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ON THE CONVEXITY OF INJECTIVITY DOMAINS
ON NONFOCAL MANIFOLDS∗
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Abstract. Given a smooth nonfocal compact Riemannian manifold, we show that the so-called
Ma–Trudinger–Wang condition implies the convexity of injectivity domains. This improves a previous
result by Loeper and Villani.
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1. Introduction. Let (M, g) be a smooth compact Riemannian manifold of di-
mension n ≥ 2. The injectivity domain at a point x ∈M is defined as

I(x) :=
{
v ∈ TxM | ∃ t > 1 s.t. d(x, expx(tv)) = |tv|x

}
,

where expx denotes the exponential mapping at x, d denotes the geodesic distance on
M ×M , and |v|x =

√
gx(v, v) =

√
〈v, v〉x. We recall that I(x) is an open star-shaped

subset of TxM , and by the Itoh–Tanaka theorem [1, 13, 16] its boundary TCL(x)
(which is called the tangent cut locus at x) is Lipschitz. Its image by the exponential
mapping is called the cut locus of x,

cut(x) := expx
(
TCL(x)

)
.

Recall that the geodesic distance from x, that is, the function y �→ d(x, y), is smooth
outside cut(x), and more generally the distance function d is smooth outside the set

cut(M) :=
{
(x, y) ∈M ×M | y ∈ cut(x)

}
.

For every x ∈M , v ∈ I(x), and (ξ, η) ∈ TxM×TxM , the Ma–Trudinger–Wang tensor
(or MTW tensor for short) at (x, v) evaluated on (ξ, η) is defined by the formula

(1.1) S(x,v)(ξ, η) := −3

2

d2

ds2

∣∣∣∣
s=0

d2

dt2

∣∣∣∣
t=0

d2

2

(
expx(tξ), expx(v + sη)

)
.

(The MTW tensor was introduced for the first time in [19] in a slightly different way;
see also [22].) Since v ∈ I(x), we have that expx(v) 	∈ cut(x), and hence the pair
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of points (expx(tξ), expx(v + sη)) does not belong to cut(M), provided s, t are small
enough and the right-hand side in (1.1) is well defined. As observed by Loeper in [17],
if ξ, η are two unit orthogonal vectors in TxM , then

S(x,0)(ξ, η) = σx(P )

is the sectional curvature of M at x along the plane P generated by ξ and η.
Definition 1.1. We say that (M, g) satisfies (MTW) if the following property

is satisfied:

∀x ∈M, ∀ v ∈ I(x), ∀ ξ, η ∈ TxM,
[
〈ξ, η〉x = 0 =⇒ S(x,v)(ξ, η) ≥ 0

]
.

We say that (M, g) satisfies (MTW(K,C)) if there exists (K,C) ∈ R× R ∪ {+∞}:

∀x ∈M, ∀ v ∈ I(x), ∀ ξ, η ∈ TxM, S(x,v)(ξ, η) ≥ −C |〈ξ, η〉x| |ξ|x|η|x +K|ξ|2x|η|2x.

The (MTW) property imposes hard constraints on the geometry of (M, g). First,
by Loeper’s observation above, if (M, g) satisfies (MTW), then it must have non-
negative sectional curvatures. Moreover, as shown by Loeper and Villani in [18],
the (MTW) property has some effects on the geometry of injectivity domains. They
proved that if (M, g) is nonfocal and satisfies a stronger form of the (MTW) condi-
tion, then all of its injectivity domain must be uniformly convex. The aim of the
present paper is to improve the result by Loeper and Villani by showing that the
strong form of the (MTW) condition can be dropped. Before stating our main result,
let us briefly recall the link between (MTW) and the regularity of optimal transports
with quadratic geodesic costs, which was the initial motivation for the introduction
of the MTW tensor; see [22].

Let μ, ν be two probability measures on M , and let c : M × M → R be the
quadratic geodesic cost defined by

c(x, y) :=
d(x, y)2

2
∀ (x, y) ∈M ×M.

The Monge problem from μ to ν and cost c consists in finding a measurable map
T :M →M which minimizes the cost functional∫

M

c(x, T (x)) dμ(x)

under the constraint T#μ = ν (ν is the image measure of μ by T ). If μ is absolutely
continuous, then according to McCann [20] this minimizing problem has a solution
T , unique up to modification on a μ-negligible set. A natural question is whether
the optimal transport map can be expected to be continuous. To this purpose, we
introduce the following definition.

Definition 1.2. We say that (M, g) satisfies the transport continuity property
(abbreviated T CP) if, whenever μ and ν are absolutely continuous measures with
respect to the volume measure, with densities bounded away from zero and infinity,
the optimal transport map T from μ to ν with cost c is continuous, up to modification
on a set of zero volume.

The following results give necessary and sufficient conditions for T CP in terms of
the (MTW) property and convexity properties of injectivity domains; see [8]. Their
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proofs are based on previous works by many authors; see [2, 4, 5, 14, 15, 17, 18, 19, 22].

Theorem 1.3. Assume that (M, g) satisfies the T CP condition. Then (M, g)
satisfies (MTW) and all its injectivity domains are convex.

Theorem 1.4. Assume that M has dimension 2. Then the T CP condition holds
if and only if (M, g) satisfies (MTW) and all its injectivity domains are convex.

Let us now state our main result. The nonfocal domain at some x ∈M is defined
as

NF(x) :=
{
v ∈ TxM | dtv expx is not singular for any t ∈ [0, 1]

}
.

It is an open star-shaped subset of TxM whose boundary TFL(x) is called the tangent
focal domain at x. The set NF(x) = NF(x) ∪ TFL(x) can be shown to be locally
semiconvex (see [1] and Appendix A), and the following inclusion always holds:

I(x) ⊂ NF(x) ∀x ∈M ;

see, for instance, [11, Corollary 3.77] or [22, Problem 8.8].

