work would be to consider two separate energy functionals Fi, Fa, to be
used respectively in the diffusion and reaction parts. This natural approach is the pur-
pose of our ongoing works [17, 26] and should allow to treat more general equations (not
necessarily gradient flows). However, the rigorous analysis requires suitable compatibility
conditions between the two driving functionals and becomes quite technical (see e.g. Re-
mark 4.1). For the sake of exposition we chose to restrict here to the case of pure gradient
flows F1 = F = Fa, when the technical estimates are more straightforward and allow to
recover dissipation estimates (see Section 5.2).

The paper is structured as follows. In Section 2 we recall some basic facts on the
three metrics involved: the quadratic Monge-Kantorovich MK, the Fisher-Rao FR, and the
Kantorovich-Fisher-Rao KFR distances. We highlight the three differential Riemannian struc-
tures and gradient flow interpretations. Section 3 details the local relation between the three
metrics, in particular the infinitesimal uncoupling of the inf-convolution. For the sake of
exposition we deliberately remain formal in order to motivate the rigorous analysis in the
next sections. In section 4 we define the splitting minimizing movement scheme for the
KFR distance and prove, under natural compactness assumptions, the convergence towards
a weak solution of the expected PDE. As an example in section 5 we work out all the tech-
nical details for the particular case of internal energies, and show that the previous abstract
compactness hypothesis holds.

2. Preliminaries. From now on we always assume that  C R? is a convex subset,
possibly unbounded. In this section we recall some facts about the Wasserstein-Monge-
Kantorovich and Hellinger-Fisher-Rao distances MK, FR, and introduce the Kantorovich-
Fisher-Rao distance KFR. We also present the differential points of view for each of them,
allowing to retrieve the three corresponding pseudo Riemannian structures and compute
gradients of functionals with respect to the MK, FR, KFR metrics.

2.1. The quadratic Monge-Kantorovich distance MK. We refer to [41] for an
introduction and to [42] for a complete overview of the Wasserstein-Monge-Kantorovich
distances.

DEFINITION 2.1. For any nonnegative Radon measures pg, p1 € ./\/12+ with same mass
|po| = m = |p1| and finite second moments, the quadratic Monge-Kantorovich distance is

(4 (0, p) = min [ o= yPdaa),
Y€l po,,1] JaxQ

where the admissible set of transference plans T'[pg, p1] consists of nonnegative measures
v € MT(Q x Q) with mass |y| = m and prescribed marginals I, (y) = po(z) and IL,(y) =

p1(y)-

The minimizer is unique and is called an optimal plan. When pg does not charge small sets
we have the characterization in terms of transport maps:

THEOREM 2.1 (Brenier, Gangbo-McCann, [11, 19]). With the same assumptions as in
Definition 2.1, assume that py does not give mass to H?~1 sets. Then

(5) M (po,pr) = min [ o (o) Pdpo(a),
p1=t#po Jo

and the optimal transport map t is unique dpg almost everywhere.

We recall the definition of pushforwards by maps t : Q@ — Q

o=t & /Q o(y)dpr(y) = /Q H(6(x))dpo(z) for all ¢ € Co(€2).
3



As first pointed out by Benamou and Brenier [4] we also have the following dynamic repre-
sentation of the Wasserstein distance:

THEOREM 2.2 (Benamou-Brenier formula, [3, 4]). There holds

1
(6) MK (po, p1) = min //|Vt|2dﬂtdta
0 Ja

(p,v)EAm([po,p1]
where the admissible set Awc|po, p1] consists of curves [0,1] 3 t — (py,vi) € MHT(Q) x
L2(92,dpy)? such that t v p; is narrowly continuous with endpoints pg, p1 and solving the
continuity equation
8t/0t + diV(ptVt) =0

in the sense of distributions D'((0,1) x ).

REMARK 2.1. Note that, since we are minimizing the kinetic energy in (6), the admissi-
ble velocity fields v are implicitly taken in the varying weighted space v € L?(0,1; L?(dpy)).
For such velocities in this energy space, the action of the product pyvy is well defined against
any smooth test-function ¢ € C2°((0,1) x Q) C L2(0,1; L?(dpy)) in the distributional formu-
lation of the continuity equation, i-e

1
—({div(pv), o), p = (pv, Vo) 0 = (V, V) 1200 1.12(dp,)) =/ /QVt-dept dt.
0

In (6) a minimizing curve ¢ — p; is of course a geodesics, with constant metric speed
HthQLQ(dpt) = cst = MK2(po, p1). Note that we allow here for any arbitrary mass |pg| = m =
|p1| > 0, and that the distance scales as MK?(apg, ap;) = aMK2(pg, p1). This is apparent in
all three formulations (4)(5)(6), which are linear in =, pg, p1, and p; respectively.

As is now well-known from the works of Otto [34], we can view the set of measures with
fixed mass as a pseudo-Riemannian manifold, endowing the tangent plane

T,My = {0ip = — div(pv) evaluated at ¢t = 0}
with the metrics
10012, i =t {IV)32a,) : Oup = —div(pv)} .

It is easy to see that, among all possible velocities v representing the same tangent
vector d;p = —div(pv), there is a unique one with minimal L?(dp) norm. A standard
computation [41] shows that this particular velocity is necessarily potential, v = Vp for a
pressure function p uniquely defined up to constants (see the proof of Proposition 2.2 below
at least for smooth positive densities p). As a consequence we always choose to represent

Hé)tpHQTer; = ||Vp||2L2(dp) with the identification 9;p = — div(pVp).

Here we remained formal and refer again to [41, 42] for details. Now metric gradients grad,y
can be computed by the chain rule as follows: If 9,p; = —div(p;Vp;) is a smooth curve
passing through p;(0) = p with arbitrary initial velocity ¢ = 9;p(0) = — div(pVp) then for

functionals F(p) = [, F(p(x),z)dx
g remawe)|

= [ Fo) x {-aiv(s)} = [ VF(5)- Vpao
Q Q

= (VF'(p), Vp)Lz(dp) )
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where F'(p) = ‘;—1; stands for the standard first variation with respect to p. For the classical

case F(p) = [o{U(p)+Vp+3pK+p} considered here this means F’(p) = U’(p)+ ¥ (z)+K*p.
This shows that one should identify gradients

grady F(p) = — div(pVF'(p))

through the L?(dp) action in the tangent plane, and as a consequence the Monge-Kantorovich
gradients flows read

(7) op=—grad F(p) < Op=div(pF'(p)).

2.2. The Fisher-Rao distance FR. The classical Hellinger-Kakutani distance [20, 22],
or Fisher-Rao metric, was first introduced for probability measures and is well known in
statistics and information theory for its connections with the Kullback’s divergence and
Fisher information [9]. It can be extended to arbitrary nonnegative measures as

DEFINITION 2.2. The Fisher-Rao distance between measures pg, p1 € M™ is given by

1
e . dpo dp1
8)  FR’(po,p1) & // 2d dt:4/ Vo Vo
(8) (pos 1) L R QIH(Z‘)I pi() L1V B

The admissible set Agg|po, p1] consists of curves [0,1] 2 t — (ps, 1) € MT(Q) x
L?(Q,dp;) such that t — p; is narrowly continuous with endpoints po, p1, and

2
dA.

atpt = ptTt

in the sense of distributions D'((0,1) x Q).

As in Remark 2.1 the reaction term r implicitly belongs to the energy space L%(0, 1; L?(dp;)),
so that pr is a well-defined distribution D’((0,1) x €2) through the (r,.) 72 1.72(4p,)) Scalar
product. In the last explicit formula A is any reference measure such that pg,p; are
both absolutely continuous with respect to A\, with Radon-Nikodym derivatives ‘(11’; By 1-
homogeneity this expression doe not depend on the choice of A\, and the normalizing factor
4 is chosen so that the metric for the pivot space in the first dynamic formulation is exactly
L?(dp;) and not some other multiple BL2(dp;).

At least for absolutely continuous measures dpg,dp; < dx one can check that the
minimum in the first definition is attained along the geodesic

o= [(1— t)/po+ /i and 7 :_2W6L2(dpt>.
t

Moreover this optimal curve 0;p; = ps7: has constant metric speed ||rtH%2(dpt) =4 fQ lv/p1—
/pol? = FR?(pg, p1), which should be expected for geodesics.

More importantly, the first Lagrangian formulation in (8) suggests to view the metric
space (M™ FR) as a Riemannian manifold, endowing the tangent plane

Tp./\/lﬁ = {(%pt = Pt evaluated at t = O}
with the metrics
||8tp||2TpM;& = ||7"H2Lz(dp) with the identification d;p = pr.
Metric gradients gradgs can then be computed by the chain rule as follows: If O;p; = pery is

a smooth curve passing through p;(0) = p with arbitrary initial velocity ¢ = 0;p = pr then
5



for functionals F(p) = [, F(p(x), z)dx we can compute

— % (/Q F(Pt(x),m)dx>

= /Q F'(p)pr = <F/(p)7T>L2(dp) )

d

(grad F(p), Q) ai, = 77 (0e)

t=0

where F’(p) = fs—f; as before. This shows that

9) gradeg F(p) = pF'(p)

with identification through the L?(dp) action in the tangent plane, and as a consequence
gradients flows with respect to the Hellinger-Fisher-Rao metrics read

(10) Op=—gradgy F(p) < 9p=—pF'(p).

2.3. The Kantorovich-Fisher-Rao distance KFR. As introduced in [14], we have

DEFINITION 2.3. The Fisher-Rao-Hellinger-Kantorovich- Wasserstein distance between
measures po, p1 € MT(Q) is

1

(11) )= it (@ + @) deo) a
(p,v,r)EAkr[po,p1] Jo Ja

The admissible set Axer|po,p1] is the set of curves [0,1] 3 t — (p, vi,me) € MT(Q) x

L2(Q,dpy)?® x L%(Q,dp;) such that t — p; is narrowly continuous with endpoints poy, p1 and

solves the continuity equation with source

Oepr + div(peve) = pery

in the sense of distributions D'((0,1) x ).

As in Remark 2.1 the velocity fields and reaction term implicitly belong to the energy space
L?(0,1; L*(dpy)), so that both products pv, pr are well-defined as distributions D’((0, 1) xQ).
Comparing (11) with (6) and (8), this dynamic formulation & la Benamou-Brenier [4] shows
that the KFR distance can be viewed as an inf-convolution of the Monge-Kantorovich and
Fisher-Rao distances MK, FR. By the results of [14, 13, 28] the infimum in the definition is
always a minimum, and the corresponding minimizing curves ¢ — p, are of course called
geodesics. As shown in [25, 14, 28] geodesics need not be unique, see also the brief dis-
cussion in section 4. Interestingly, there are other possible formulations of the distance
in terms of static unbalanced optimal transportation, primal-dual characterizations with
relaxed marginals, lifting to probability measures on a cone over €2, and duality with sub-
solutions of Hamilton-Jacobi equations. See also [28, 29] as well as [37] for a related version
with mass penalization.

As an immediate consequence of the definition 11 we have a first interplay between the
distances KFR, MK, FR:

PROPOSITION 2.1. Let pg, p1 € M3 such that |po| = |p1|. Then

KFR?(po, p1) < MK*(po, p1).-

Similarly for all po, u1 € M™ (with possibly different masses) there holds

KFR? (110, p11) < FR® (110, 1)

Proof. 1f |po| = |p1| then the optimal Monge-Kantorovich geodesics 0;p; 4+ div(psv:) = 0
from po to p; gives an admissible path in (11) with » = 0 and cost exactly MK?(pg, p1).
Likewise for arbitrary measures g, 41 one can follow the Fisher-Rao geodesics 0,.p; = psr+,
which gives an admissible path with v = 0 and cost FR? (g, f11)- ]
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PROPOSITION 2.2. The definition (11) of the KFR distance can be restricted to the sub-
class of admissible paths (v, rt) such that vi = Vry.

Proof. By [14, thm. 2.1] there exists a minimizing curve (p, v¢,7¢) in (11), which by
definition is a KFR-geodesic between pg, p1 (we also refer to [25, thm. 6] and [29] for the
existence of geodesics). Here we stay at the formal level and assume that p, v, 7 are smooth
with p > 0 everywhere.

Consider first an arbitrary smooth vector-field w such that divw,; = 0 for all ¢ € [0, 1],
and let v := v+e3. Then div(pv®) = div(pv)+0 and the triplet (p¢, v§,7¢) is an admissible

Competitor in (11) Writing the optimality condition we compute

( / /(Ivt )P+ o) [*)dpy (2 )dt)
/ /Vt(x) dps(x) dt—/ /vt - wy(x) dadt.

This L? orthogonality with all divergence-free vector fields classically implies that v is
potential for all times, i-e v; = Vu; for some u;.

Fix now any smooth ¢ € C°((0,1) x ), and define v§ := vy + eV, = V(ur + e¢r).
Defining s; by prs; = div(p; V) and 75 := ry +es; it is easy to check that (pg, v§,7$) solves
the continuity equation, and this triplet is again an admissible competitor in (11). Writing
the optimality condition we get now

-2 (3 [ +mwmane )|

= [ [ (Vo) Vot rorsa)apa) a

_ /0 1 /Q V() (@) Vodpu(a)

where we used the identity risipr = r: div(p: V) to integrate by parts in the last equality.
As ¢ was arbitrary this implies div(p;Vu,) = div(p:Vr;) and ||Vt||%2(dpt) = |\Vut||%2(dpt) =
HVTtH%Z(dmy In particular the triplet (p;, Vre,r;) is admissible and has the same cost as
the optimal (p¢, v, 7+), which concludes the proof. O

As a consequence we have the alternative definition of the KFR distance as introduced in
[25], which couples the reaction and velocity:

THEOREM 2.3. For all pg, p1 € MT(Q) there holds

1
1 ke = it (T )
(p,u) € Axerlpo,p1] JO JQ

where Aggr[po, p1] is the set of curves [0,1] 3 t = (ps, Vg, ur) € MH(Q) x L2(Q,dp;)?
L?(Q,dp;) such that t — p; is narrowly continuous with endpoints po, py and solves

atpt + div(ptVut) = PtUt

in the sense of distributions D'((0,1) x ).

The potentials u belong now implicitly to the energy space L?(0,1; H'(dp;)) with obviously
luellFigap = Jo(IVuel? + [uef*)dpr, and both products pyVue, pruy define distributions as
before. Note that Theorem 2.3 shows that the KFR distance constructed in [14], based on
the uncoupled (v, r) formulation, is indeed the same as that in [25], modeled on the (Vu,u)
potential framework.



In order to define now the Riemannian structure on (M™T,KFR) inherited from the
Lagrangian minimization, we endow the tangent plane

T, Mz = {atp = —div(pv) + pr evaluated at t = O}
with the Riemannian metrics
HatpHQTpMK*pR = inf{HV”%z(dp) Il Zeqay 0 Op = —div(pv) + PT} :

Then Theorem 2.3 also allows to construct the one-to-one correspondence between tangent
vectors O;p and potentials u, such that

HatP”;ngR = ||uH%{1(dp) with the identification 9,p = — div(pVu) + pu.
With this one-to-one correspondence at hand, metric gradients gradygs F can be computed

by the chain rule as earlier: If Oyp; + div(p:Vui) = prut is a smooth curve passing through
p:(0) = p with arbitrary initial velocity ¢ = 9:p:(0) = — div(pVu) + pu then for functionals

Flp) = [, Fp(x), x)da we have
— % (/Q F(Pt(xm)dx)

= /QF’(p) x {—=div(pVu) + pu}

(gradyes F(p), C>T ML

P KFR - ﬁf(pt)

t=0

= /Q {VE'(p) - Vu+ F'(p)u}dp = (F'(p),w) gr1(a,) -

where F’(p) = % as before. This shows that

gradygy F(p) = — div (oVE'(p)) + pF' (p)

through the canonical H!(dp) action in the tangent plane. In particular KFR gradient flows
read

(13) p=—gradgey F(p) < 9p=div(pVEF'(p)) — pF'(p),

which should be compared with (7) and (10).