Definition 1.5. We say that (M, g) is nonfocal, provided

TCL(x) ⊂ NF(x) ∀x ∈M.

Remark 1.6. The nonfocal assumption together with the compactness ofM gives
c > 0 such that for all x ∈M , d

(
I(x),TFL(x)

)
≥ c.

In [18], Loeper and Villani proved that if (M, g) is nonfocal and satisfies the
following strict form of the (MTW) condition,

S(x,v)(ξ, η) ≥ K|ξ|2x|η|2x ∀x ∈M, ∀ v ∈ I(x), ∀ ξ, η ∈ TxM

for someK > 0, then all its injectivity domains are uniformly convex. Our main result
shows that the (MTW) condition alone is sufficient for the convexity of injectivity
domains.

Theorem 1.7. Let (M, g) be a nonfocal Riemannian manifold satisfying (MTW).
Then all injectivity domains of M are convex.

Our proof is based on techniques relying on the extended MTW tensor, which
were introduced by the first and third authors in [5] and subsequently exploited in
[6, 7], together with bootstrap arguments. In fact, Theorem 1.7 provides a partial
answer to a conjecture formulated by Villani in [23].

Villani’s conjecture. Let (M, g) be a smooth compact Riemannian manifold sat-
isfying (MTW). Then all its injectivity domains are convex.

We will address the above conjecture in the case of analytic surfaces in a forth-
coming paper [3]. In fact, we take the opportunity in this paper to present a slight
improvement (Theorem 4.1) of Theorem 1.7 that will be useful in [3].

The paper is structured as follows: In section 2 we provide some preliminary
results about injectivity and nonfocal domains. Then, section 3 contains the proof
of Theorem 1.7. Section 4 is devoted to the proof of Theorem 4.1, with the proof’s
core following the strategy developed in section 3 together with additional technical-
ities, and in section 5 we show how to recover Loeper and Villani’s result with our
techniques. Finally, in the appendices we collect some useful results on semiconvex
functions and tangent cut loci.
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2. Preliminary results. Let M be a smooth compact Riemannian manifold,
and denote by UM ⊂ TM the unit tangent bundle. Let us introduce some definitions
and notation.

The distance function to the cut locus at some x ∈ M , tcut : UM → (0,∞), is
defined as

tcut(x, v) := sup
{
t ≥ 0 | tv ∈ I(x)

}
= max

{
t ≥ 0 | d(x, expx(tv)) = t

}
.

Then, for every x ∈M , there holds

I(x) =
{
tv | 0 ≤ t < tcut(x, v), v ∈ UxM

}
, TCL(x) =

{
tcut(x, v)v | v ∈ UxM

}
.

For every x ∈M , we denote by ρx the radial distance on TxM , that is,

ρx(v, w) :=

{
|v|x + |w|x if gx(v, w) 	= |v|x|w|x,
|v − w|x if gx(v, w) = |v|x|w|x.

Then the radial distance to I(x) satisfies for any v ∈ TxM ,

ρx
(
v, I(x)

)
:= inf

{
ρx(v, w) |w ∈ I(x)

}
=

{ ∣∣∣v − tcut

(
x, v

|v|x

)
v

|v|x

∣∣∣
x

if v /∈ I(x),

0 otherwise.

For every v ∈ TCL(x) we set

δ(v) := max
{
|v − w|x |w ∈ TCL(x) s.t. expx v = expx w

}
,

for every compact set V (x) ⊂ TxM we let

δ(V (x)) := min
{
δ(v) | v ∈ V (x) ∩ TCL(x)

}
,

and, finally, for every compact set V ⊂ TM we let

δ(V ) := min
{
δ
(
V (x)

)
|x ∈M

}
,

where for each x ∈ M , V (x) denotes the fiber of V over x (which might be empty,
in which case δ(V (x)) = +∞). Notice that nonfocal compact Riemannian manifolds
satisfy δ(TM) > 0. However, Riemannian manifolds satisfying δ(TM) > 0 are not
necessarily nonfocal, as the property δ(TM) > 0 rules out only purely focal velocities.

Lemma 2.1. Let V be a compact subset of TM with δ(V ) > 0 such that each
V (x) 	= ∅ is star shaped with respect to the origin. Then, there exists K > 0 such that
for every (x, v) ∈ V ,

ρx
(
v, I(x)

)
≤ K

(
|v|2x − d

(
x, expx(v)

)2)
.

In particular assume that (M, g) is nonfocal. Then, there exists K > 0 such that for
every x ∈M and every v ∈ TxM ,

ρx
(
v, I(x)

)
≤ K

(
|v|2x − d

(
x, expx(v)

)2)
.
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Proof of Lemma 2.1. By compactness of M , the geodesic distance (and thus
the quantity d(x, expx(v))) is uniformly bounded. Then since the right-hand side in
the inequalities is quadratic in |v|x while the left-hand side has linear growth, it is
sufficient to show that there is δ > 0 such that

|v|2x − d
(
x, expx(v)

)2 ≤ δ =⇒ ρx
(
v, I(x)

)
≤ K

(
|v|2x − d

(
x, expx(v)

)2)
for every (x, v) as required. First, for every (x, v) ∈ V we set

ψx(v) := dv expx(v),

so that if γ : [0, 1] → M is a constant-speed minimizing geodesic path going from x
to y = expv(x), with initial velocity v0 and final velocity v1, the map ψx is defined
by v0 �→ v1. Since δ(V ) > 0, there exists Δ > 0 such that, for every x ∈ M with
V (x) 	= ∅ and every v ∈ V (x) ∩ TCL(x), there is a geodesic path starting at x with
initial velocity w (with |w|x = |v|x), and finishing at y with final velocity ψx(w),
satisfying

|v|2x − 〈ψx(v), ψx(w)〉y > Δ;(2.1)

see, for instance, [18, Proposition C.5(a)]. Let v ∈ TCL(x)∩V (x), and let y := expx(v)
be fixed. As before, consider a minimizing geodesic path from x to y with initial
velocity w satisfying (2.1). Since d2(x, ·) is locally semiconcave on M , 2ψx(w) is a
supergradient for d2(x, ·) at y, and the distance from x to its cut locus is uniformly
bounded from below (see [22, Definition 10.5 and Proposition 10.15]), it is easy to
show the existence of a smooth function h :M → R whose C2 norm does not depend
on x and v and such that ⎧⎨⎩

d(x, y)2 = h(y) = |v|2x,
∇h(y) = 2ψx(w),
d(x, z)2 ≤ h(z) ∀ z ∈M ;

see, for instance, [18, Proposition C.6]. This gives

|(1 + ε)v|2x − d
(
x, expx((1 + ε)v)

)2 ≥ (1 + ε)2|v|2x − h
(
expx((1 + ε)v)

)
∀ ε.

Hence, if C0 denotes a uniform bound for the C2 norm of h independent of x and v,
we get

|(1 + ε)v|2x − d
(
x, expx((1 + ε)v)

)2 ≥ 2ε
(
|v|2x − 〈ψx(v), ψx(w)〉

)
− C0ε

2 ∀ε.

Then, using (2.1), we deduce that

|(1 + ε)v|2x − d
(
x, expx((1 + ε)v)

)2 ≥ εΔ ∀ ε ∈ (−ε0, ε0),

where ε0 := Δ/C0. Since

ρx
(
(1 + ε)v, I(x)

)
= |(1 + ε)v − v|x = ε|v|x,

we finally obtain

ρx
(
(1 + ε)v, I(x)

)
≤ |v|x

Δ

(
|(1 + ε)v|2x − d

(
x, expx((1 + ε)v)

)2) ∀ ε ∈ (−ε0, ε0).
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To conclude the proof it suffices to observe that, by a simple compactness argument
together with the fact that each V (x) 	= ∅ is star shaped, one can easily check that

there exists δ > 0 such that any w ∈ V (x) \ I(x), with |w|2x − d
(
x, expx(w)

)2 ≤ δ, has
the form (1 + ε)v for some v ∈ TCL(x) ∩ V (x) and ε ∈ [0, ε0).

Lemma 2.2. There exists K > 0 such that for every (x, v) ∈ TM ,

K−1ρx
(
v, I(x)

)
≤ ρy

(
w, I(y)

)
≤ Kρx

(
v, I(x)

)
and for every (x, v) ∈ TM with v ∈ I(x),

K−1ρx
(
v,TFL(x)

)
≤ ρy

(
w,TFL(y)

)
≤ Kρx

(
v,TFL(x)

)
,

where y = expx(v) and w = −dv expx(v) = −ψx(v), so in particular x = expy(w).
Proof of Lemma 2.2. The second inequality follows easily by compactness argu-

ments. Let us prove the first inequality. As before, it is sufficient to show the result,
provided ρx(v, I(x)) ≤ δ for some δ > 0. Indeed ρx(v, I(x)) = 0 is equivalent to
ρy(w, I(y)) = 0, so all terms vanish. Let (x, v) ∈ TM be fixed, set ev = v

|v|x and

y = expx(v), w = −ψx(v), ew =
w

|w|x
, w := tcut (y, ew) ew,

and in addition set

v := tcut (x, ev) ev, z := expx(v), w′ := −ψx(v).

Note that since v belongs to TCL(x), the velocity w′ belongs to TCL(z), so it satisfies

w′ = tcut (z, ew′) ew′.

Moreover,

ρx
(
v, I(x)

)
= |v − v|x and ρy

(
w, I(y)

)
= |w − w|y .

Equip TM with any distance dTM which in charts is locally bi-Lipschitz equivalent
to the Euclidean distance on Rn × Rn. We may assume that |v|x is bounded. Since
the geodesic flow is Lipschitz on compact subsets of TM , there holds that

dTM ((y, w), (z, w′)) ≤ K ′∣∣v − v
∣∣
x

for some uniform constant K ′. In fact, if v is close to I(x), then v is close to v,
and so also y and z are close to each other, so the above inequality follows from our
assumption on dTM . Then, assuming that ρx(v, I(x)) ≤ δ for δ > 0 small enough
and taking a local chart in a neighborhood of y if necessary, we may assume that
y, z, w, w,w′ are in Rn. Moreover, up to a bi-Lipschitz transformation which may
affect the estimates only up to a uniform multiplicative constant, we may assume for
simplicity that dTM coincides with the Euclidean distance on Rn × Rn. Since y is
perturbed along the geodesic flow, Theorem B.2 gives

|w − w|y = |w|y − tcut(y, ew) = |v|x − |v|x + |v|x − tcut(y, ew)

= |v|x − |v|x + |w′|z − tcut(y, ew)

= |v − v|x + tcut(z, ew′)− tcut(y, ew)

≤ |v − v|x +KK ′ |v − v|x .

We are now ready to start the proof of Theorem 1.7.
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3. Proof of Theorem 1.7. Let (M, g) be a smooth compact Riemannian man-
ifold of dimension n ≥ 2 which is nonfocal and satisfies (MTW), and let K > 0 be a
constant such that all properties of Lemmas 2.1–2.2 are satisfied. For every μ > 0 we
set

Iμ(x) :=
{
v ∈ TxM | ρx(v, I(x)) ≤ μ

}
.

Since M is assumed to be nonfocal, there is μ > 0 small enough such that Iμ(x) does
not intersect TFL(x) for any x ∈M .