3. Infinitesimal uncoupling of the inf-convolution. Let us first summarize the
previous informal discussion on each of the three metrics: the quadratic Monge-Kantorovich
distance is modeled on the homogeneous H 1(dp) space, the Fisher-Rao distance is based
on L?(dp), and the KFR metrics is constructed on the full H'(dp) structure. Each of these
Riemannian structures are defined via identification of tangent vectors as

MK : 190117, wps = IVPIZ2(ap) = Ja I VPI*dp, dyp + div(pVp) = 0,

PR 0l e = By = Jo lrPd, oup = pr.

KFR : ||<9,5p||2Tp/\/lK+FR = ullfriqap) = Jo(IVul> +u?)dp,  dpp+ div(pVu) = pu.
Given a tangent vector (g = — div(pVu) + pu € T, Mz we can naturally define a Monge-
Kantorovich tangent vector ¢ := —div(pVu) € Tp/\/l;ﬂ(7 and a Fisher-Rao tangent vector

G = pu € TrpMyy. Observing that by construction

2 2 2
(14) Gheall2, e = GEI2 s + 1612 e
this suggests to view the tangent plane as the orthogonal sum

(15> TpMK+FR = TPM;’E( ot TpM;‘er G(JFR = G t C#R’
8



More precisely, let us define an equivalence relation ~ on T, My & T, M by (v,r) ~ (V,7)
if —div (pv) + pr = —div (pV) + pF. Each (v,r) lies in an equivalence class [(Vu, u)] = [u]
on which we define the norm

Nl = IVl ) + Nl ) = DGRIZ, s + 1612 pgs

Then the orthogonality in (14) should be understood as
(ToMeens - 12, vps ) = ((ToMezc & TME) [~ 1 I2)).

Thus infinitesimally KFR? ~ MK? 4- FR?, and this will motivate later on replacing the approx-
imation “by hypotenuses” by an approximation “by legs” in the JKO scheme - see section 4
and in particular (23)(24). The orthogonality between the transport/MK and reaction/FR
processes also yields a natural strategy to send a measure py to another p;: one can send

first pg to the renormalized py := %pl by pure Monge-Kantorovich transport (which is

possible since |po| = |po|), and then send gg to p; by pure Fisher-Rao reaction. This amounts
to following separately and successively the two orthogonal directions in the decomposition
(15).

An immediate consequence of this observation is

PROPOSITION 3.1. For arbitrary measures pg, p1 € M let pg := %pl. Then

(16) KFR?(po, p1) < 2(MK*(po, fo) + FR*(po, p1))-

Proof. Tt suffices to follow first a pure Monge-Kantorovich geodesics (r = 0) from pg to
po scaled in time ¢ € [0,1/2], and then a pure Fisher-Rao geodesic (v = 0) from pg to p;
scaled in time ¢ € [1/2, 1]. Because of the rescaling in time each of these half-paths have an
extra factor 2, amounting to a total cost of 2MK2(po, po) + 2FR?(po, p1) for this admissible
path. The result then follows from the definition (11) of KFR? as an infimum over all paths.0

Note that estimate (16) holds for any arbitrary measure pg,p; € MT™, but has a mul-
tiplicative factor 2 which in view of (14)(15) is certainly not optimal at short range
KFR(po, p1) < 1. Consider now two very close measures KFR(pg, p1) < 1. Then the above
transformation from py to p; can essentially be considered as occurring infinitesimally in
the tangent plane T, My = T,M &+ T, M. Roughly speaking, this means that the
two transport and reaction processes from pg to po and from pg to p; in the previous proof
can be considered as occurring simultaneously and independently at the infinitesimal level.
Thus the factor 2 in (16) is unnecessary, and one should expect in fact

(17) KFRQ(,O()”Ol) %MKQ(p07ﬁO)+FR2(ﬁO7p1)

for nearby measures KFR(po, p1) < 1. This can be made rigorous at least for one-point
particles
po = kodzy, p1 = k1dy,

at close distance, i-e |r1 — 29| < 1 and k; &~ ko. In this setting it was shown in [25,
Section 3.3] and proved rigorously [14, thm. 4.1] and [29, thm. 3.1] that the geodesics p:
from py to p; is a moving one-point mass of the form p; = k:d,, for some suitable curve
t— (%t,kt) € Qx R.

REMARK 3.1. The one-point ansatz pr = kiby, is in fact correct not only for short
distances |x1 — xo| < 1, but also as long as |x1 — xo| < w. Past this threshold |z1 — x| > 7
it is more efficient to virtually displace mass from xg to x1 by pure reaction, i-e by killing
mass at xog while simultaneously creating some at 1.

In the continuity equation d;p; + div(psvi) = piry the advection moves particles around

according to %xt = v; and the reaction reads %kt = kyry, each with infinitesimal cost

ki|v¢|? and k;|r¢|?. The optimal (v, ;) for the one-point ansatz p; = k;d,, can be computed
9



explicitly by looking at the coupled formulation (12) with v; = Vug, r, = us, and optimizing
the cost with respect to admissible potentials u;. Omitting the details (see again [13, 14,
25, 28, 29]), the optimal cost can be computed explicitly as

o ) |z — o] pi = kids,
(18)  KFR*(po, p1) = 4 (ko + k1 — 2/ kok1 cos ( B )) for { |x1 — zo| < 7.

REMARK 3.2. It was shown in [13, 28, 29] that the KFR distance can be recovered by
means of a suitable Riemannian submersion (P2(Cq),MK) — (M™(Q),KFR). Here Cq =
{[z,7] € QxRT}/ ~ is a cone overlying Q obtained by identification of all the tips [z, 0] into
a single point o € Cq, and is suitably endowed with the cone distance d2([zo,1o], [z1,71]) =
r3+ri—2rory cos(|z1—xo|/2AT). In formula (18) one sees in fact, up to the normalizing fac-
tor 4, the natural Monge-Kantorovich distance KFR? (5[9;0,%],6[5611,61]) = MK? (5[%7% ,6[“’%]) =
d%([wo, Vkol, [x1, Vk1]) between unit Dirac masses in the overlying space P2(Cq). We refrain
from discussing further the Riemannian submersion and the corresponding static formula-
tions of KFR, and refer again to [13, 28, 29, 18] for rigorous statements.

In this setting and with the previous notation pg = % p1 = kody, we have here

MK?(po, po) = MK*(koSaq, koba, ) = kolz1 — 2o l?,

and by (8)

dpr [ dpo
dd, dd,

2d5m1 :4)\/1?1—\/E'2.

FR*(po, p1) = FR*(koba, , k15, ) = 4/
Q

Taylor-expanding (18) at order two in |z1 — zol, |vk1 — Vko| < 1 gives

(19) KPR (po, p1) = koles = aof? + 41V/Er = Vkol? + O (|1 = wol*|V/kr = Vo)

= MK?(po, fo) + FR?(po, p1) + lower order,

which shows that our claim (17) holds true at least for one-point particles and at order one
in the squared distances.

REMARK 3.3. Due to 4]v/k1 — vko|?> = FR2(po, p1) < 1 we have k1 = ko + O(|v/ky —

Vkol). The previous expression can therefore be rewritten as

ko + k1

5 lz1 — 20| + 4|/ k1 — Vko|? + lower order

KFR*(po, p1) =

and the apparent loss of symmetry in ko, k1 in (19) is thus purely artificial.

REMARK 3.4. An interesting question would be to determine how much information on
the transport/reaction coupling is encoded in the remainder, and this is also related to the
curvature of the KFR space.

Justifying and/or quantifying the above discussion and (17) for general measures with
KFR(po,p1) < 1 is an interesting question left for future work. One can think that the
superposition principle should apply: viewing any measure as a continuum of one-point La-
grangian particles and taking for granted that the infinitesimal uncoupling holds for single
particles, it seems natural that the result should also hold for all measures.

4. Minimizing scheme. We turn now our attention to gradient-flows

(20> Ogp = — gradygy -F(P)
10



of functionals

Flo) = Jo {U(p) + ¥ (2)p+ 3pK xp}dz  ifdp < dz
0 otherwise

with respect to the KFR distance. Without further mention we implicitly restrict to ab-
solutely continuous measures (with respect to Lebesgue), and still denote their Radon-
Nikodym derivatives p = g—g with a slight abuse of notations. According to (13) this corre-

sponds to PDEs of the form
(21) Op = div(pV(U'(p) + ¥ + K x p)) — p(U'(p) + ¥ + K % p),

appearing for example in the tumor growth model studied in [35].
The natural minimizing movement for (20) should be

1
(22) ot € Argnin { L (o, + (o)}
peEM+ 2T

for some small time step 7 > 0. In order to obtain an Euler-Lagrange equation, a classical
and natural strategy would be to consider perturbations € — p. of the minimizer p.(0) =
p" 1 starting with velocity 0.p(0) = —div(p"1V¢) + p"*1¢ for any arbitrary smooth
¢, corresponding to choosing all possible directions of perturbation in the tangent plane
T i1 M. Writing down the optimality criterion L (3=KFR*(pe, p") + F(pe))|._, = 0
should then give the sought Euler-Lagrange equation. In order to exploit this, one should
in particular know how to differentiate the squared distance p — KFR?(p, i) with respect to
such perturbations p. of the minimizer. At this stage the theory does not provide yet the
necessary tools, even though what the formula should read is quite clear: For any reasonably
smooth Riemannian manifold and smooth curve z(t) with 2(0) = 2 we have

4 (32a0m)

where ¢ is the terminal velocity y'(1) € T, M of the geodesics from y to z. Here the
KFR-geodesics (f15)sefo,1] from p™ to p"t! should solve dspus + div(psVus) = psus and the
terminal velocity ¢ = 9su(1) € Tyn+1 My should be identified with some potential u"+! =
u|s=1 € H'(dp" ™) through ¢ = — div(p" T Vun ) + pn Tyt see section 2.3. We should
therefore expect

d (1 __, n
e <2KFR (pe: p ))

However, this can raise delicate technical issues at the cut-locus, where geodesics cease to
be minimizing and prevent any differentiability of the squared distance. Indeed, it was
shown in [29, section 5.2|, [14, thm. 4.1], and |25, section 3.5] that such cut-loci do exist
for O = R?, and even that the set of non-unique geodesics generically spans an infinite-
dimensional convex set. This is related to the threshold |21 —xz¢| = 7 for one-point measures,
see Remark 3.1. In other words the squared distance may very well not be differentiable,
even in the case of the simplest geometry 2 = R? of the underlying space. This is in sharp
contrast with classical mass conservative optimal transportation, where the cut-locus in
P(X) is intimately related to the geometry of the underlying Riemannian manifold X [42].

In the context of minimizing movements one should expect two successive steps to
be extremely close, typically KFR(p"T! p") = O(\/7) as 7 — 0. It seems reasonable to
hope that geodesics then become unique at short distance, and one might therefore think
that the previous cut-locus issue should not arise here for small 7 > 0. However, even
assuming that we could somehow compute a unique minimizing geodesics (ps)sefo,1) from
p" to p" 1 and safely evaluate the terminal velocity dsp(1) = — div(p" 1 Vunt1)4 prtiyn+l

11
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at s = 1 in order to differentiate the squared distance, it would remain to derive a (possibly
approximated) relation between the Riemannian point of view and the more classical PDE
framework, e.g. by proving an estimate like

n

n+1 _
/(Vu"+1 Vo +u"Tp)dp"t ~ / %q& + remainder.
Q Q

In this last display we see the interplay between the forward tangent vector u™** € H(dpnt!) =
Tynia Myr, encoding the Riemannian variation from p™ to p"+!, and the standard difference

quotient @ =~ O¢p. One should then typically prove that the remainder is quadratic
@) (KFR2 (pnti, p”)) Within the framework of classical optimal transport this is usually done
exploiting the explicit representation of the MK metrics in terms of optimal transport maps
(or transference plans, or Kantorovich potentials), which are in turn related to some static
formulations of the problem. See later on section 4.1 and in particular the Taylor expansion
(32) for details, and also remark 4.2. However, and even though static formulations of the
KFR distance have been derived in [28], the current theory does not provide yet such an
asymptotic expansion.

In order to circumvent these technical issues, let us recall from the discussion in sec-
tion 3 that the inf-convolution formally uncouples at short distance. This strongly suggests
replacing KFR? by the approximation MK? + FR? ~ KFR?, and as a consequence we natu-
rally substitute the direct one-step minimizing scheme (22) by a sequence of two elementary
substeps

pn M_I(2> anr% F_R2> pn+1.
Each of these substeps are pure Monge-Kantorovich /transport and Fisher-Rao/reaction vari-
ational steps, respectively and successively

1
(23) Fti e Argmin {MK2<p, )+ f<p>}
peMF, |pl=lpn| L =T
1 .
(24) p" € Argmin {FRQ(p, phtE) + ]:(p)} :
peM+ 2T

Note that the first Monge-Kantorovich step is mass preserving by construction, while the
second will account for mass variations.

The underlying idea is that the scheme follows alternatively the two privileged directions
in T,,M;FR = Tp./\/l}& @Tp/\/l;R, corresponding to pure Monge-Kantorovich transport and pure
Fisher-Rao reaction respectively. Another possible interpretation is that of an operator-
splitting method: from (7)(9)(13) we get

— gradygs F(p) = div(pV(U'(p) + ¥ + K % p)) = p(U'(p) + ¥ + K * p)
= —grady F(p) — gradgy F(p).

Viewing the same functional F(p) through distinct “differential lenses” (i-e using respectively
the MK and FR differential structures) gives the two transport and reaction terms in the PDE
(21). Thus it is very natural to split the PDE in two separate transport/reaction operators
and treat separately each of them in their own and intrinsic differential framework. This idea
of hybrid variational structures has been successfully applied e.g. in [23, 7, 8] for systems
of equations where each component is viewed from separate differential perspectives, but
not to the splitting of one single equation as it is the case here. A related splitting scheme
was employed in [10] to construct weak solutions of fractional Fokker-Planck equations
Oyp = A?p + div(pV¥), using a Monge-Kantorovich variational scheme in order to handle
the transport term. However the discretization of the fractional Laplacian was treated in
a non metric setting, the PDE cannot be viewed as the sum of gradient-flows of the same
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functional for two different “orthogonal” metrics, and the approach therein is thus more a
technical tool than an intrinsic variational feature.

Another natural consequence of this formal point of view is the following: From the
orthogonality (14) in T, Mz = T, M ® T, Mz we can compute

d
D(t) = = F(p(t)) = — | grady FII7, \pe =

2

— |l grad ]:HszMng — |l gradgg ]:”T,,Mg’

which really means that the total dissipation for the coupled KFR metrics is just the sum of
the two elementary MK, FR dissipations. One can of course check this formula by computing
%J—" (pt) along solutions of the PDE. This may be useful at the discrete level, since regularity
is essentially related to dissipation. For example A-convexity ensures that the energy is
dissipated at a minimum rate, which in turn can be viewed as a quantifiable regularization
in the spirit of Brézis-Pazy. This will be illustrated in Proposition 5.4, where we show
that one indeed recovers an Energy Dissipation Inequality with respect to KFR from the two
elementary MK, FR geodesic convexity and dissipation.

We first collect some general properties of our two-steps MK/FR splitting scheme, which
share common features with the intrinsic one-step scheme (22) and only exploit the metric
structure regardless of any PDE considerations.

LEMMA 4.1 (Total-square distance estimate). Let p",p”+% be recursive solutions of
(23)(24). Then

(25) LY ) < (£ -t 7).

n>0

Note that this estimate is useful only if F(p°) < co and F is bounded from below. The
former condition is a natural restriction to finite-energy initial data, and the latter is a
reasonable assumption which holds true e.g. if U(p) = p™ for some m > 1 and the external
potential ¥(z) > 0 outside of a finite measure set.