Lemma 3.1. Taking K > 0 larger if necessary, we may assume that for every
x ∈M and any v0, v1 ∈ I(x) there holds that

vt := (1− t)v0 + tv1 ∈ IK|v1−v0|x(x)

and

qt := −dvt expx(vt) ∈ IK|v1−v0|x(yt),
with yt := expx(vt).

Proof of Lemma 3.1. Since the functions v ∈ UxM �→ tcut(x, v) are uniformly
Lipschitz, there is K > 0 such that

ρx
(
vt, I(x)

)
≤ K|v1 − v0|x ∀ v0, v1 ∈ I(x), ∀x ∈M.

The definition of IK|v1−v0|x(x) together with Lemma 2.2 yields both inclusions.
Our proof requires the use of the extended MTW tensor which was initially in-

troduced by the first and third authors in [5]. To define this extension, we let x ∈M ,
v ∈ NF(x), and (ξ, η) ∈ TxM × TxM . Since y := expx v is not conjugate to x, by the
inverse function theorem there exist an open neighborhood V of (x, v) in TM and an
open neighborhood W of (x, y) in M ×M such that

Ψ(x,v) : V ⊂ TM −→ W ⊂M ×M,
(x′, v′) �−→

(
x′, expx′(v′)

)
is a smooth diffeomorphism from V to W . Then we may define ĉ(x,v) : W → R by

ĉ(x,v)(x
′, y′) :=

1

2

∣∣Ψ−1
(x,v)(x

′, y′)
∣∣2
x′ ∀ (x′, y′) ∈ W .(3.1)

If v ∈ I(x), then for y′ close to expx v and x′ close to x we have ĉ(x,v)(x
′, y′) =

c(x′, y′) := d(x′, y′)2/2. For every x ∈ M , v ∈ NF(x), and (ξ, η) ∈ TxM × TxM , the
extended MTW tensor at (x, v) is defined by the formula

S(x,v)(ξ, η) := −3

2

d2

ds2

∣∣∣∣
s=0

d2

dt2

∣∣∣∣
t=0

ĉ(x,v)

(
expx(tξ), expx(v + sη)

)
.

The following lemma may be seen as an “extended” version of [18, Lemma 2.3].
Lemma 3.2. There exist constants C,D > 0 such that, for any (x, v) ∈ TM with

v ∈ Iμ(x),

S(x,v)(ξ, η) ≥ −C |〈ξ, η〉x| |ξ|x|η|x −Dρx(v, I(x))|ξ|2x|η|2x ∀ ξ, η ∈ TxM.
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We also give a local version of this theorem when M is not nonfocal.
Lemma 3.3. Let V ⊂ TM and μ > 0 such that

ρ
(
V ∩ I,TFL

)
:= sup

{
ρx(v, w) |x ∈M, v ∈ V (x) ∩ I(x), w ∈ TFL(x)

}
> μ.

Then there exist constants C,D > 0 such that, for any (x, v) ∈ TM with v ∈ V (x) ∩
Iμ(x),

S(x,v)(ξ, η) ≥ −C |〈ξ, η〉x| |ξ|x|η|x −Dρx(v, I(x))|ξ|2x|η|2x ∀ ξ, η ∈ TxM.

Proof of Lemma 3.2. The tensors S and S coincide on the sets of (x, v) ∈ TM
such that v ∈ I(x), and hence

∀ (x, v) ∈ TM with v ∈ I(x), ∀ (ξ, η) ∈ TxM × TxM,[
〈ξ, η〉x = 0 =⇒ S(x,v)(ξ, η) ≥ 0

]
.

Let Iμ(M) be the compact subset of TM defined by

Iμ(M) := ∪x∈M

(
{x} × Iμ(x)

)
.

The mapping

(x, v) ∈ Iμ(M) �−→
(
x, expx(v)

)
is a smooth local diffeomorphism at any (x, v) ∈ Iμ(M), and the set of (x, v, ξ, η) with
(x, v) ∈ Iμ(M) and ξ, η ∈ UxM such that 〈ξ, η〉x = 0 is compact. Then there is D > 0
such that

S(x,v)(ξ, η) ≥ −Dρx(v, I(x))

for every x, v, ξ, η with (x, v) ∈ Iμ(M) and ξ, η ∈ UxM such that 〈ξ, η〉x = 0. By
homogeneity we infer that

S(x,v)(ξ, η) ≥ −Dρx(v, I(x))|ξ|2x|η|2x

for every x, v, ξ, η with (x, v) ∈ Iμ(M) and ξ, η ∈ TxM such that 〈ξ, η〉x = 0. We
conclude as in the proof of [18, Lemma 2.3]. Remark 1.6 is useful here.

The proof of Lemma 3.3 follows by the same arguments. The following lemma
will play a crucial role.

Lemma 3.4. Let h : [0, 1] → [0,∞) be a semiconvex function such that h(0) =
h(1) = 0, and let c ≥ 0 be fixed. Assume that there are t1 < · · · < tN in (0, 1) such
that h is not differentiable at ti for i = 1, . . . , N , is of class C2 on (0, 1)\{t1, . . . , tN},
and satisfies

ḧ(t) ≥ −|ḣ(t)| − c ∀ t ∈ [0, 1] \
{
t1, . . . , tN

}
.(3.2)

Then

h(t) ≤ c t(1− t) ∀ t ∈ [0, 1].(3.3)

Moreover, if in addition there exists a constant ε ≥ 0 such that

c ≤ ‖h‖∞ + ε,(3.4)
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then

‖h‖∞ ≤ ε/3.(3.5)

Proof of Lemma 3.4. Let a > 0, and let f : [0, 1] → R be the semiconvex function
defined by

f(t) = h(t)− at(1− t) ∀ t ∈ [0, 1].