Proof. Testing p = p™ in (23) and p = p"*2 in (24) we get

1 n+li n n++ n
;MKQ(p T2 ")+ F(ptte) < F(p"),

1 1 1
S PR (L ) 4 P < F(p ),

Summing over n > 0 and noticing that the energy contributions are telescopic, we get the
mixed total-square distance estimate

1 1 il n .
(26) =3 {2 o) et o | <2 <f<p0) ~ inf f) :

n>0

By triangular inequality and Proposition 2.1 it is easy to check that
(27> KFRQ(pn—H,p”) <2 (FR2(pn+1,pn+%) + MKz(p"-i_%,p”)) ’

and our statement follows. O

REMARK 4.1. [t is worth stressing that, when trying to handle two different functionals
Orp = div(pVF|(p)) — pF5(p) in the diffusion and reaction, the distance estimate for the
two successive MK, FR steps would not result in a telescopic sum [.F(p”“) —]:(p""'%)] +

[]:(p"'*'%) - f(p")} as above, but rather in {fl(p""'l) - .7:1(,0""'%)} + {fz(p""'%) - fg(p")] .
This can in fact be controlled with suitable compatibility conditions on F1, Fa and estimating

the crossed dissipations as in [26, 17], but we decided to focus here on Fy = F = Fo in order
to illustrate the general idea in a simpler variational setting.
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As already discussed the factor 2 in (27) is not optimal, and from the infinitesimal
decoupling we should expect KFR2(p" !, pm) ~ FR2(p"+1, p"2) + MK2(p" 2, p"). Thus our
estimate (25) should have a factor 2 instead of 4 in the right-hand side, which is exactly
the classical total square distance estimate that one would get applying the direct one-step
minimizing scheme (22) with respect to the full KFR metric.

Assuming that we can solve recursively (23)-(24) for some given initial datum
Po € M+a ]:(PO) < o0,

we construct two piecewise-constant interpolating curves

m’—t):pn_’_%
te((n—1)r,n7|,n>0: pT( ntl
(= Drnr Loz

By construction we have the energy monotonicity
VYOSt <ta: FlpT(t2)) < F(p"(t2)) < Fp" (1)) < F(5" (1)) < F(p°),

and an easy application of the Cauchy-Schwarz inequality with the total square-distance
estimate (25) gives moreover the classical %—Hélder estimate

1

T T < . 5

(28) VO S tl S t2 . { KFR‘(eT(tQ)?eT(tl)) — CItQ tl + T|i

KFR(p" (t2),p" (t1)) < Clta — t1 + 7|2

Moreover for all ¢ > 0 we have 57 (t) = p"*2 and p7(t) = p"*! for some n > 0. From the
total square estimate (26) we have therefore FR?(57(¢), p"(t)) < C7, and by Proposition 2.1
we conclude that the two curves p”, p” stay close

(20) VE=0:  KFR(F(),p7 (1) < FR(F (1), o7 (1) < C/F

uniformly in 7.
As a fairly general consequence of the total-square distance estimate (25), we retrieve
an abstract convergence (pointwise in time) when 7 — 0 for a weak topology:

COROLLARY 4.1. Assume that F(p°) < co and F is bounded from below on M™. Then

there exists a KFR-continuous curve p € c: ([0,00); Myzg) and a discrete subsequence T — 0
(not relabeled here) such that

Vt>0: pT(t), 07 () = p(t) weakly-+ when T — 0.

Note that our statement is again unrelated to any PDE consideration, and merely exploits
the metric structure. We recall that the weak-x convergence of measures is defined in
duality with Co(Q2) test-functions. Observe that the two interpolated curves converge to
the same limit, and note that because p € C([0,00); M) the initial datum p(0) = p° is
taken continuously in the KFR metric sense. In particular since KFR metrizes the narrow
convergence of measures [25, thm. 3] the initial datum p(0) = p° will be taken at least in
the narrow sense, which is stronger than weak-* or distributional convergence.

Proof. From the proof of [25, lem. 2.2] it is easy to see that we have mass control
Vv e MT o |y < |ul +KFR? (v, ).

Applying this with v = p7(t), 57 (t) and u = p°, and noting that the square-distance estimate

(25) controls KFR?(p™ (t), p*), KFR?(p7 (t), p°) < C(t+7), we see that the masses are controlled

as [p7(t)] + |p7(t)] < C(1 + T) uniformly in 7 in any finite time interval ¢ € [0, T]. By the

Banach-Alaoglu in M = C§ we see that p”(¢),p7(¢) lie in the fixed weakly- relatively
14



compact set Kr = {|p| < C(1+1T)} for all ¢ € [0,T]. By [25, thm. 5] we know that the KFR
distance is lower semi-continuous with respect to the weak-x convergence of measures, and
the metric space (M™,KFR) is complete |25, thm. 3|. Exploiting the time equicontinuity
(28), the lower semi-continuity, and the completeness, we can apply a refined version of
the Arzela-Ascoli theorem [3, prop. 3.3.1] to conclude that, up to extraction of a discrete
subsequence if needed, p” (t) — p(t) and 7 (t) — p(t) pointwise in ¢ € [0, 7] for the weak-*
convergence and for some limit curves p, 5 € C ([0, T]; Mi). Moreover p(t), 5(t) € Ky for
all t € [0,T], and by diagonal extraction we can assume that this holds for all ' > 0. Finally
as we already know that p7(¢) and 57 (t) converge weakly-* to p(t) and p(t) respectively, we
conclude by (29) and lower semi-continuity that KFR(p(t), p(t)) < li£n _j(r)lf KFR(p" (t),p7(t)) =

0 for any arbitrary ¢ > 0. Thus p = p as desired and the proof is complete. ]

In order to connect now the previous abstract metric considerations with the PDE frame-
work, we detail each of the substeps (23)(24) and exploit the particular MK, FR Riemannian
structures to retrieve the corresponding FEuler-Lagrange equations.

In order to keep our notations light we write p for the previous step and p* for the
minimizer. Thus g = p™ and p* = p"*2 in the first MK step p" — p"*2, while p = p"tz
and p* = p"T! in the next FR step p"tz — pntl,

4.1. The Monge-Kantorovich substep. For some fixed absolutely continuous mea-
sure 1 € M3 (finite second moment) and mass || = m, let us consider here an elementary
minimization step

1
(30) p* € Argmin {QMKQ(p, w)+F (p)} :
peMy, |pl=m L =T

Note that, if € is bounded, the restriction on finite second moments can be relaxed. Further
assuming that F is lower semi-continuous with respect to the weak L' convergence (which
is typically satisfied for the classical models), it is easy to obtain an absolutely continuous
minimizer p* € MJ with mass |[p*| = m = |u|. Additional assumptions (e.g. strict convex-
ity) sometimes guarantee uniqueness. Here we do not take interest in optimal conditions
guaranteeing existence and/or uniqueness of minimizers, and this should be checked on a
case-to-case basis depending on the structure of U, ¥, K.

From the classical theory of optimal transportation we know that there exists a (back-
ward) optimal map t from p* to u, such that

() = [ o= t(o) ' (2).

A by-now standard computation [38, 41] shows that the Euler-Lagrange equation associated
with (30) can be written in the form

T

(31)  V¢eCx(uRY): /Q d-t Cdp* +/QV(U’(,0*) + U+ Kxp*)-Cdp* =0.
Using the definition of the pushforward p = t#p* we recall the classical Taylor expansion
(32) /Q(p* — o= /Q(p* —t#p")g = /Q (p(z) — o(t(x))) p* (x)
= [ (z=t@) - Vo) +0 (1Dl cle — (@) ) ' (0)
= [(a=1)- Yo"+ 0 (1D%0lh 0" 1)
for all ¢ € C(R). Taking ¢ = V¢ in (31) and substituting finally yields

33) [ === [ V) + ¥+ K xp)-Vods' + 0 (ID0]HE 0" 1)
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for all smooth test functions ¢. This is of course an approximation of the implicit implicit

Euler scheme
*

—

B = div(p" V(U (0" + T + K % p%)),

the approximate error being controlled quadratically in the MK distance. Note that this
corresponds to the pure transport part d;p = div(pV(U'(p) + ¥ + K * p*)) + (...) in the
PDE (21).

4.2. The Fisher-Rao substep. Let us fix as before an arbitrary measure y € M™
(no restriction on the second moment), and assume that there exists somehow an absolutely
continuous minimizer

(34) p* € Argmin {217_FR2(p, 1)+ ]:(p)} .

pEMT

The existence and uniqueness of minimizers can again be obtained under suitable superlin-
earity, lower semi-continuity, and convexity assumptions on U, ¥, K, and we do not worry
about this issue.

Let us start by differentiating the squared distance for suitable perturbations p. of the
minimizer p*. According to section 2.2 an arbitrary ¢ € C°(Q) is identified to a tangent
vector in T),- My through

Ocpe = p * EY
., & = p*e
{ p=(0) =p pe=?

Denoting by pus = [(1—s)\/f+sy/p*|? the Fisher-Rao geodesics from p to p*, the terminal ve-
locity dsp(1) = 24/p*(/p* — /1) can be represented by the L?(dp*) action of r = 2%.
Using the first variation formula £ (1d?(2(t),y )|t o = ('(0),5'(1)) (o) and our L?(dp)
identification of the tangent spaces in section 2. 3 we can guess that

(5 0-m)

e (0=p(0), Ost (1)) . pas
= ()i = 2 [ (VP = VAV,

which can be checked by differentiating w.r.t. € in the explicit representation (8). Using the
same Riemannian formalism we similarly anticipate that

d

(76]:(%) = (gradg F, 8ap(0)>Tp*M§R

e=0

= (F(07), ) oy = /Q P (U (o) + 0 + K % o),

and this can be checked again by dlfferentlatlng T f(pe = fﬂ Oc(...) under the integral

sign. Writing the the optimality condition E ( FRQ(p67 w) + f(ps)) |s:0 = 0 thus gives the
Euler-Lagrange equation

(35) Vi e C(Q) : /(\/7 NS *77/{(] )+ T+ K *p* }p¢

In order to relate this with the more standard Euclidean difference quotient, we first assume
that U'(p*) + ¥ + K  p* € L?(dp*), or in other words that gradg, F(p*) can indeed be
considered as a tangent vector of Tp*./\/lﬁ. This should be natural, but may require a case-
to-case analysis depending on the structure of U, ¥, K. Then an easy density argument
shows that the previous equality holds for all v» € L?(dp*). Taking in particular ¢ =

16



%qﬁ € L?(dp*) for arbitrary ¢ € C°(), we obtain a slight variant of the previous
Euler-Lagrange equation (35) in the form

) voeer@: [ -wo=—r [ VI i cu s ko

Recalling that in the minimizing scheme we only deal with measures at short O(,/7) distance,
one should essentially think of this as if p* ~ p in the right-hand side, and (36) is thus an
approximation of the implicit Euler scheme

pPr—p
T
Note that this is the reaction part d:p = (...) — p(U’'(p) + ¥ + K % p*) in the PDE (21).

—p"(U'(p") + ¥+ K xp").

REMARK 4.2. Contrarily to the corresponding approzimate Fuler-Lagrange equation (33)
for one elementary Monge-Kantorovich substep, (36) does not involve any quadratic remain-
der O(FR?(p*,1u)). The price to pay for this is that the right-hand side appears now as a
slight “twist” of the more natural and purely Riemannian object —p*(U'(p*) + ¥ + K x p*) =

—gradpy F(p*) in (35), the twist occurring through the approximation w ~ p*.

REMARK 4.3. A technical issue might arise here for unbounded domains. Indeed since

. MK? 1 FR? .
we construct recursively p* — p"T3 =% p"*t1 one should make sure that, in the second

reaction substep, the minimizer p"T' keeps finite second moment so that the scheme can
be safely iterated afterward. This should be generally guaranteed if the external potential
U is quadratically confining, but may require once again a delicate analysis depending on
the structure of U, W, K (we will show in section 5 that this holds e.g. in the simple case
U, K=0).

4.3. Convergence to a weak solution. = We can now show that, under some strong
compactness assumptions, the limit p = lim p” = lim p7 is generically a weak solution to the
original PDE.

THEOREM 4.1. Let p™, p7, p as in Corollary 4.1, and assume that
{ VU (P +V+KxpT) = pV(U'(p)+ ¥+ Kxp)
VT (U () + W+ K xpT) = p(U'(p) + W + K % p)

1
loc

(37)

at least weakly in L}, .((0,00) x Q). Then p is a nonnegative weak solution of

{ Oip = div(pV(U'(p) + ¥ + K * p)) — p(F'(p) + ¥ + K xp) in (0,00) x Q
Ple=o = p° in M*(Q)

For the sake of generality we simply assumed here that the nonlinear terms pass to the limit
as in (37). This is of course a strong hypothesis to be checked in each case of interest, and
usually requires strong convergence p™,p" — p (e.g. pointwise a.e.). We shall discuss in
section 5 some strategies to retrieve such compactness.

Proof. As already discussed after Corollary 4.1, the initial datum p(0) = p® is taken
continuously at least in the metric sense (M™,KFR). Moreover, any limit p = lii% p” in any
weak sense will automatically be nonnegative. ’

Fix now any 0 < t; < ty and ¢ € CX(). For fixed 7 we have p(t;) = p™i for
N; = [t;/7], and T; = N;7 — t; as 7 — 0. Moreover for fixed n > 0 we have by construction
the two Euler-Lagrange equations (33)(36), one for each Monge-Kantorovich and Fisher-Rao
substep as in section 4.1 and section 4.2 respectively. More explicitly, there holds

/Q(p’”% — "= —T/Qp"%V(U’(p”%)+@+K*p“+%)-Vfb

+0 (D% (", )
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and

. /pn+1 pn+1 + 4 /pn+%
/(p”+1 *p”+§)¢:*7/ ( ){U’(p"+1)+\IJ+K*p"+1}¢-
Q Q

2

Summing from n = N; to n = Ny — 1, using the square-distance estimate (26) to con-
trol the remainder term in the first Euler-Lagrange equation above, and recalling that the
interpolated curves are piecewise constant, we immediately get

No—1

Na2—1 nt1(\/pntl et
— / \/7 + \/7 {U/(pn+1) +\I/+K*pn+1}¢

2
n= N1
No—1
= [ v K Ve
n= N1

Np—1
+0 (D%m > MKZ(p”+5,pn)>

n=N;

//r\ﬁ“ﬁ{U )+ U+ K %o

/ /TV(U( )+ U+ K*p") Vo  +0O(|D*|oT)-

From Corollary 4.1 we know that p” () converge weakly-* to p(t) pointwise in time, so the
left-hand side passes to the limit when 7 — 0. Due to our strong assumption (37) and
because T; — t; the right-hand side also passes to the limit. As a consequence we get

/Q( (t2) — p( /tt/ p)+ ¥+ Kxp)- V¢+(U’(p)+\1f+K*p)¢>)

for all 0 < ¢ < to and ¢ € C°(N2), which is clearly an admissible weak formulation of
Op =div(pV(U'(p) + ¥ + K xp)) — p(U'(p) + T + K % p). o

If Q # R? some further work may be needed to retrieve the homogeneous Neumann
condition pV(U'(p) + ¥ + K % p) - v = 0 on 9. This amounts to extending the class of
C2°(9) test functions to CJ.(2) and should generically hold with just enough regularity on
the solution, but we will disregard this technical issue for the sake of simplicity.

5. Compactness issues: an illustrative example. In Theorem 4.1 we assumed for
simplicity that the nonlinear terms pass to the limit, mainly in the distributional sense.
In order to prove this, the usual strategy is to obtain first some energy/dissipation-type
estimates to show that the nonlinear terms have a weak limit, and then prove pointwise
convergence p’ (t,x) — p(t,z) a.e. (t,x) € RT x Q to identify the weak limit (typically
as weak-strong products of limits). Thus the problem should amount to retrieving enough
compactness on the interpolating curves p™, p7. With the help of any Aubin-Lions-Simon
type results this essentially requires compactness in time and space, which can be handled
separately for different topologies in a flexible way. Compactness in space usually follows
from the aforementioned energy/ dissipation estimates and the energy monotonicity should
of course help: if e.g. the total energy F(p) = [, U( ..) controls any L%(€2) norm then
F(p7(t)) < F(p°) immediately controls Hp ||Loo(0’ooqu) uniformly in 7. A rule of thumbs
for parabolic equations is usually that space regularity can be transferred to time regularity.
Thus the parabolic nature of the scheme should allow here to transfer space estimates,
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if any, to time estimates. Note also that some sort of time compactness (approximate
equicontinuity) is already guaranteed by (28), but in a very weak metric sense for which the
standard Aubin-Lions-Simon theory does not apply directly.

A slight modification of the usual arguments should however be required here, because
the scheme is decomposed in two separate substeps. The first Monge-Kantorovich substep
(30) encodes the higher order part of the PDE, which is parabolic and should therefore
be smoothing. This regularization can often be quantified using by-now classical methods
in (Monge-Kantorovich) optimal transport theory, such as BV estimates [16], the flow-
interchange technique from [30], regularizing A-displacement convexity in the spirit of [3, 31],
or any other strategy. On the other hand the second Fisher-Rao substep (34) encodes the

reaction part of the PDE, hence we cannot expect any smoothing at this stage. One should

therefore make sure that, in the step p"*2 —= p"*1 the regularity of p"*+2 inherited from

the previous step p" —=» p"+3 propagates to p"+1 at least to some extent.

At this stage we would like to point out one other possible advantage of our splitting
scheme: it is well known [3] that A-geodesic convexity is a central tool in the theory of
gradient flows in abstract metric spaces, and leads to quantified regularization properties at
the discrete level. Second order differential calculus a la Otto [34] with respect to the KFR
Riemannian structure was discussed in [25, 29] (also earlier suggested in [27]) and allows to
determine at least formally if a given functional F is A-geodesically convex for the distance
KFR. However, in our scheme each step only sees either one of the differential MK/FR struc-
tures and therefore only separate geodesic convexity comes into play. Consider for example
the case of internal energies F(p) = [, U(p). Then the celebrated condition for McCann’s
displacement convexity [31] with respect to MK reads pP’(p) — (1 — %) P(p) > 0 in space
dimension d, where the pressure P(p) := pU’(p) — U(p). On the other hand using the Rie-
mannian formalism in section 2.2 it is easy to see that, at least formally, this same functional
is A-geodesically convex with respect to FR if and only if pU”(p) + @ > A. This condition
can be interpreted as s — U(s?) being \/4-convex in s = /P, the latter change of variables
naturally arising through (8) and FR?(po, p1) = 4[|\/p1 — /Poll32. Those two conditions
are very easy to check separately and, in the light of the infinitesimal uncoupling, it seems
likely that simultaneous convexity with respect to each of the MK, FR metrics is equivalent
to convexity with respect to the coupled KFR structure. See [25, section 3] and [29, section
5.1] for related discussions.

The rest of this section is devoted to the illustration of possible compactness strategies
in the simple case

U, K =0,

(H) U € C([0,00)) NC2%(0,00) with U(0) =0,
U/7 U > 0,
pU"(p)  is bounded for small p € (0, pol,

which from now will be assumed without further mention. We would like to stress here that
(H) holds for any Porous-Medium-type nonlinearity U,,(p) = —15p™ at least in the slow
diffusion regime m > 1, but not for the Boltzmann entropy H (p) = plog p— p. Even though
the latter is well behaved (displacement convex) with respect to the Monge-Kantorovich
structure [21, 41], it is not with respect to the Fisher-Rao one. Indeed it is easy to check
that H(p) is not convex in /p, so that the Boltzmann entropy is not A-displacement convex

with respect to FR for any A € R. This would require pH" (p) + w =1+ 10% > A for
some constant A, which obviously fails for small p (this can be related to p = 0 being an
extremal point in M™, where all the Riemannian formalism from section 2.3 degenerates).
Since the purpose of this section is to illustrate that strong compactness can be retrieved
at least in some particular cases, we chose to set ¥ = 0 to make the computations and
estimates as light as possible. The case ¥ # 0 follows with only minor modifications at
least for reasonable potentials (see e.g. remark 5.1 and [26, 17]). Including interaction
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terms K # 0 may be more involved and require additional assumptions, and we shall not
comment further on this.

5.1. Propagation of regularity at the discrete level. Whenever U’,U"” > 0, the
PDE 0:p = div(pVU'(p)) — pU’(p) = div(pU" (p)Vp) — pU’ (p) is formally parabolic, satisfies
the maximum principle ||p(t)]|s < ||0°]|o0, and initial regularity should propagate. We prove

below that this holds at the discrete level:
PROPOSITION 5.1 (BV and L™ estimates). Assume that the initial datum p° € BV N
L>(Q). Then for any 7 < 2/U"(||p°]|s0) there holds

Vi>0: 1" () svie) < 157 Olsve) < 1% Bv)
and
Vt>0: 17Oz ) < 187 )|z @) < 10°l Lo (-

Proof. We argue at the discrete level by showing that the estimates propagate in each
substep. We shall actually prove a more precise result, namely

1 1
(38) 1P 2 sy < o™y, Ip"F 2o < 10" ]|
and
(39) " sy < 10" 2 By, p"TH@) < p"TE(2) ace

The propagation (38) in the first MK step only requires convexity U” > 0 and no small-
ness condition on the time step 7. This should be expected since the MK step is an im-
plicit discretization of 9yp = div(pVU’(p)) = div(pU" (p)Vp), which is formally parabolic
as soon as U” > 0. We recall first that by construction the step is mass preserving,
|p" 2] L = ||p™| 1. With our assumption U” > 0 we can directly apply [16, thm. 1.1] to
obtain ||p" 2 ||ty < ||p"||Tv, which immediately entails the BV estimate. An early proof of
|p" 2| L < [|p™||l L~ can be found in [33] for the particular case U(p) = p, and the case
of general convex U is covered by [38, prop. 7.32] (see also [12, 39]). For the propagation
(39) in the FR step we show below that the minimizer p"*! can be written as

"t (z) = R(p"T3(z)) ae 2€Q

for some 1-Lipschitz function R : RT — Rt with R(0) = 0. This will ensure that 0 <
p" 1 (z) < p"tz(z) and entail the L and L' bounds as well as the total variation estimate
(see [1] for the Lip o BV composition of maps). Note that p"™!(z) < p"*2(z) shows in
particular that the second moments propagate to the next step, which should require further
assumptions on U, ¥ in the general case. In the rest of the proof we write p* = p"*! and

w= p”"'% for simplicity, in agreement with our previous notations in section 4.2.
By (35) with ¥, K = 0 we see that

(40) (VP = VIWP* = =25V (")
at least in L{ (), hence a.e. € Q. From U’ > 0 we immediately get that either p* = 0
or /p* < \/j1, which gives in any case p*(z) < () a.e.

We show now that if the CFL condition 7 < 2/U’(||p°||oc) holds then p* and u share the
same support, i-e p*(z) > 0 < p(z) > 0. From the previous inequality p* < p we only have
to show that p*(x) > 0 as soon as p(x) > 0. Assume by contradiction that there is some

subset ¥ C Q with positive Lebesgue measure such that p*(z) = 0 but pu(z) > 0in E. We
claim that

p = p"Xgt + HXE
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is then a strictly better competitor than the minimizer p*. In order to check this we first
compute the square distance

i(FRQ(ﬁ,u) R*(p", 1)) /‘f f) /I\F Nk

([ 1o v+ [ 1va-vatt)
([ e =val s+ o= vir) == [u<o

For the energy contribution we have by convexity
F@) -F6) = [ U0~ < [ U=
— [ UE-0) <0 [
E E

Note that 0 < p*,p, 10 < [|p%]| almost everywhere, so that all these integrals are well-
defined. Gathering these two inequalities we obtain

o (5.0~ P20 0) + ()~ P < (<2 4 000)) [ <0

because [, 1> 0 and 7 < 2/U’([|p°o). This shows that p is a strictly better competitor
and yields the desired contradiction, thus p* > 0 < u > 0.

Now inside the common support of p*, u we can divide (40) by /p* > 0, and p = p*(x)
is a solution of the implicit equation

o) =0 with f(p.p0) := /5 (145U () = Vi

with p = p(z) and a.e. x € supp p* = supp . An easy application of the implicit functions
theorem shows that, for any g > 0, this has a unique solution p = R(u) for a C*(0,00)
function R satisfying 0 < R(u) < p for g > 0. Moreover one can compute explicitly for all
©w>0

1
i Ot G
0 Bty K
< (U) ) L f Y R(u) 7 (1+ TU/(p)) 2\//3U”(p)
NG |

1+ U (p ) vE (1

el 3

+
where we used successively U” > 0, f(p,u) =0 < 1+ ZU'(p) = %, and p = R(p) < p.

Extending by continuity R(0) = 0, we have shown that p*(z) = R(u(x)) a.e. x € Q for
some 1-Lipschitz function R : RT™ — RT with R(0) = 0, and the proof is complete. ]

REMARK 5.1. A closer analysis of the implicit functions theorem above reveals that the
argument only requires U' > 0 and pU"(p) + U’ (p)/2 > 0, which is less stringent than our
assumption U',U" > 0 as in (H). As already suggested this former condition corresponds to
conve:m'ty of s — U( %) in the s = \/p variable, or more intrinsically to geodesic convexity
of Flp fQ ) with respect to the Fisher-Rao distance. We also point out that the
same approach works with external potentials U % 0 under suitable structural assumptions:
one shows first that strict positivity is preserved in the sense that supp p" 1 = supp p”*é,
which is to be expected since the ODE 0;p = —p(U’(p) + ¥ (x)) formally preserves positivity.
Ezxploiting the Euler-Lagrange equations (35)(36), an implicit functions theorem f(p, u, ¥) =
0 < p= R(u, V) then applies inside the common support to propagate the regularity. This
still controls Vp = 0,RVu + 0y RVY provided that ¥ is smooth enough, see [17, 26] for
details.
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5.2. Compactness and Energy Dissipation Inequality. In this section we check
that our strong assumption (37) in Theorem 4.1 holds in the particular case of internal
energies only, i-e that the nonlinear terms in the PDE pass to the limit. We start by
improving the weak convergence in Corollary 4.1:

PROPOSITION 5.2. Assume (H). Then
PP = p in L. ([0,00); L')

for some (discrete) subsequence T — 0.

We give two proofs: the first one is elementary and fully exploits the uniform-in-time com-
pactness estimates from Proposition 5.1, which were derived here for the particular case
U = K = 0 only. The second proof is less straightforward but enlightens the general idea
of transferring space regularity to time regularity through the PDE itself, and should apply
to non-trivial potentials and interactions with minor modifications.

First proof of Proposition 5.2. Let us recall from Proposition 4.1 that p7(t), 57 (¢) both
converge weakly-+ to the same limit p(¢) pointwise in time. We claim that this weak-
* convergence can be strengthened into strong L!'(f2) convergence. Indeed for any fixed
t > 0 we have ||p7(t)|lsv, |77 #)|lsv < ||p°||zv so by compactness BV(Q) cC L'(Q2) we see
that {p7(t)}r=0, {p7 (t)}r=0 are L' relatively compact for fixed ¢t > 0. Because strong L!
convergence implies in particular weak-* convergence of measures, and because we already
know that these sequences are weakly-* convergent, uniqueness of the limit shows in fact
that the whole sequences are strongly converging in L! to the same limit

Vi20:  limpT(t) = lim p7(t) = p(t) = lim 57 (t) = lim p" (t).

From this strong pointwise-in time L' convergence and the uniform L°°(0,00; L') bounds
from Proposition 5.1, an easy application of Lebesgue’s dominated convergence theorem in
any finite time interval [0, T finally gives strong L'((0,7); L) convergence for all T' > 0. O

Before giving the second proof we need a well known technical result:

LEMMA 5.1. Let pg, 1 be any absolutely continuous measures with finite second mo-
ments, same mass |po| = |p1|, and bounded in LP(Q) for some 1 < p < oo by the same
constant C,. Then

Ve Wt (o). \ /Q (1 —uo)qﬁ‘ < /MK (p0, 1) [V oot

with the convention 1’ = co and oo’ = 1.

Proof. Let (¢, V¢)iefo,1) be the unique Monge-Kantorovich geodesics from po to 1,
satisfying Oip; + div(psve) = 0 with constant metric speed ||v¢||12(ay,) = cst = MK(uo, p11)-
We first claim that ||u||L» < C, as well along this geodesics. Indeed if p = 1 this is simply
the mass conservation, and the proof for p = co can be found in [33]. For 1 < p < oo this
is a simple consequence of the displacement convexity of &,[u] = [, p“—_pl, [41, thm. 5.15].
Using the weak formulation of the continuity equation, we compute by Holder’s inequality

‘/Q(m—uo)¢‘= /Ol/ﬂvt-wsdutdt‘ s/ol (/Q |vt|2dut>é (/wat)édt

1
= MK(uo,m)/O (el e 1V oI o) 2 dt < /CpMK (o, i) [V 2w

and the proof is complete. 0
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Second proof of Proposition 5.2. Here we assume that ) is bounded for simplicity, but
the same argument would actually work for unbounded domains simply replacing all the
functional spaces by their local counterparts (BVioe, HL., L. ....).

We first control the difference quotient [|p"™! — p™||y in the dual space Y := H'(Q)*.
For the Monge-Kantorovich step we can apply the previous Lemma 5.1 with p = oo, 2p’ = 2,
lp" 2| < [|p"]| > < [|p°]| Lo and obtain by duality

1 1
[p" "2 = p™ly < CMK(p"2,p").

For the reaction step we recall the Euler-Lagrange equation (36), which reads for ¥, K =0

1 /anrl( pn+1 + pn+%)
Vo elCr(): /Q(pn—H — g = 77./9 \/7 U/(pn+1)¢.

2

Because in the right-hand side p"“"%,p’”'1 are bounded in L' N L>°(Q) uniformly in n this
gives ) )
[P = p" 2 |ly < [|p"FE = p" e < O

By triangular inequality we deduce from the previous two estimates that
" = p"ly < C(r +MK(p" ™, p")),

and using the square distance estimate (26) and Cauchy-Schwarz inequality we obtain the
approximate equicontinuity

VO <t <ty: 7 (t2) — p" (t1)lly < C(ltz — t1 + 7] + |t — t1 +7]2).

Because the embedding H' cC L? is compact we have L? CC Y as well. Thanks to the
L' N L>°(Q) bounds from Proposition 5.1 we have r-uniform bounds ||p”(¢)||z2 < C, and
we see that there is a Y-relatively compact set Ky = {||p||r2 < C} such that p"(t) € Ky
for all ¢ > 0. Exploiting the above equicontinuity we can apply again the same variant
of the Arzela-Ascoli theorem [3, prop. 3.3.1] in any bounded time interval to deduce that
there exists a subsequence (not relabeled) and p € C([0,T];Y) such that p™(¢) — p(t) in YV
for all t € [0,7]. A further application of Lebesgue’s dominated convergence theorem with
o™ (t)]ly < C shows that p” — p in LP([0,T];Y) for all p > 1 and fixed T > 0, and by
Cantor’s procedure

pT —p  in L} ([0,00);Y).