Let t be a maximum point for f . Since f is semiconvex, it has to be differentiable at
t, so t 	= ti for i = 1, . . . , N . If t ∈ (0, 1), then there holds that ḟ(t) = 0 and f̈(t) ≤ 0.
Thus, using (3.2) we get

|ḣ(t)| = a|2t− 1| ≤ a,

0 ≥ f̈(t) = ḧ(t) + 2a ≥ −|ḣ(t)| − c+ 2a ≥ a− c.

This yields a contradiction as soon as a > c, which implies that in that case f attains
its maximum on the boundary of [0, 1]. Since f(0) = f(1) = 0, we infer that

h(t) ≤ at(1− t) ∀ t ∈ [0, 1]

for every a > c. Letting a ↓ c, we get (3.3). Finally, if (3.4) is satisfied, (3.3) implies
(recall that h is nonnegative)

‖h‖∞ = sup
t∈[0,1]

|h(t)| ≤ (‖h‖∞ + ε) sup
t∈[0,1]

t(1− t) = (‖h‖∞ + ε)/4

and inequality (3.5) follows easily.
We recall that given v0, v1 ∈ I(x), for every t ∈ [0, 1] we set

vt := (1 − t)v0 + tv1, yt := expx(vt), qt := −dvt expx(vt).

In addition, whenever yt does not belong to cut(x) (or, equivalently, x /∈ cut(yt)) we
denote by qt the velocity in I(yt) such that

expyt
(qt) = x and |qt|yt = d(x, yt).

When yt ∈ cut(x), we denote by qt ∈ I(yt) a velocity such that

expyt
(qt) = x and |qt|yt = d(x, yt).

In this case qt may not be unique. In what follows, thanks to Lemma 3.5, the lack
of uniqueness will concern only a finite number of points and therefore will not be an
issue for us.

The following results follow respectively from [8, Lemma B.2] and [9, Proposition
6.1] and do not need the nonfocality assumption. The idea of Lemma 3.6 goes back
to Kim and McCann [14]. Lemma 3.5 is an improvement of [10].

Lemma 3.5. Let x ∈M and v0, v1 ∈ I(x) be fixed. Then, up to slightly perturbing
v0 and v1, we can assume that v0, v1 ∈ I(x) and that the semiconvex function h :
[0, 1] → R defined as

h(t) :=
|vt|2x
2

− d(x, yt)
2

2
∀ t ∈ [0, 1]
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is of class C2 outside a finite set of times 0 < t1 < · · · < tN < 1 and not differentiable
at ti for i = 1, . . . , N .

Lemma 3.6. Let x ∈ M and v0, v1 ∈ I(x). Assume that the function h defined
above is C2 outside a finite set of times 0 < t1 < · · · < tN < 1 and is not differentiable
at ti for i = 1, . . . , N . Furthermore, suppose that [qt, qt] ⊂ NF(yt) for all t ∈ [0, 1].
Then for every t ∈ [0, 1] \

{
t1, . . . , tN

}
we have

(3.6) ḣ(t) =
〈
qt − qt, ẏt

〉
yt
,

(3.7) ḧ(t) =
2

3

∫ 1

0

(1− s)S(yt,(1−s)qt+sqt)(ẏt, qt − qt) ds.

The next lemma deals with semiconvexity properties of the sets I(x). We refer
the reader to Appendix A for the main definitions and properties of semiconvex sets.

Lemma 3.7. There exists a large universal constant K > 0 such that the following
properties are satisfied for any x ∈M :

(i) Assume there are constants ω > 0 and κ ∈ (0, μ) such that

∀ v0, v1 ∈ I(x), |v1 − v0|x ≤ ω =⇒ sup
q∈[qt,qt]

{
ρyt

(
q, I(yt)

)}
≤ κ.

Then I(x) is (Kκ)-radial-semiconvex.
(ii) Assume there are constants ω, α, ε ≥ 0 such that

∀ v0, v1 ∈ I(x), |v1 − v0|x ≤ ω

=⇒ sup
q∈[qt,qt]

{
ρyt

(
q, I(yt)

)}
≤ min

{
α

(
|vt|2x
2

− d(x, yt)
2

2

)
+ ε, μ

}
.

Then I(x) is (Kε)-radial-semiconvex.
Proof of Lemma 3.7. We first prove assertion (i). We need to show that there is

a uniform constant K > 0 and ν > 0 sufficiently small (see Appendix A) such that,
for any v0, v1 ∈ I(x) with |v0 − v1|x < ν,

ρx
(
vt, I(x)

)
≤ Kκ

t(1− t)

2

∣∣v0 − v1
∣∣2 ∀ t ∈ [0, 1].

As in Lemma 3.5 we set

h(t) :=
|vt|2x
2

− d(x, yt)
2

2
∀ t ∈ [0, 1].

By Lemma 2.1 it is sufficient to show that

h(t) ≤ Kκ
t(1− t)

2

∣∣v0 − v1
∣∣2 ∀ t ∈ [0, 1]

for some constantK > 0. Let v0, v1 ∈ I(x) and ν > 0 with |v1−v0|x < ν ≤ ω be fixed.
By Lemma 3.5, up to slightly perturbing v0, v1 we may assume that h : [0, 1] → R

is semiconvex, C2 outside a finite set of times 0 < t1 < · · · < tN < 1, and not
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differentiable at ti for i = 1, . . . , N . By Lemmas 3.2 and 3.6 (observe that κ < μ and
Iμ(yt) ⊂ NF(yt)),

ḧ(t) ≥ −C|ḣ(t)||ẏt|yt |qt − qt|yt −D max
q∈[qt,qt]

{
ρyt(q, I(yt))

}
|ẏt|2yt

|qt − qt|2yt

for every t ∈ [0, 1] \ {t1, . . . , tN}. Moreover, by compactness of M , there is a uniform
constant E > 0 such that∣∣ẏt∣∣yt

≤ E
∣∣v0 − v1

∣∣
x

and
∣∣qt − qt

∣∣
yt

≤ E.