Let now X := BV N L>(Q) cC L*(Q) =: B. We just proved that

p" is bounded in L*°(0, 00; X),
p” is relatively compact in LY ([0,00);Y)

loc

XccBCY and {

for all p > 1. By standard Aubin-Lions-Simon theory [40, lem. 9] we get that p7 is relatively

compact in L} ([0,00); B) for all p > 1. In particular we get pointwise a.e. convergence

p7(t,z) — p(t,x) (up to extraction of a further subsequence), and a last application of
Lebesgue’s dominated convergence allows to conclude. The argument is identical for p7. 0O

In order to show that the nonlinear terms pass to the limit as in (37) we shall need the
following variant of the Banach-Alaoglu theorem with varying measures:

LEMMA 5.2 (compactness for vector-fields). Let O C R™ be an open set (not necessar-
ily bounded), {0y, }n>0 C MT(O) a sequence of finite nonnegative Radon measures narrowly
converging to o € MT(0), and v,, a sequence of vector fields on O. If

||vnHL2(O,do’n;R"”) S C

then there exists v € L?(O,do; R™) such that, up to extraction of some subsequence,

V¢ eCX(O;R™): lim / Vn-Cdon:/v-Cda
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and

HVHLZ((’),da;]Rm) S lim inf ||VnHL2(0_’dgn;Rm).
n—oo

The proof can be found in [3, thm. 5.4.4] for probability measures, see also [25, prop. 5.3]
for an abstract version. As anticipated, we have now

PROPOSITION 5.3. Assume (H). Then p™,p" satisfy the compactness assumption (37)
i Theorem 4.1.

Proof. From the strong L{ ([0, 00); L') convergence in Proposition 5.2 and the uniform
L' N L*(9) bounds in Proposition 5.1, a straightforward application of Lebesgue’s domi-

nated convergence theorem yields strong convergence +/ pTMU "(p7) = pU'(p) at least
in Ll .((0,00) x Q). Therefore the reaction terms pass to the limit as in (37), and we only
have to check that the diffusion part does too.
1 . 1
Let t"*2 be the (backwards) optimal map from p"*2 to p”, and recall that the Euler-
n+% .

Lagrange equation (31) holds with p = p" and minimizer p* = p An easy density

ot
argument shows that (31) can in fact be written as @ = —VU'(p"*+2) in L2(dp™t2),
which should be interpreted as an equality in the tangent plane Tp" +%/\/l;,}§(. Taking thus

the L2(dp"*2) norm we obtain

n 1 Vs
T[VU (p" )2 *Illd —t" 3|2 = —MK*(p Tz pn).

L2(dp 7L+2) 2(d n+2)

Recalling that the interpolated curve g7 (t) is piecewise constant and summing from n = 0
ton = [T/7] + 1 for fixed any T > 0, we obtain from the total square-distance estimate
(26)

(41) //|VU’ TP At <O & /O|VU’(/37)|2daT§C

with O = (0,T) x @ C R and do7 (¢, z) = dpj (z) @ dt. Recall that ||57(¢)||r10) < [10°]lo;
so that o7 is really a finite measure on O for finite 7' > 0. From the strong L{ ([0, 00); L')
convergence p” — p (Proposition 5.2) it is easy to check that o7 converges narrowly to
do(t,z) = dps(x) @ dt = p(t, z)dzdt. Applying Lemma 5.2 we see that there is a vector-field
v € L?(0,do) = L?(0,T; L?(dp;)) such that, up to extraction of a subsequence,

/()T/QﬁTVU’(ﬁT)~C%/OT/Qp(t7m)v(t,x).C(t7z) dedt

for all ¢ € C((0,7) x Q;R"™). In order to identify the weak limit v, recall that the
thermodynamic pressure P(p) := pU’(p) — U(p). Since P’'(p) = pU”(p) our assumptions on
U show that P is Lipschitz in any bounded interval p € [0, M]. With the strong convergence
pT — p and the uniform L' N L>°(Q) bounds one immediately gets P(5") — P(p) in
L%OC((O,OO) x ), and as a consequence VP(p™) — VP(p) in the sense of distributions

D'((0,T) x 2). Note that the measure do(t,z) = dp(x) ® dt is finite on any subdomain
(0,7) x Q, hence v € L*(O,ds) C L*(O,do) and pv € L*((0,T) x Q). Writing VP(p) =
P'(p)Vp = pU"(p)Vp = pVU'(p) we conclude that pv = VP(p) = pVU'(p), thus v =
VU'(p) at least in L%(dp). A further diagonal extraction shows that the limit v can be
chosen independent of T', and the proof is complete. O

As an immediate consequence, we get

THEOREM 5.1. Assume (H). Then, up to extraction of a discrete subsequence not rela-
beled here, the solution of the MK-FR splitting scheme p™ converges to a weak solution p of
the PDE (21).

Proof. Simply use Proposition 5.3 to apply Theorem 4.1. 0
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Our next and final result illustrates perhaps even better the deep interplay between our
two-steps variational discretization and the full KFR metric:

PROPOSITION 5.4. In addition to (H), assume that F(p) is geodesically convex with
respect to the MK structure, i-e pP'(p) > (1 — ) P(p) with P(p) = pU’(p) —U(p) [41]. Then
we have

(42) Flolta)) + / 2 /Q (VU (0)2 + [0 (p)[2) dpdt < F(p(tr))

and for all 0 < t1 < to.

From the discussion in section 2.3 we known that HU’(p)H%{l(dp) can be interpreted either
as the metric slope |0F(p)|? = || gradygg F(p) || or, through the continuity equation d;p =
div(pVU’(p)) — pU’(p), as the metric speed |p’(t)|? with respect to our distance KFR. Hence

(42) can be rephrased as the Energy Dissipation Inequality (EDI)

to
Fiple) + [ {51008 + G0 e < Foten),
1

which is one of the possible formulations of gradient flows in abstract metric spaces. We
refer the reader to [2, 3] for the connection between EDIs in abstract metric spaces and
gradient flow formulations. However, and to the best of our knowledge, no full and tractable
characterizations of metric speeds |p’(¢)| and metric slopes |0F (p)| are available at this early
stage of the general KFR theory (see however [25] for the characterization of Lipschitz curves).
For the sake of rigor we thus prefer to state the dissipation inequality in the PDE-oriented
form (42), rather than in the abstract metric setting.

Note that (H) already implies pU" (p)+U’(p)/2 > 0, which is equivalent to geodesic con-
vexity with respect to FR. Thus we essentially assumed here that F is separately geodesically
convex with respect to each of the MK, FR structures, respectively, and it is not surprising
that we recover in the end a dissipation inequality for the full KFR metrics.

Proof. Let t"*2 be the optimal map from p"*% to p". By the above-tangent charac-
terization of the displacement convexity with respect to MK [41, prop. 5.29] we have

Fp") = F(p"+3) +/(t"+% —id) - VU (p"5)dp"t 2
Q

— F(p"t3) + 7’/Q VU’ (p"F2)2dp™t 3,

where the last equality follows by reinterpreting the Euler-Lagrange (31) as tntz —id =
VU (pntz) in L2(dpnte).

For the reaction part let us recall that pU” (p) + % > 0 corresponds to the convexity
of s — U(s?) in s = /p. Using this convexity we obtain

Py = Fr) + [ 2/m ) (\/pT - W)
=)+ [ 0P
where the last equality follows now by reinterpreting the Euler-Lagrange equation (35) as
QW = —7U'(p"!) in L%(dp"*1). We get altogether

}-(pn+1)+7_</ |VU/(pn+%)‘2dpn+% +/ |U/(pn+1)|2dpn+1> S];-(p")
Q Q
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For any 0 < t; < to let now Ny, No € N such that p™(t;) = pYi, and T; = N;7. Summing
the previous inequality from n = N; to n = Ny — 1 gives

To T
@) A+ [ [vvenParas [ ki< Fern)).

We proved in Proposition 5.3 that p"VU'(p7) — pVU'(p), and observe that T; — t; as
7 — 0. From the energy estimate (41) and the lower semi-continuity in Lemma 5.2 we
deduce that

to T2
/ /|VU’(p)\2dpdtghminf/ /\VU’(,T)FdﬁTdt,
t JO ™0 Jn Ja

and from the strong convergence in Proposition 5.2 with the uniform L' N L>°(Q) bounds
(Proposition 5.1) it is easy to see that

to T>
| [werdpde=tm [ [ 0npara
t1 Q 7—=0 T Q

Similarly one can verify that
viz0: A )= [ Ve ®) = [ V) = Fo).

Indeed with our assumptions U is Lipschitz in any bounded interval p € [0, M], ||p7 (t)|| 1~ <
M = ||p°||ze uniformly in 7, and in the first proof of Proposition 5.2 we obtained strong
LY(Q2) convergence p™(t) — p(t) pointwise in time. As a consequence we can pass to the
liminf in (43) to retrieve (42) and the proof is complete. 0
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An unbalanced Optimal Transport splitting scheme for
general advection-reaction-diffusion problems

T.O. Gallouét, M. Laborde, .. Monsaingeon
September 26, 2023

Abstract

In this paper, we show that unbalanced optimal transport provides a convenient framework
to handle reaction and diffusion processes in a unified metric framework. We use a constructive
method, alternating minimizing movements for the Wasserstein distance and for the Fisher-Rao
distance, and prove existence of weak solutions for general scalar reaction-diffusion-advection
equations. We extend the approach to systems of multiple interacting species, and also consider
an application to a very degenerate diffusion problem involving a Gamma-limit. Moreover,
some numerical simulations are included.

1 Introduction

Since the seminal works of Jordan-Kinderlehrer-Otto [19], it is well known that certain diffusion
equations can be interpreted as gradient flows in the space of probability measures, endowed with
the quadratic Wasserstein distance W. The well-known JKO scheme (a.k.a. minimizing movement),
which is a natural implicit Euler scheme for such gradient flows, naturally leads to constructive
proofs of existence for weak solutions to equations or systems with mass conservation such as,
for instance, Fokker-Planck equations [19], Porous Media Equations [32], aggregation equation [9],
double degenerate diffusion equations [31], general degenerate parabolic equation [1] etc. We refer
to the classical textbooks of Ambrosio, Gigli and Savaré [4] and to the books of Villani [43, 44]
for a detailed account of the theory and extended bibliography. Recently, this theory has been
extended to study the evolution of interacting species with mass-conservation, see for examples
[15, 45, 23, 20, §].

Nevertheless in biology, for example for diffusive prey-predator models, the conservation of mass
may not hold, and the classical optimal transport theory does not apply. An unbalanced optimal
transport theory was recently introduced simultaneously in [11, 12, 21, 25, 26], and the resulting
Wasserstein-Fisher-Rao (WFR) metrics (also referred to as the Hellinger-Kantorovich distance HK)
allows to compute distances between measures with variable masses while retaining a convenient
Riemannian structure. See section 2 for the definition and a short discussions on this WFR metric.
We also refer to [37, 16] for earlier attempts to account for mass variations within the framework
of optimal transport.

The WFR metrics can be seen as an inf-convolution between Wasserstein/transport and Fisher-
Rao/reaction processes, and is therefore extremely convenient to control both in a unified metric
setting. This allows to deal with non-conservative models of population dynamics, see e.g. [21, 22].
In [18], the first and third authors proposed a variant of the JKO scheme for WFR-gradient flows
corresponding to some particular class of reaction-diffusion PDEs: roughly speaking, the reaction
and diffusion were handled separately in two separate FR,W metrics, and then patched together
using a particular uncoupling of the inf-convolution, namely WFR? ~ W? + FR? in some sense (see
[18, section 3| for a thorough discussion). However, the analysis was restricted to very particular
structures for the PDE, corresponding to pure WFR gradient-flows.

In this work we aim at extending this splitting scheme in order to handle more general reaction-
diffusion problems, not necessarily corresponding to gradient flows. Roughly speaking, the structure
of our splitting scheme is the following: the transport/diffusion part of the PDE is treated by a



single Wasserstein JKO step

k W k+1/2
—>P+/,

transport

and the next Fisher-Rao JKO step

FR
k+1/2 Pl

4 ;
reaction

handles the reaction part of the evolution. As already mentioned, the WFR metric will allow to
suitable control both steps in a unified metric framework. We will first state a general convergence
result for scalar reaction-diffusion equations, and then illustrate on a few particular examples how
the general idea can be adapted to treat e.g. prey-predator systems or very degenerate Hele-Shaw
diffusion problems. In this work we do not focus on optimal results and do not seek full generality,
but rather wish to illustrate the efficiency of the general approach.

Another advantage of the splitting scheme is that is well adapted to existing Monge/Kan-
torovich/Wasserstein numerical solvers, and the Fisher-Rao step turns out to be a simple pointwise
convex problem which can be implemented in a very simple way. See also [10, 13] for a more direct
numerical approach by entropic regularization. Throughout the paper we will illustrate the the-
oretical results with a few numerical tests. All the numerical simulations were implemented with
the augmented Lagrangian ALG2-JKO scheme from [6] for the Wasserstein step, and we used a
classical Newton algorithm for the Fisher-Rao step.

The paper is organized as follows. In section 2 we recall the basic definitions and useful prop-
erties of the Wasserstein-Fisher-Rao distance WFR. Section 3 contains the precise description of the
splitting scheme and a detailed convergence analysis for a broad class of reaction-diffusion equa-
tions. In section 4 we present an extension to some prey-predator multicomponent systems with
nonlocal interactions. In section 5 we extend the general result from section 3 to a very degenerate
tumor growth model studied in [34], corresponding to a pure WFR gradient flow: we show that the
splitting scheme captures fine properties of the model, particularly the I'-convergence of discrete
gradient flows as the degenerate diffusion parameter of Porous Medium type m — oo. The last
section 6 contains an extension to a tumor-growth model coupled with an evolution equation for
the nutrients.

2 Preliminaries

Let us first fix some notations. Throughout the whole paper, 2 denotes a possibly unbounded
convex subset of R?, Qr represents the product space [0,T] x Q, for T > 0, and we write MT =
M (Q) for the set of nonnegative finite Radon measures on 2. We say that a curve of measures
t — pt € Cyw([0,1]; M™) is narrowly continuous if it is continuous with respect to the narrow
convergence of measures, namely for the duality with Cp(2) test-functions.

Definition 2.1. The Fisher-Rao distance between pg, py € M™ is

1
FRpop)i= min P an,
0 Q

(pt,m¢) € Arlpo,p1]

where the admissible set Agg[po, p1] consists in curves [0,1] 3 t — (pg,7¢) € MT x M such that
t = pt € Cy([0,1]; M) is narrowly continuous with endpoints pt(0) = po, pt(1) = p1, and

Orpr = piri
in the sense of distributions D'((0,1) x ).

The Monge-Kantorovich-Wasserstein admits several equivalent definitions and formulations,
and we refer e.g. to [43, 44, 4, 41] for a complete description. For our purpose we shall only need
the dynamical Benamou-Brenier formula:



Theorem 2.2 (Benamou-Brenier formula, [5, 4]). There holds

w2 (po, p1) = min / /|Vt| dpdt, (2.1)

(p,v)EAulpo,p1]

where the admissible set Ay[po, p1] consists in curves (0,1) 3t — (pg, v¢) € M x M(QRY) such
that t — py is narrowly continuous with endpoints p(0) = po, pt(1) = p1 and solving the continuity
equation

Ope + div(peve) =0
in the sense of distributions D'((0,1) x Q).
According to the original definition in [11] we have
Definition 2.3. The Wasserstein-Fisher-Rao distance between pg, p1 € MT(Q) is

WFR?(po, p1) := inf / / [ve(z)? + |r:])?) dpy () dt (2.2)

(p,v,r)EAurr[po,p1]

where the admissible set Ayrg|po, p1] is the set of curvest € [0,1] — (py, ve, ) € M x M(;RY) x
M such that t — py € Cy([0, 1], M) is narrowly continuous with endpoints pj—o = po, pp=1 = p1
and solves the continuity equation with source

3tpt + diV(pt?)t) = pPtT¢.