Hence

(3.8) ḧ(t) ≥ −CE2|ḣ(t)|
∣∣v1 − v0

∣∣
x
−DE4κ

∣∣v1 − v0
∣∣2
x

∀ t ∈ [0, 1] \
{
t1, . . . , tN

}
.

Taking ν ∈ (0, ω) small enough yields

ḧ(t) ≥ −|ḣ(t)| −DE4κ|v1 − v0|2 ∀ t ∈ [0, 1] \
{
t1, . . . , tN

}
,

so Lemma 3.4 gives

h(t) ≤ DE4κ t(1− t)|v1 − v0|2x ∀ t ∈ [0, 1],

which shows that I(x) is (Kκ)-radial-semiconvex where K > 0 is a uniform constant.
To prove (ii) we note that (3.8) implies

(3.9) ḧ(t) ≥ −CE2|ḣ(t)|
∣∣v1 − v0

∣∣
x
−DE4α|h(t)|

∣∣v1 − v0
∣∣2
x
−DE4ε

∣∣v1 − v0
∣∣2
x
,

which (by choosing ν ∈ (0, ω) sufficiently small) gives

ḧ(t) ≥ −|ḣ(t)| − ‖h‖∞ −DE4ε|v1 − v0|2x ∀ t ∈ [0, 1] \
{
t1, . . . , tN

}
.

Hence, by the second part of Lemma 3.4 we obtain

‖h‖∞ ≤ DE4

3
ε|v1 − v0|2x.

Plugging this information back into (3.9) gives, for ν sufficiently small,

ḧ(t) ≥ −CE2|ḣ(t)|
∣∣v1 − v0

∣∣
x
− 2DE4ε

∣∣v1 − v0
∣∣2
x
.

We conclude as in the first part of the proof.
Returning to the proof of Theorem 1.7, we say that the property P(r) is satisfied

if for any x ∈M the set Bx(r)∩ I(x) is convex (here Bx(r) denotes the unit open ball
in TxM with respect to | · |x). If P(r) is satisfied for any r ≥ 0, then all the injectivity
domains of M are convex. Since r0 := infx∈M, v∈TCL(x) |v|x is strictly positive, P(r)
is true for any r ≤ r0, and hence the set of r ≥ 0 such that P(r) is satisfied is an
interval J with positive length. Moreover, since the convexity property is closed, J is
closed. Consequently, in order to prove that J = [0,∞), it is sufficient to show that
J is open.

Lemma 3.8. The set of r for which P(r) holds is open in [0,∞).
Proof of Lemma 3.8. Assume that P(r) holds. We want to prove that if β > 0

is sufficiently small, then P (r+ β) holds as well. The proof is divided into two steps:
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B(r+
β) 

B(
r)

qt
q'

qt

qr q'r

qs

≤ Kν

I(yt)

≤ β

t qs~
t

t

t

t
t

Fig. 1. Definitions.

first we will show that, for any β ∈ (0, μ/(2K)) (here μ and K are as in Lemma
3.7), the sets Bx(r + β) ∩ I(x) are (Kβ)-radial-semiconvex for any x ∈ M . Then, in
Step 2 we show the following “bootstrap-type” result: if the sets Bx(r + β) ∩ I(x)
are A-radial-semiconvex for all x ∈M , then they are indeed (A/2)-radial-semiconvex.
The combination of Steps 1 and 2 proves that, for any x ∈ M and β > 0 small, the
sets Bx(r+ β)∩ I(x) are (Kβ/2k)-radial-semiconvex for any k ∈ N and hence convex.

Step 1. I(x) ∩Bx(r + β) is (Kβ)-radial-semiconvex for any β ∈ (0, μ/(2K)).
Fix x ∈M and ν > 0. Thanks to Lemma 3.1, for any v0, v1 ∈ I(x) with |v0−v1|x <

ν we have

vt ∈ IKν(x) and qt ∈ IKν(yt).

Let β > 0 and v0, v1 ∈ Bx(r + β) ∩ I(x) be fixed. By construction

|qt|yt = |vt|x < r + β, |qt|yt ≤ |vt|x < r + β, qt ∈ I(yt).

Since qt ∈ IKν(yt), we can find q′t ∈ I(yt) ∩Byt(r + β) such that

ρyt

(
qt, I(yt)

)
= |qt − q′t| ≤ Kν.

Moreover, using that I(yt) is star shaped and that qt, q
′
t ∈ Byt(r + β), we can find

qrt , q
′r
t ∈ Byt(r) ∩ I(yt) such that ρyt(qt, q

r
t ) ≤ β and ρyt(q

′
t, q

′r
t ) ≤ β. Recall that by

assumption P(r), we have [qrt , q
′r
t ] ⊂ I(yt), which implies (see Figure 1)

max
q∈[qt,qt]

{
ρyt

(
q, I(yt)

)}
≤ max

q∈[qt,qt]

{
ρyt

(
q, [qrt , q

′r
t ]
)}

= max
{
ρyt

(
qt, q

r
t

)
, ρyt

(
qt, q

′r
t

)}
≤ β +Kν,
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where at the second line we used that the maximum is attained at one of the extrema of
the segment. Thus, Lemma 3.7(i) gives that Bx(r+β)∩I(x) is (Kβ+K2ν)-semiconvex
for any β, ν > 0 such that β +Kν < μ/K. We conclude by letting ν ↓ 0.

Step 2. If all I(x)∩Bx(r+β) are A-radial-semiconvex, then they are (A/2)-radial-
semiconvex.