Comparing definition 2.3 with definition 2.1 and Theorem 2.2, this dynamical formulation
a la Benamou-Brenier shows that the WFR distance can be viewed as an inf-convolution of the
Wasserstein and Fisher-Rao distances W, FR. From [11, 12, 21, 25| the infimum in (2.2) is always a
minimum, and the corresponding minimizing curves t — p; are of course constant-speed geodesics
WFR(p¢, ps) = |t — s|WFR(po, p1). Then (M™,WFR) is a complete metric space, and WFR metrizes the
narrow convergences of measures (see again [11, 12, 21, 25]). Interestingly, there are other possible
formulations of the distance in terms of static unbalanced optimal transportation, primal-dual
characterizations with relaxed marginals, lifting to probability measures on a cone over €, duality
with subsolutions of Hamilton-Jacobi equations, and we refer to [11, 12, 21, 26, 25] for more details.

As a first useful interplay between the distances WFR, W, FR we have

Proposition 2.4 ([18]). Let po, p1 € M3 such that |po| = |p1]. Then
WFR?(po, p1) < W(po, p1)-
Similarly for all o, 1 € MY (with possibly different masses) there holds
WFR (110, 1) < FR? (11, f11).
Finally, for all vo,v1 € MJ such that |vg| = |vi| and all v € M7, there holds
WFR? (g, v) < 2(W?(vo, 1) + FR? (11, 1)).

Moreover, we have the following link between the reaction and the velocity in (2.2), which was
the original definition in [21]:

Proposition 2.5 ([18]). The definition (2.3) of the WFR distance can be restricted to the subclass
of admissible paths (v¢,r¢) = (Vug,us) for potentials uy € H(dp;) and continuity equations

5tpt + dlv(ptVut) = PtUgt.

This shows that (M™,WFR) can be endowed with the formal Riemannian structure constructed
as follow: any two tangent vectors {' = 9;p', &% = 9;p® can be uniquely identified with potentials
u" by solving the elliptic equations

¢ = —div(pVu') + pu’.



Then the Riemaniann tensor is naturally constructed on the H!(dp) scalar product, i-e
9o€1,€) = (i) iy = [ (Vul - Vel ulu)d.
Q

This is purely formal, and we refer again to [18| for discussions. Given a functional

Fp) = /QF(p)Jr/QpVﬂL%/Q(K*p)p,

this Riemannian structure also allows to compute WFR gradients as

OF

. 0F
gradygg F(p) = —div <pv(5p> + P% = grady F(p) + gradg, F(p),

where ‘% = F'(p)+V + K *p denotes the Euclidean first variation of F with respect to p. In other
words, the Riemannian tangent vector grad,g F(p) is represented in the previous H'(dp) duality
OF

by the scalar potential u = TR

3 An existence result for general parabolic equations
In this section, we propose to solve scalar parabolic equations of the form

dup = div(pV (F{(p) + VA)) — p(FY(p) + Va)
pli=o = po (3.1)
oV (F(p) + Vi)l v = 0

in a bounded domain Q C R¢ with Neumann boundary condition and suitable initial conditions.
Our goal is to extend to the case Fy # F5, Vi # Vi the method initially introduced in [18] for
variational WFR-gradient flows, i-e (3.1) with F} = F» and V; = V5.

We assume for simplicity that F; : R — R is given by

zlogz — z (linear diffusion)
Fi(z)=¢ or , (3.2)

L_,m  (Porous Media diffusion)
mlfl

and F> : R — R is given by

1

Fy(z) = p— 1%

ma for some mgy > 1. (3.3)

Note that we cannot take F5(z) = zlogz — 2z because the Boltzmann entropy is not well behaved
(neither regular nor convex) with respect to the Fisher-Rao metric in the reaction step, see [18, 26,
25| for discussions. In addition, we assume that

Viewh>®(Q) and  Vh € L™(Q).
We denote £1,& : MT — R the energy functionals

Ei(p) == Fi(p) + Vi(p),

where

= JoFilp) ifp <L o= v
Filp) = { +00 otherwise, and  Vi(p) := 9 Vip.

Although more general statements with suitable structural assumptions could certainly be proved,
we do not seek full generality here and choose to restrict from the beginning to the above simple
(but nontrivial) setting for the sake of exposition.



Definition 3.1. A weak solution of (3.1) is a curve [0,400) 3t — p(t,-) € LY NL>(2) such that
for all T < oo the pressure Pi(p) := pF{(p) — F1(p) satisfies VPi(p) € L*([0,T] x Q), and

/o+oo ([ 00 ¥Vi - Vop = TP(0)- V6 - o) + Vel o) dt = [ 9(0.2)m(w) da

for every ¢ € C2°([0, +00) x R?).

Note that the pressure P; is defined so that the diffusion term div(pVF{(p)) = APi(p), at least
for smooth solutions.

The starting point of our analysis is that (3.1) can be written, at least formally as,
Op = div(pV(Fi(p) + V1)) — p(F3(p) + V2) ¢ Oip = —grady E1(p) — grade E2(p).

Our splitting scheme is a variant of that originally introduced in [18]|, and can be viewed as an
operator splitting method: each part of the PDE above is discretized (in time) in its own W,FR
metric, and corresponds respectively to a W/transport/diffusion step and to a FR/reaction step.

More precisely, let b > 0 be a small time step. Starting from the initial datum pf) := pg, we
construct two recursive sequences (pF); and (pZH/ %), such that
k+1/2

pr 0 € argmin  {5W(p, ) + Ei(p)}
pEM™,|p|=|p}]
(3.4)
. k+1/2
ppt! € argmin {ﬁFRE(p,pJ %)+ Ez(p)} :
pEMT*

With our structural assumptions on F;, V; and arguing as in [18], the direct method shows that
this scheme is well-posed, i-e that each minimizing problem in (3.4) admits a unique minimizer.
We construct next two piecewise-constant interpolating curves

)

t) = k+1
{ Z:Eti _2@1;2 for all t € (kh, (k + 1)h]. (3.5)
— Fh

Our main results in this section is the constructive existence of weak solutions to (3.1):

Theorem 3.2. Assume that py € L1 N L>(2). Then, up to a discrete subsequence (still denoted
h — 0 and not relabeled here), py, and py, converge strongly in L*((0,T) x Q) to a weak solution p

of (3.1).

Note that any uniqueness for (3.1) would imply convergence of the whole (continuous) sequence
Phs Prn — p as h — 0, but for the sake of simplicity we shall not address this issue here.

The main technical obstacle in the proof of Theorem 3.2 is to retrieve compactness in time. For
the classical minimizing scheme of any energy £ on any metric space (X,d), suitable time com-
pactness is usually retrieved in the form of the total-square distance estimate ﬁ S d? (2, 2P ) <

k>0

E(xo) — inf €. This usually works because only one functional is involved, and &(xg) — inf & is
obtained as a telescopic sum of one-step energy dissipations &(x**1) — £(z*). Here each of our
elementary step in (3.1) involves one of the W,FR metrics, and we will use the WFR distance to
control both simultaneously: this strongly leverages the inf-convolution structure, the WFR distance
being precisely built on a compromise between W/transport and FR/reaction. On the other hand
we also have two different functionals £1,E&>, and we will have to carefully estimate the dissipa-
tion of & during the FR reaction step (driven by &) as well as the dissipation of £ during the W
transport /diffusion step (driven by &).

We start by collecting one-step estimates, exploiting the optimality conditions for each elemen-
tary minimization procedure, and postpone the proof of Theorem 3.2 to the end of the section.



3.1 Optimality conditions and pointwise L>° estimates

The optimality conditions for the first Wasserstein step p* — p**1/2 in (3.4) are by now classical,
and can be written for example

—Vort? /2

. oy = VPl(pZH/Z) + pi+1/2VV1 a.e. (3.6)
Here cpZH/ % is an optimal (backward) Kantorovich potential from ph+1/ % to oF.
Lemma 3.3. For all k >0,
lon ™M1z = okl (3.7)
and for all constant C' such that V1 < C,
_ k _
ph@) < (F)HC—Vil@)ae = 5" %@) <(F)THC - Vi) ace. (3.8)

Proof. The Wasserstein step is mass conservative by construction, so the first part is obvious. The
second part is a direct consequence of a generalization [36, lemma 2] of Otto’s maximum principle
[32]. O

Remark 3.4. Note that if pf < M, we may take C = F{(M) + |Vi||z>~ in (3.8). Formally,
this corresponds to taking p(z) := (F|)~*(C — Vi(z)) as a stationary Barenblatt supersolution
for Orp = div(pV (F{(p) + V1)) at the continuous level. In addition, if Vi = 0 we recover Otto’s
mazimum principle [32] in the form ||pFTY2||pe < ||p* ||z

For the second Fisher-Rao reaction step, the optimality condition has been obtained in [18,
section 4.2] in the form

(\/Pk+1 sz) Vo= R (B ) e (3.9)

As a consequence we have

Lemma 3.5. There is C = C(Va) > 0 such that for h < ho(Va) small enough we have
PN @) <A+ Ch)py T P (@) ae, (3.10)
and for all M > 0 there is ¢ = ¢(M, Va) such that if ||pk+1/2||0Q < M then
(L=ch)py (@) < i (@) e, (3.11)
Note in particular that this immediately implies
supp pf = supp pp T/, (3.12)

which was to be expected since the reaction part dyp = —p(F4(p) + V) of the PDE (3.1) preserves
strict positivity.

Proof. We start with the upper bound: inside supp kar1 (3.9) and Fj > 0 give

VAR @) = o @) = o @) (B @) + V()
V(@) (@) < B Vallso /o (@)

1
k+1 k+1/2
r)L —
Ph ) S Tl (

N

whence



Taking squares and using

1

W =1+42|Va|lpeh + O(hQ) <1+ 3||Val|peh

for small h gives the desired inequality.
For the lower bound (3.11), we first observe that since Fj > 0 and from (3.10) we have

F(pftY) < F3((1+ Ch)pi™/?) < F3(2M) if b is small enough. Then (3.9) gives inside supp p+!

\/pk+1 \/pk+1/2 = i/ @) (B0 (@) + Vale))
> —h(F5(2M) + | Vallso)\/ ol (),

hence

A > @ 0w

for small A. O

Combining Lemma 3.3 and Lemma 3.5, we obtain at the continuous level

Proposition 3.6. For all T > 0 there exist constants My, M. such that for all t € [0,T),

lon @l Lrare, [1on ()l rnzee < Mz

and
lpn(t) = pn(t)||Lr < hMp

uniformly in h > 0.

Note from the second estimate that strong L((0,T) x ) convergence of p; will immediately
imply convergence of pp to the same limit.

Proof. By induction combining (3.8) and (3.10), we obtain, for all ¢ € [0, T],

lon ()]l Lo, [|pn(t)]| L~ < Cr,

where Cr is a constant depending on ||V, see [36, lemma 2]. The L' bound is even easier:
since the Wasserstein step is mass preserving, we can integrate (3.10) in space to get

loi ™ s < (L4 CR)lloy ™2 e = (14 CR)pf+ 111

Fort < T < k < |T/h] the L' bounds immediately follow by induction, with (14Ch)LT/") < €T,
and we conclude again by induction.

In order to compare now pp and pp, we take advantage of the above upper bound to write
sz/Q < My as long as kh < T. Taking ¢ = ¢(Mr) in (3.11) and combining with (3.10), we have

k+1/2 o k+1/2 p]fLHéC'hpZH/Q

—chp,, <pp, a.e.
Integrating in Q we conclude that
~ k k
lon(®) = pn (@)l = llok™ = o2 I < hmax{e, C|pp "2 (11 < hmax{e, C}Mp = hMy
and the proof is complete. O



3.2 Energy dissipation

Our goal is here to estimate the crossed dissipation along each elementary W, FR step.
Testing p = p¥ in the first Wasserstein step in (3.4), we get as usual

1
G2k < Foh) = R + [ Vilk =) (313)
Since V} is Globally Lipschitz we can first use standard methods from [15, 23] to control [, Vi(pj —
pzﬂ/ 2) in terms of w2(p§+1/ 2 pF), and suitably reabsorb in the left-hand side to obtain
1 k k
k) < Faoh) = Fulpy ™) + O (3.14)

The dissipation of F; along the Fisher-Rao step is controlled as

Proposition 3.7. For all T > 0 there exists a constant Cp > 0 such that, for all k > 0 and
k < [T/h],
Fi(pf™) < Fuloy %) + Crh. (3.15)

Proof. We first treat the case of Fj(z) = mllilzml with my > 1. Since F} is increasing, we use
(3.10) to obtain

Fulort) = Filoy ")

N

(L+Ch)™ —1) /(karl/Z)ml
mi — 1 Q h
< ChllpM YR TA |pM 2

and we conclude from Proposition 3.6.
In the second case F(z) = zlog(z) — z, we have

R = [ A e+ [ ot - [
{pp " <e7'} {pp " 2e 1}

Note from Proposition 3.6 that the z contribution in Fi(z) = zlog z — z is immediately controlled
by | [pit! — pr+1/2| < ittt — pZ+1/2||L1 < hMZ., so we only have to estimate the zlogz
contribution. Since z — zlog z is increasing on {z > e~'} and using (3.10), the second term in the
right hand side becomes

/ P log(p ) < / (1+ Ch)pEH 2 Log((1 4+ Chyat 172
ey (o ze1)
< A s on | 2 g 1)
P e~

Etls
{ppttze1}

+(1+Ch) / pi 2 log(1 4 Ch)
{1 ze 1)

s / pn 2 log(p %) + Crb,
(hH3e1)

where we used ||pk+1/2||L1 < My from Proposition 3.6 as well as log(1 + Ch) < Ch in the last

inequality. Using the same method with the bound from below (3.11) on {pkJrl < e} (where
z — zlog z is now decreasing), we obtain similarly

/ ’H‘l log(p k'H) g/ pZH/Q log(p;, k1/2 )+ Crh.
e

k4l
{prti<e 1}

Combining both inequalities gives
/ k+110g( k+1) </ k+1/2 log(p k+1/2)+C h

and the proof is complete.



Summing (3.14) and (3.15) over k we obtain

N-—
1 k 1/2
5 ; T2 8 < Filpo) — Filp) + O, (3.16)

where N = [T ].

In the above estimate we just controlled the dissipation of F; along the FR/reaction steps, and

the goal is now to similarly estimate the dissipation of F, along the Wasserstein step. Testing

p= pZH/Q in the second Fisher-Rao step in (3.4), we obtain

1 k+1/2 k+1/2 k+1/2
S FRon o) < Falo M) = Falof ) + / Va(py ™2 = pht). (3.17)
Since we assumed Vi € L>(Q) and because py(t) = pi™ remains close to pp(t) = pj M2 40 1t
uniformly in ¢, h by Proposition 3.6, we immediately control the potential part as
Vel =gl < Vel Cirh (3.18)

For the internal energy we argue exactly as in the proof Proposition 3.7 (for the Porous Media

part, since we chose here Fy(2) = m21_12m2), and obtain

Faloy %) = Falph™) < Crh. (3.19)

Combining (3.17), (3.18) and (3.19), we immediately deduce that
1 = /
= 2 k:+1 2 k+1 < 92
2% kz:: ) < Cr, (3.20)

where N = [ L] as before.

Finally, we recover an approximate compactness in time in the form

Proposition 3.8. There exists a constant Cr > 0 such that for all h small enough and k < N =

[ T'/h],

N—

Z WFR2(pf, o) < 4F1(po) + O (3.21)
k=0

S| =

Proof. Adding (3.16) and (3.20) gives
| N2
2 Wk ) A FR (02 g < 2(Fi(po) = Falpl) + Or) + 207 < 2Fi(po) + Cr,
k=0

since in any case Fy(z) = mll_lzml > 0 and Fi(z) = zlogz — z > —1 is bounded from below

on the bounded domain (2, hence Fi(pl)) >
2.4 that W2(pl, p, " 1/%) + FR2(p, T2 piHY) >
immediately follows.