We want to prove that the following holds: there exists β0 > 0 small such that if
for some A > 0 the sets I(x) ∩Bx(r + β) are A-radial-semiconvex for all x ∈ M and
β < β0, then they are indeed (A/2)-radial-semiconvex. To this aim, by the results in
Appendix A, we need to prove that there exists ν > 0 sufficiently small such that for
every β ∈ (0, β0) (β0 to be fixed later, independently of A) and v0, v1 ∈ Bx(r+β)∩I(x)
with |v0 − v1|x < ν we have

ρx
(
vt, I(x)

)
≤ A

2K∗
t(1− t)

2

∣∣v0 − v1
∣∣2 ∀ t ∈ [0, 1],

where K∗ is given by Proposition A.4. Let v0, v1 ∈ I(x) and ν > 0 with |v1−v0|x < ν,
and for t, s ∈ [0, 1] set qst := (1 − s)qt + sqt and denote by q̃st the intersection of the
segments [0, qst ] and [qt, q

′
t] (see Figure 1). We have (by Lemmas 2.1 and 2.2)

ρyt

(
qst , I(yt)

)
≤ ρyt

(
qst , q̃

s
t

)
+ ρyt

(
q̃st , I(yt)

)
≤ ρyt

(
qt, q

′
t

)
+ ρyt

(
q̃st , I(yt)

)
= ρyt

(
qt, I(yt)

)
+ ρyt

(
q̃st , I(yt)

)
≤ Kρx

(
vt, I(x)

)
+ ρyt

(
q̃st , I(yt)

)
≤ K2

(
|vt|2x
2

− d(x, yt)
2

2

)
+ ρyt

(
q̃st , I(yt)

)
.

Therefore, for every t ∈ [0, 1] we get

max
q∈[qt,qt]

{
ρyt

(
q, I(yt)

)}
≤ K2

(
|vt|2x
2

− d(x, yt)
2

2

)
+ max

q̂∈[qt,q′t]

{
ρyt

(
q̂, I(yt)

)}
.(3.10)

Set for every t, s ∈ [0, 1], q̂st := (1− s)q′t + sqt. By the A-radial-semiconvexity we have

ρyt

(
q̂st , I(yt)

)
≤ A

s(1 − s)

2
|qt − q′t|2yt

.(3.11)

Then, we finally obtain for ν > 0 small enough,

sup
q∈[qt,qt]

{
ρyt

(
q, I(yt)

)}
≤ min

{
K2

(
|vt|2x
2

− d(x, yt)
2

2

)
+A|qt − q′t|2yt

, μ

}
for every t ∈ [0, 1]. Two cases may appear.

First case: |qt − q′t|2yt
≤ 1/(2KK∗).

In this case, by Lemma 3.7(ii) we deduce that I(x) ∩ Bx(r + β) is (A/2)-radial-
semiconvex.

Second case: |qt − q′t|2yt
> 1/(2KK∗).

We work in the plane generated by 0, qt, q
′
t in TytM , and we define the curve

γ : [0, 1] → I(yt) as (see Figure 2)

γ(s) := w, where ρyt

(
q̂st , I(yt)

)
= |q̂st − w|yt ∀ s ∈ [0, 1],
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B(
r)

qt
q’t

a b

γ(s)

I(yt)

qs

≤ 2KKE√βA
sa lqt-q’tl ≤ K√β

≤ A sa(1-sa)lqt-q’tl
2 

Q1
Q2

ˆ

~ −
−

t

~

ŝaqt

Fig. 2. Estimations.

and denote by a = γ(sa) the first point of γ which enters Byt(r) and b = γ(sb) the last
one (see Figure 2). Since both qt, q

′
t belong to Byt(r+β) and |qt − q′t|2yt

> 1/(2KK∗),
the intersection of the segment [qt, q

′
t] with Byt(r) is a segment [Q1, Q2] such that∣∣Q1 − qt

∣∣
yt
,
∣∣Q2 − q′t

∣∣
yt

≤ K̃
√
β

for some uniform constant K̃ > 0 and β > 0 small enough. Since∣∣qt − q̂sat
∣∣
yt

≤
∣∣Q1 − qt

∣∣
yt

and
∣∣q′t − q̂sbt

∣∣
yt

≤
∣∣Q2 − q′t

∣∣
yt
,

this implies that both sa and 1− sb are bounded by
˜K
√
β

|qt−q′t|yt <
√
2KK∗K̃

√
β. Let us

again distinguish two cases:
– On [sa, sb], P(r) is true, so [a, b] ⊂ I(yt). Hence

sup
q∈[q̂sat ,q̂

sb
t ]

{
ρyt

(
q, I(yt)

)}
≤ max

{
ρyt

(
q̂sat , I(yt)

)
, ρyt

(
q̂sbt , I(yt)

)}
.

– On [0, sa] (similarly on [1− sb, 1]), the A-radial-semiconvex of Byt(r+β)∩ I(yt)
yields (by (3.11))

ρyt

(
q̂st , I(yt)

)
≤ A

s(1− s)

2
|qt − q′t|2yt

≤ Asa|qt − q′t|2yt
≤

√
2KK∗K̃E

√
βA,

where we used that |qt− q′t|2yt
≤ E for some uniform constant E > 0. Recalling (3.10)

we obtain

sup
q∈[qt,qt]

{
ρyt

(
q, I(yt)

)}
≤ K2

(
|vt|2x
2

− d(x, yt)
2

2

)
+
√
2KK∗K̃E

√
βA.

Hence, if we choose β0 sufficiently small so that
√
2KK∗K̃E

√
β0 ≤ 1/(2KK∗), we

get

sup
q∈[qt,qt]

{
ρyt

(
q, I(yt)

)}
≤ K2

(
|vt|2x
2

− d(x, yt)
2

2

)
+

A

2KK∗ ,



ON THE CONVEXITY OF INJECTIVITY DOMAINS 983

and we again conclude by Lemma 3.7(ii).
As explained above, combining Steps 1 and 2 we infer that, for β > 0 small

enough, all the I(x)∩Bx(r+ β) are convex. This shows that the interval J is open in
[0,∞), concluding the proof of Lemma 3.8 and in turn the proof of Theorem 1.7.