—Cq uniformly. It then follows from Proposition

%WFRQph, pf“ in the left-hand side, and the result

O

3.3 Estimates and convergences

From the total-square distance estimate (3.21) we recover as usual the approximate %—Hélder
estimate

WFR(pn (£), pr(s)) + WFR(fn (), pn(s)) < Cp|t — s + h|/? (3.22)



for all fixed T'> 0 and ¢, s € [0,T]. From (3.20) and Proposition 2.4 we have moreover

WER(pn (), n(t)) < FR(pn (1), pn (1)) < CVh. (3.23)

Using a refined version of Ascoli-Arzela theorem, [4, prop. 3.3.1] and arguing exactly as in [18,
prop. 4.1], we see that for all T > 0 and up to extraction of a discrete subsequence, p, and py,
converge uniformly to the same WFR-continuous curve p € C*/2([0, T], Myzz) as

tes[%pT ](WFR(ph(t), p(t)) + WER(pn(t), p(t))) — 0.

In order to pass to the limit in the nonlinear terms, we first strengthen this WFR-convergence
into a more tractable L' convergence. The first step is to retrieve compactness in space:

Proposition 3.9. For allT > 0, p, and py, satisfies
I1PL(pn) || L2 jo,73; 11 (2)) < Cr- (3.24)

Proof. From (3.6) and the L' N L> bounds from Proposition 3.6 we see that

/QWPl(pZH/z)'g < th/ Ve k+1/2| (pk+1/2 /|VV| k+1/2)
< 2h2/ Vo k+1/2|2pk+1/2 ||VV % /( k+1/2)2
w2 k+1/2
. <<ph2ﬂ> o
since @ZH/ ? is the optimal (backward) Kantorovich potential from pZH/ % to pF. Multiplying by

h > 0, summing over k, and exploiting (3.16) gives

N-1
k
P1(p )||L2 (0, TLHI(Q) S Z h{|Pr(p +1/2 Wi < Cr(Fi(po) — Filpn') +1) < Cr,
k=0

where we used as before Fi(pY) > —Cgq in the last inequality. O
We are now in position of proving our main result:

Proof of Theorem 3.2. Exploiting (3.21) and (3.24), we can apply the extension of the Aubin-Lions
lemma established by Rossi and Savaré in [39] to obtain that j;, converges to p strongly in L*(Q7)
(see [23]). By diagonal extraction if needed, we can assume that the convergence holds in L*(Qr)
for all fixed T' > 0. Then by Proposition 3.6 we have

lon — Pl ey < llon — Pullzrr + 1on — Pl @) < Crh+ |Ipn — pllzr@r) — 0

hence pp, — p as well.

Moreover, since P;(py,) is bounded in L2((0,7T), H*(£2)) we can assume that VP, (p5) — VPi(p)
in L2((0,T), H'(Q)) for all T > 0. Exploiting the Euler-Lagrange equations (3.6)(3.9) and arguing
exactly as in [18, Theorem 4], it is easy to pass to the limit to conclude that

/Qp(tz)sa—p(tl)so: —/:/Q{VP(p) ~V<p+pVV1-V<p—p(F2’(p)+Vz)<p}

for all 0 < t; < t5 and ¢ € C}(Q). Since p € C([0, T]; M) takes the initial datum p(0) = pg and
WFR metrizes the narrow convergence of measures, this is well-known to be equivalent to our weak
formulation in Definition 3.1, and the proof is complete. O
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Remark 3.10. In the above proofs one can check that Theorem 3.2 extends in fact to all C*
nonlinearities Fy such that Fy > C for some C € R. Likewise, we stated and proved our main
result in bounded domains for convenience: all the above arguments immediately extend to Q = R?

at least for Fy(z) = mll_lzml > 0. The only place where we actually used the boundedness of Q) was

in the proof of Proposition 3.8, when we bounded from below Fy(pf ) = —Cgq in order to retrieve the
total-square distance estimate. When Q = R? and F1(2) = zlog z— 2z a lower bound Fy(pY) > —Cr
still holds, but the proof requires a tedious control of the second moments ma(p) = fRd |z|%p hence
we did not address this technical issue for the sake of brevity.

4 Application to systems

In this section we shall try to illustrate that the previous scheme is very tractable and allows to
solve systems of the form

Oupr = div(pi V(F{(p1) + Valp1, p2])) — p1(Gi(p1) + Uilpr, p2l),
Orpa = div(p2V(F3(p2) + Valp1, p2])) — p2(G5(p2) + Uzlp1, p2]), (4.1)
Plit=0 = P1,0, P2jt=0 = P2,0

For simplicity we assume again that  is a smooth, bounded subset of R%. Then the system (4.1)
is endowed with Neumann boundary conditions,

p1V(F(p1) + Vilp1, p2]) - v = 0 and poV(F3(p2) + Va[p1,p2]) - v =0 on R* x 99,

where v is the outward unit normal to 9. In system of the form (4.1), we allow interactions
between densities in the potential terms V;[p1, p2] and U;[p1, p2]. In the mass-conservative case
(without reaction terms), this system has already been studied in [15, 23, 8], using a semi-implicit
JKO scheme introduced by Di Francesco and Fagioli, [15]. This section combines the splitting
scheme introduced in the previous section and semi-implicit schemes both for the Wasserstein
JKO step and for the Fisher-Rao JKO step.

For the ease of exposition we keep the same assumptions for F; and G; as in the previous section,
i.e the diffusion terms F; satisfy (3.2) and the reaction terms G; satisfy (3.3). Moreover, since the
potentials depend now on the densities p; and ps, we need stronger hypotheses: we assume that
Vi« LY(Q;RT)2 — CY(Q) are continuous and verify, uniformly in py, p» € L*(Q;RT),

[Vilp1, p2lllwreec) < K1+ [|p1llr o) + llp2llr@))s (4.2)
IV (Vilp1, p2]) = V(Vilpr, 2]l e @) < K(llpr — pallr) + o2 — p2lln@)-

The interacting potentials we have in mind are of the form V;[p1, p2] = K1 * p1 + K2 * pa,
where K; 1, K;2 € Wl’OO(Q) and then V; satisfies (4.2). For the reaction, we assume that the
potentials U; are continuous from L'(Q)% to L' with moreover

Uilp1, p2] = — K, Vp1,p2 € L' (G RY) (4.3)
for some K € R, and
1Uilp1s p2lllL ) < Knr, — Vlpillziys lp2lloi@) < M (4.4)
for some nondecreasimg function Ky, > 0 of M. The examples we have in mind are of the form

P2
1+p1

P1
1+p1

Uilp1, p2] = C1 » U2lpr,po] = =Co

for some constants C; > 0, or nonlocal reactions

Ui[pl,pz](m)z/QKi,l(x,y)pl(y) dy+/QKi,2(x,y)p2(y) dy

for some nonnegative kernels K; ; € L'NL>. Such reaction models appear for example in biological
adaptive dynamics [33].
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Definition 4.1. We say that (p1,p2) : RT — L1 N LL(Q) is a weak solution of (4.1) if, fori €
{1,2} and all T < +oo, the pressure Pi(p;) := p;F!(pi;) — Fi(p:) satisfies VP;(p;) € L*([0,T] x Q),
and

+oo
/ (/ (PO = piVVilpr, p] - Vi = VEi(pi) - Vi = pi(Gilpi) + Uilpr, p2]) ) dx) “
0 Q
_ /Q $:(0,2)p0(x) da,  (4.5)

for all ¢; € C([0, +00) x RY).
Then, the following result holds,

Theorem 4.2. Assume that pi1, p2,0 € L* N L°(Q) and that V;,U; satisfy (4.2)(4.3)(4.4). Then
(4.1) admits at least one weak solution.

Note that this result can be easily adapted to systems with an arbitrary number of species
N > 2, coupled by nonlocal terms V;[p1, ..., pn] and U;[p1, ..., pN]-

Remark 4.3. A refined analysis shows that our approach would allow to handle systems of the
form
{ Orp1 — div(p V(Fi(p1) + V1)) = —p1hi(p1, p2),
Op2 — div(p2V(F5(p2) + V2)) = +p2h2(p1),

where hy is a nonnegative continuous function and hs is a continuous functions.

Indeed since hy > 0 the reaction term is the first equation is nonpositive, hence ||p1(t)|| () <
Cr. Then it follows that —ha(p1) satisfies assumptions (4.3) and (4.4). A classical example is
ha(p1) = p§ and hy(p1, p2) = pY~ pa, where a > 1, see for example [38] for more discussions.

As already mentioned, the proof of theorem 4.2 is based on a semi-implicit splitting scheme.

. k+1/2 k+1/2 .
More precisely, we construct four sequences p1; / ,p’f*l;l, pzz / ,pgzl defined recursively as

k+1/2 .
pint® e argmin - { W (o ok) + Filo) + Viloloh s o) |
pEM™,|p|=pF |

. k+1/2
Pl e arg%n{ﬁFRz(p, pin %) + Gilp) +Ui(p\p’f,h,p§,h)}
pe

where the fully implicit terms

b

v JoFElp) ifp<Lig (.= JaGilp) ifp<Lig
Fi(p) '_{ +00 otherwise and - Gi(p) := +00 otherwise

and the semi-implicit terms

Vi(plu, pz) :z/ﬂVi[ul,uz]p and  U;(pl|p1, p2) ::/QUi[Mlalm]p-

In the previous section, the proof of theorem 3.2 for scalar equations strongly leveraged the
uniform L>°(Q)-bounds on the discrete solutions. Here an additional difficulty arises due to the
nonlocal terms VV;[p1, p2] and Uj;[p1, p2], which are a priori not uniformly bounded in L*°(2).
Using assumption (4.3) we will first obtain a uniform L!(Q)-bound on pi, p2, and then extend
proposition 3.6 to the system (4.1). This in turn will give a uniform W control on V;[p1, p2]
and L control on U;|[p1, p2] through our assumptions (4.2)-(4.3)-(4.4), which will finally allow to
argue as in the previous section and give L*° control on p1, ps.

Numerical simulations for a diffusive prey-predator system are presented at the end of this
section.
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4.1 Properties of discrete solutions

Arguing as in the case of one equation, the optimality conditions for the Wasserstein step and for
the Fisher-Rao step first give

Lemma 4.4. For all k > 0 and i € {1,2}, we have

lpin e = NPk nllz- (4.7)

Moreover, there exists C; = C(U;) > 0 (uniform in k) such that

k+1/2

P @) < (L4 Gl P (@) e (4.8)

Proof. The first part is simply the mass conservation in the Wasserstein step, and the second part
follows the lines of the proof of (3.10) in Lemma 3.5 using assumption (4.3). O

As a direct consequence we have uniform control on the L'-norms:

Lemma 4.5. For all T > 0 there exist constants Cr,Ch > 0 such that, for all t € [0,T)],

[oin()lLr, [[pin ()]l < C7
and
IVilor.n (®), p2,nOlwr.o, [Vilpr,n(t), pan(®)]llwr < Cp. (4.9)
Proof. Integrating (4.8) and iterating with (4.7), we obtain for all ¢ < T and k < |T/h]

P54 e < L+ Cil)lipinlin < (1+ Cib)* 1 < e Tl

Then (4.9) follows from our assumption (4.2) on the interactions. O

Combining (4.8) and (4.9), we deduce
Proposition 4.6. For all T > 0, there exists My such that for all t € [0,T],

loen (@)l zoe s [|96n ()]l Loe < Mz
Then, there exists ¢; = ¢(My,U;) > 0, such that, for all k < |T/h| and h < ho(Ur,Uz),

k+1/2
(1- cih)pzz / < pirt

i,h

In particular, there exist M5 > 0 such that for all t € [0,T1,

pin(t) = pin(t)| 1 < hMp.

Proof. The first L> estimate can be found in [36, Lemma 2], and the rest of our statement can be
proved exactly as in Lemma 3.5 and Proposition 3.6. O

4.2 Estimates and convergences

Since we proved that Vi[p1 s, p2,n] and Va[p1 n, p2,n] are bounded in L>([0, 7], W*(2)), we can
argue exactly as in the previous section for the Wasserstein step and obtain

1
W o) < Filpl) = Flplh®) + O, (4.10)

see (3.13)-(3.14) for details. Since p1,, and pa, are uniformly bounded in L'(Q) (Lemma 4.5), our
assumption (4.4) ensures that U; [plle/z,pgjllm] and Us [plf;l/Q,pgzl/z] are uniformly bounded in
L>(Q). Proposition 4.6 then allows to argue exactly as in (3.17)-(3.18)-(3.19) for the Fisher-Rao

step, and we get

1
PR o) < Gulpin ) = Gulpih ") + Crh. (4.11)

The dissipation of F; along the Fisher-Rao step is obtained in the same way as Proposition 3.7
and we omit the details:
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Proposition 4.7. For all T > 0 and i € {1,2}, there exist constants Cp,Cl > 0 such that, for
all k = 0 with hk < T,

Filpifh) < E(pii?;l”) + Crh,

Gilpin ) < Gi(pkf) + Cph.

From (4.10) and (4.11) this immediately gives a telescopic sum

1 k+1/2 k+1/2 :
s (V2 kn P2 4 FR2 (Y2, 010 ) < 20Fi(kn) = Filpl ]+ Crh
which in turn yields an approximate %—Hélder estimate (with respect to the WFR distance) as in
Proposition 3.8. The rest of the proof of Theorem 4.2 is then identical to section 3 and we omit
the details.

4.3 Numerical application: prey-predator systems

Our constructive scheme can be implemented numerically, by simply discretizing (4.6) in space.
We use the augmented Lagrangian method ALG-JKO from [6] to solve the Wasserstein step, and
the Fisher-Rao step is just a convex pointwise minimization problem. Indeed, it is known [18, 27]
that FR?(p, 1) = 4[|\/p — /11l|32, hence the Fisher-Rao step in (4.6) is a mere convex pointwise
minimization problem of the form: for all z € 2 (and omitting all indexes p; p),

P (z) = argmin {4 ’f — £/ pFH1/2(z)

p=>0

- 2hF(p)} .

This is easily solved using any simple Newton procedure.
Figure (1) shows the numerical solution of the following diffusive prey-predator system

8tp1 — Apl — le(Plvvl [plva]) = Apl (1 - pl) - Bllerl;)i )
Orpa — Apz — div(p2VValpy, pa]) = ?fp’? — Cpa,

Here the p; species are preys and ps are predators, see for example [30], the parameters A =
10,C' =5, B = 70, and the interactions are chosen as
— 2 2 2 2
Vilpr, p2] = 2|7 * pr — 2|7 * p2,  Va[p1, p2] = |z]® * p1 + [2[* * pa.
In (4.1) this corresponds to
2

Gi(p1) = A%, Ga(p2) =0, Uilp1,p2] =

. Bp:
1+p1

Bpsy
1+p1

- A7 U2[P17P2] =

Of course, U; and Uj satisfy assumptions (4.3) and (4.4), and then Theorem 4.2 gives a solution
of the prey-predator system. As before, we shall disregard the uniqueness issue for the sake of
simplicity. Figure (2) depicts the mass evolution of the prey and predator species: we observe
the usual oscillations in time with phase opposition, a characteristic behaviour for Lotka-Volterra
types of systems.

5 Application to a tumor growth model with very degenerate
enery

In this section we take interest in the equation

Op = div(pVp) + p(1 - p),
p=0 and p(l—p)=0
0<p<l,
Plt=0 = Po-

(5.1)
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Figure 1: FEwolution of two species with prey-predator interactions. First row: display of p1 + p2.
Second row: display of the prey p1. Third row: display of the predator p;.

0.12

01f

Figure 2: Mass evolution for two-species prey-predator interactions.

This equation is motivated by tumor growth models [34, 35] and exhibits a Hele-Shaw patch
dynamics: if pg = xq, then the solution remains an indicator p(t) = xq(+) and the boundary moves
with normal velocity V = —Vp| aQ(t), see [2] for a rigorous analysis in the framework of viscosity
solutions.

At least formally, we remark that (5.1) is the Wasserstein-Fisher-Rao gradient flow of the
singular functional

F(p) = J-'oo(p)—/gp,
where

] 0 if p<1 ae,
Foolp) i= { +00  otherwise.

Indeed, the compatibility conditions p > 0 and p(1 — p) = 0 in (5.1) really mean that the pressure
p belongs to the subdifferential F (p), and (5.1) thus reads as the gradient flow

Op = div(pVu) — pu, u=p—1¢€ —-0F(p).

However, this functional is too singular for the previous splitting scheme to correctly capture the
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very degenerate diffusion. Indeed, the naive and direct approach from section 3 would lead to
k1/2 .
pp? e argmin { LW (p, pf) — [, 0},
p<1, lol=lpk|

k . k+1 2
Pyt e arggm{ﬁFRz(p, P / - Jq p} )
p<

Since the Wasserstein step is mass-conservative by definition, the [ p term has no effect in the first
step and the latter reads as “project pfl on {p < 1} w.r.t to the W distance”. Since the output of the
reaction step p’“‘1 < 1, the Wasserstein step will never actually project anything, and the diffusion
is completly shut down. As an example, it is easy to see that if the initial datum is an indicator
Po = Xq, then the above naive scheme leads to a stationary solution karl = pffl/ 2 = po for all
k > 0, while the real solution should evolve according to the aforementioned Hele-Shaw dynamics
p(t) = xa) [2, 34]. One could otherwise try to write a semi-implicit scheme as follows: 1) keep the

projection on {p < 1} in the first Wasserstein step. As in [29] a pressure term ph+ /2 appears as a

Lagrange multiplier in the Wasserstein projection. 2) in the FR/reaction step, relax the constraint
p < 1 and minimize instead p**! € argmin {ﬁFR2 (p) + fpp’“rl/2 —f p}, and keep iterating. This
seems to correctly capture the diffusion at least numerically speaking, but raises technical issues in
the rigorous proof of convergence and most importantly destroys the variational structure at the
discrete level (due to the fact that the reaction step becomes semi-explicit).

We shall use instead an approximation procedure, which preserves the variational structure at
the discrete level: it is well-known that the Porous-Medium functional

_f Jo s it e ()
Fmlp) = { «jézogl 1 otherwise
I-converges to Foo as m — 00, see [7]. In the spirit of [40], one should therefore expect that the
gradient flow py, of F(p) — | p converges to the gradient flow ps, of the limiting functional ]: (p) =
Foo(p) — [ p. Implementing the splitting scheme for the regular energy functional F,,(p) — [ p
gives a sequence pj, n,, and we shall prove below that py, ., converges to a solution of the hmltlng
gradient flow as m — oo and h — 0. However, it is known [17] that the limit depends in general
on the interplay between the time-step h and the regularization parameter (m — oo here), and for
technical reasons we shall enforce the condition

mh — 0 as m — oo and h — 0.

Note that [34] already contained a similar approximation m — oo but without exploiting the varia-
tional structure of the m- gradient flow, and our approach is thus different. The above gradient-flow
structure was already noticed and fully exploited in the ongoing work [10], where existence and
uniqueness of weak solutions is proved and numerical simulations are performed needless of any
splitting an using directly the WFR structure. Here we rather emphasize the fact that the splitting
does capture delicate I'-convergence phenomena.

In order to make this rigorous, we fix a time step h > 0 and construct two sequences (phti/ 2) k

and (Plﬁ,m)m with p?wn = pp, defined recursively as

k+1/2 .
Py % e argmin {ghw2(p7 Pk m) + Fmp) = [o p}
pEM, |pl=|pf]
(5.2)
. 172y
pi‘H € argmin {iFRQ(p, ph+ / + Fm(p) — [ p} .
pEMT

As is common in the classical theory of Porous Media Equations [42], we define the pressure as

the first variation
m m—1

mi=F (p) = ——
m(p) =
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We accordingly write

k+1/2 m k4+1/2\m—
+1/ 71(p+/)n1

ph m = h,m

k1 m k+1ym
p— 1 )™

and phm'_ phm

for the discrete pressures. As in section 3 we denote by pp m(t), Pr,m(t) and ppm (t), Pr,m(t) the
piecewise constant interpolations of piti, pffn}L and pkH/ 2, pf;:i/ 2 respectively.

Our main result is

Theorem 5.1. Assume that py € BV (Q), po < 1, and mh — 0 as h — 0 and m — oco. Then for
all T > 0, phm, Ph,m both converge to some p strongly in L'((0,T) x Q), the pressures pp m,Ph,m
both converge to some p weakly in L*((0,T), HY()), and (p,p) is the unique weak solution of (5.1).

Since we have a WFR gradient-flow structure uniqueness should formally follows from the —1
geodesic convexity of the driving functional £, f p with respect to the WFR distance [24, 26|
and the resulting contractivity estimate WFR(p? (t)7 p%(t)) < e'WFR(pg, p3). This is proved rigorously
in [10], and therefore we retrieve convergence of the whole sequence py, ,,, — p in Theorem 5.1 (and
not only for subsequences). Given this uniqueness, it is clearly enough to prove convergence along
any discrete (sub)sequence, and this is exactly what we show below.

The strategy of proof for Theorem 5.1 is exactly as in section 3, except that we need now the
estimates to be uniform in both in h — 0 and m — oo.

5.1 Estimates and convergences

In this section, we improve the previous estimates from section 3. We start with an explicit L°°-
bound:

Lemma 5.2. Assume that po < 1, then for all t € RT,

[lonm (E lsos l|nm (E, -)loo < 1.

Proof. We argue by induction at the discrete level, starting from py = p?L’m < 1 by assumption.

If ||p’,fb7m||<>o < 1, Otto’s maximum principle [31] implies that ||pk+1/2

Wasserstein step.
Assume now by contradiction that E : {pk'H > 1} has positive Lebesgue measure. The

optimality condition (3.9) for the Fisher-Rao minimization step gives, dividing by pffl > 0 in

F
k+1 \/ k+1/2 _ h\/ k1 . m k+1ym—1
\/p 2 hm 1 m — l(ph m)
k+1ym

Then 1 — 5 (p, 7)™~ ' <1— - <0 in the right-hand side, hence the desired contradiction

k
iy <o < 1. O

loe < 6§ mlloc < 1 in the

)

Noticing that the functional —L= [ p™ — [ p corresponds to taking explicitly F»(z) = 2™ /m—1
and Va(z) = —1 in section 3, it is easy to reproduce the computations from the proof of Lemma 3.5
and carefully track the dependence of the constants w.r.t m > 1 to obtain

Lemma 5.3. There exists ¢ > 0 such that, for all m > mg large enough and all h < hg small
enough,

(1 - ch)pp o (2) < ptl(@) < (L+ oy n*(2)  aee. (5.3)

Note that this holds regardless of any compatibility such as hm — 0. The key point is here
that the lower bound ¢ previously depended on an upper bound M on pFt1/2 in Lemma 3.5, but
since we just obtained in Lemma 5.2 the universal upper bound pF*1/2 < 1 we end up with a lower
bound which is also uniform in A, m. The proof is identical to that of Lemma 3.5 and we omit the
details for simplicity.

Recalling that the Wasserstein step is mass-preserving, we obtain by immediate induction and
forall0<t<T

lonm @Iz 15nm )]s < e lpoll:
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as well as
[on.m (t) = prm ()| 1 < Crh. (5.4)

k+1/2

Testing successively p = ph m and p=p,- n (5.2), we get

1 kt+1/2 k+1/2 k+1/2

i (P 6k 507+ PR G D0 ) < Fonloh ) = Fonlli ) + [ (650 = A
Using Proposition 2.4 to control WFR? < 2(W? + FR?) and the lower bound in (5.3) yields
1 1 k+1/2 k+1/2
TR k) < o (ke o) + PR kD)

4h
k+1/2

< Fulphm) = Fm (p';iti)Jrch/pﬁti/Q
< Folphim) = Fm(ppth) + che”

for all k < N :=|T/h].
Summing over k we get

1
T 2 V(0] A < Flpo) = Fonlofl) + Cr
k=0

1 1
< 7/,06n+CT< po+CT Cr,

where we used successively F,,, > 0 to get rid of fm(pfxm), and pg* < pp for pp <1 and m > 1.
Consequently, for all fixed T' > 0 and any ¢, s € [0,T] we obtain the classical %—Hélder estimate
{ WER(ppm (1), prm(s)) < Oplt — s+ h|Y/2,

WER(pp, (t)g m(8)) < Crlt — s+ h|V/2, (5.5)

Exploiting the explicit algebraic structure of F,(z) = ﬁzm, compactness in space will be

given here by
Lemma 5.4. If po € BV (Q) then

sup {[lpn.m(t: ) v 1nm(E vy} < e lpollsve)-
te[0,7)

Proof. The argument closely follows the lines of [18, prop. 5.1]. We first note from [14, thm. 1.1]
that the BV -norm is nonincreasing during the Wasserstein step,

k+1 /2|

||Ph |BV(Q) ||th||Bv (Q)-

Using as before the implicit function theorem, we show below that karl = R(piti/ 2) for some

suitable (1 + h)-Lispchitz function R. By standard Lip o BV composition [3] this will prove that

k+1/2
o5 vy < (L+ D)ok 2 v

and will conclude the proof by immediate induction.

Indeed, we already know from (5.3) that pkH/ * and kar1 share the same support. In this
support and from (3.9) it is easy to see that p = pﬁH(z) is the unique positive solution of

F(p pyty* () = 0 with

flo, ) = \/5(1 - g <1 - ﬂzlp”“)) — Vi

m

18



For ;1 > 0, the implicit function theorem gives the existence of a C! map R such that f(p,u) = 0 <
_Ouf <
9 f |p=R(u) ~
(14 h) uniformly in m > 1, hence R is (1 + h)-Lipschitz as claimed and the proof is complete.

O

_ . _ . . dR
p = R(p), with R(0) = 0. An algebraic computation shows moreover that 0 < &*

Proposition 5.5. Up to extraction of a discrete sequence h — 0,m — oo, there holds
Phms Phom = p - strongly in L'(Qr)

Dhom —p and Ppm —D weakly in all LY(Qr)
for allT > 0. If in addition mh — 0 then p = p.

Proof. The first part of the statement follows exactly as in section 3, exploiting the %—Hélder
estimates (5.5) and the space compactness from Proposition 5.4 in order to apply the Rossi-Savaré
theorem [39]. The fact that pj, m, pn,m have the same limit comes from (5.4).

For the pressures, we simply note from pp, ., < 1 and m > 1 that pp, ,m = mlpzn;f 2ph,m is
bounded in L' N L (Qr) uniformly in A, m in any finite time interval [0, T]. Thus up to extraction
of a further sequence we have p, ,, = p in all LY(Qr), and likewise for py_ ., — p.

Finally, we only have to check that p = p if hm — 0. Because pp m, prm < 1 and z — 2™~ 1 is
(m — 1)-Lipschitz on [0, 1] we have for all fixed ¢ > 0 that

/Q Pronlts) = Pt )] = / gl () = 1)

m/|phm — on(D)] < Crhm — 0,

N

where we used (5.4) in the last inequality. Hence p = p and the proof is complete.
O

In order to pass to the limit in the diffusion term div(pVp) we first improve the convergence of
ﬁh,m:

Lemma 5.6. There exists a constant Cp, independent of h and m, such that
150l L2 ((0.1), 11 02)) < O
for all T > 0. Consequently, up to a subsequence, pp m converges weakly in L*((0,T), H'(Q)) to p.

Proof. The proof is based on the flow interchange technique developed by Matthes, McCann and
Savaré in [28]. Let n be the (smooth) solution of

o = An™ 1 4 eAn,
k+1/2
Nimo = pp /.

It is well known [4] that 7 is the Wasserstein gradient flow of

m—1
= 1 .
G(p) 2 +€/Qp og(p)
Since G is geodesically 0-convex, 7 satisfies the Evolution Variational Inequality (EVI)
1d* 9
S5 W n(s), p) < Glp) — Gn(s)),
2 dt|,_,
for all s > 0 and for all p € P?¢(Q), where %f(t) := limsup M By optimality of pkﬂ/2
s—0t
n (5.2), we obtain that
1d* 9 & dr
B T W —h — Fm .
2|, (1(5); Phm) = i | _. (n(s))
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Since 7 is smooth due to the regularizing eA term, we can legitimately integrate by parts for all
s>0

d m

—Fm(n(s)) = mn( $)™ N (An(s)™ ! +eAn(s))

/ I = [ )" 2P
v (e

as s — 0, an easy lower semi-continuity

m m—1 2
_ 7vn8m—12:_7
Qm_1| ()" m

N

Remarking that —Z7(s)" 1 — -2k 1/2 = pit /2
argument gives that

k m k m— 3 3 di—
/7\V +1/2‘2 / ti/g) 1|2<11£H\"1[I)1f o Fm(n(s))-
t=s
Then we have
i k
/ —Iv i PP < Frnt (0 ) = Fona (o 0”)

; k+1/2 k+1/2
+e </ P 108(Ph m) — / phin 2 log(pr )) :
Q
First arguing as in Proposition 3.7 to control
Fine1(ph) € Frnma(py*) + Crh,

and then passing to the limit € N\, 0, we obtain
[ VB < Fca (k) = Faealhih) + Cr.

Summing over k gives

T
/ / |V P (t, )| dedt <
0 Q

for all T < 4o00. Due to py < 1 and m > 1 we can bound F,,,—1(po) = 5 [yt < L[ po <
lpoll 1 () and the result finally follows. O

7 (Fm—1(po) — Fn1(phm) + Cr) < 2Fm—1(po) + Cr

5.2 Properties of the pressure p and conclusion
We start by showing that the limits p, p satisfy the compatibility conditions in (5.1).
Lemma 5.7. There holds

0<p,p<l and p(l—p)=0 ae inQr.

Proof. By Lemma 5.2 it is obvious that 0 < p < 1 and 0 < p < 1 are inherited from 0 < pp, < 1
and 0 < ppm = —Zopi b Mo

mlphm\ml

In order to prove that p(1 — p) = 0, we first observe that

Phom(l — pum) = 0 a.e. in Q7.

Indeed, since pp, . — p strongly in L' (Qr) we have py (L, z) — p(t,z) a.e. If the limit plt,x) <1
then pp, m(t,z) < (1—¢) for small h and large m. Hence py, (¢, ) = -opi 1 < Mo (]—g)m=1

m— 1phm N =1
0 while 1 — pj, ,, remains bounded, and therefore the product pp m (1 — p, m) — 0. Now if the limit

p(t,x) =1 then the pressure pp p, = m’”lpznml < ~™5 remains bounded, while 1 — pj, , (t,2) — 0

i
hence the product goes to zero in this case too.
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m

Thanks to the uniform L° bounds pp.,, < 1 and pp,;m < 75 < 2 we can apply Lebesgue’s

convergence theorem to deduce from this pointwise a.e. convergence that, for all fixed nonnegative
© € C(Qr), there holds

im [ ppm(1 = prm)p = 0.
Qr
On the other hand since pp, ,, — p strongly in Ll(QT) hence a.e, and because 0 < pp,,,m < 1, we
see that (1 — pp.m)p — (1 — p)p in all LY(Qr). From Proposition 5.5 we also had that pj, , — p
in all LY(Qr), hence by strong-weak convergence we have that

/ p(I=p)p=lm [ ppm(l—prm)p=0
T Qr

for all ¢ > 0. Because p(1 — p) = 0 we conclude that p(1 — p) = 0 a.e. in Q7 and the proof is
achieved.
O

We end this section with

Proof of Theorem 5.1. We only sketch the argument and refer to [18] for the details. Fix any
0 < t; <ty and ¢ € C3(R?Y). Exploiting the Euler-Lagrange equations (3.6)(3.9) and summing
from k = ky = |t1/h] to k = ko — 1 = |ta/h] — 1, we first obtain

k2h k‘gh
/ Ph,m (t2)e — prm(t1)p + / PhymVDhm - Vo = —/ / Ph,m (1 = Phom) + R(h,m),
Rd kih JRA kih JRE

where the remainder R(h, m) — 0 for fixed 