As we will see in the next section, we can extract from the proof of Theorem 1.7
some ideas which will allow us to treat the case of Riemannian manifolds which do
not satisfy the nonfocality assumption. Such a result will play a major role in [3].

4. General version of the proof of Theorem 1.7. Let Z be a compact
subset in TM whose fibers are denoted by Z(x). We say that the extended MTW
condition (MTW(−Dρ,C)) holds on Z if there are constants C,D > 0 such that, for
any (x, v) ∈ TM with v ∈ Z(x),

S(x,v)(ξ, η) ≥ −C |〈ξ, η〉x| |ξ|x|η|x −Dρx(v, I(x))|ξ|2x|η|2x ∀ ξ, η ∈ TxM.

The following improvement of Theorem 1.7 can be proved by the same method. Note
that we do need to assume the manifold is nonfocal.

Theorem 4.1. Let (M, g) be a smooth compact Riemannian manifold, and as-
sume that the following property holds: For every r > 0 such that Bx(r) ∩ I(x) is
convex for all x ∈ M , there are β(r) > 0 and a compact set Z ⊂ TM with radial
fibers (cf. Definition A.2) satisfying the following properties:

1. There are C,D > 0 such that (MTW(−Dρ,C)) holds on Z.
2. There is K > 0 such that

ρx
(
v, I(x)

)
≤ K

(
|v|2x − d

(
x, expx(v)

)2) ∀(x, v) ∈ Z.

3. For all x ∈M and for all β ∈ (0, β(r)), I(x) ∩Bx(r + β) ⊂ Z(x) ⊂ NF(x).
4. For all x ∈ M, for all β ∈ (0, β(r)), and for all v0, v1 ∈ I(x) ∩ Bx(r + β),
vt ∈ Z(x) and [qt, qt] ⊂ Z(yt).

Then all injectivity domains of M are convex.
To prove Theorem 4.1, we will need the following refined version of Lemma 3.4.
Lemma 4.2. Let h : [0, 1] → [0,∞) be a semiconvex function such that h(0) =

h(1) = 0, and let c, C > 0 be fixed. Assume that there are t1 < · · · < tN in (0, 1) such
that h is not differentiable at ti for i = 1, . . . , N , is of class C2 on (0, 1)\{t1, . . . , tN},
and satisfies

ḧ(t) ≥ −C|ḣ(t)| − c ∀ t ∈ [0, 1] \
{
t1, . . . , tN

}
.(4.1)

Then

h(t) ≤ 4ce(1+C)t(1− t) ∀ t ∈ [0, 1].(4.2)

Proof of Lemma 4.2. Given μ, λ > 0, denote by fμ,λ : [0, 1] → R the semiconvex
function defined by

fμ,λ(t) := h(t)− μmin
{
1− e−λt, 1− e−λ(1−t)

}
∀ t ∈ [0, 1].

Let t be a maximum point for fμ,λ. Since fμ,λ is semiconvex, it has to be differentiable
at t, so t 	= 1/2 and t 	= ti for i = 1, . . . , N . If t ∈ (0, 1/2), then there holds that
ḟμ,λ(t) = 0 and f̈μ,λ(t) ≤ 0. Then, using (4.1), we get

|ḣ(t)| = μλe−λt,
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0 ≥ f̈μ,λ(t) = ḧ(t) + μλ2e−λt ≥ −C|ḣ(t)| − c+ μλ2e−λt ≥ μλ(λ− C)e−λ/2 − c.

This yields a contradiction, provided we choose λ = 1 + C and μ = 2ce1+C/(1 + C),
and implies that fμ,λ attains its maximum at t = 0. Repeating the same argument
on [1/2, 1], since f(0) = f(1) = 0, we infer that

h(t) ≤ 2ce(1+C)min

{
1− e−(1+C)t

1 + C
,
1− e−(1+C)(1−t)

1 + C

}
∀ t ∈ [0, 1].

Noting that

1− e−(1+C)t

1 + C
≤ t and min{t, 1− t} ≤ 2t(1− t) ∀ t ∈ [0, 1],

we get the result.
We are ready to give the proof of Theorem 4.1.
Proof of Theorem 4.1. Let x ∈ M and v0, v1 ∈ I(x) be fixed. We keep the same

notation as in section 3.
The following result is a variant of Lemma 3.7.
Lemma 4.3. Let r > 0 be such that Bx(r) ∩ I(x) is convex for all x ∈ M and

β(r) given by the hypothesis in Theorem 4.1. There exists K such that if

sup
q∈[qt,qt]

{
ρyt

(
q, I(yt)

)}
≤ κ ∀x ∈M, ∀β ∈ (0, β(r)), ∀ v0, v1 ∈ I(x) ∩Bx(r + β),

then I(x) ∩Bx(r + β) is (κK)-radial-semiconvex.
Proof of Lemma 4.3. We need to show that, for any v0, v1 ∈ I(x) ∩Bx(r + β),

ρx

(
vt, I(x) ∩Bx(r + β)

)
≤ κK

t(1− t)

2

∣∣v0 − v1
∣∣2 ∀ t ∈ [0, 1].

As in Lemma 3.7 we set

h(t) :=
|vt|2x
2

− d(x, yt)
2

2
∀ t ∈ [0, 1]

with v0, v1 ∈ I(x)∩Bx(r+β), and up to slightly perturbing v0, v1 we may assume that
h : [0, 1] → R is semiconvex, C2 outside a finite set of times 0 < t1 < · · · < tN < 1,
and not differentiable at ti for i = 1, . . . , N . Moreover, properties (1) and (3)–(4) in
Theorem 4.1 yield

ḧ(t) ≥ −C|ḣ(t)||ẏt|yt |qt − qt|yt −D max
q∈[qt,qt]

{
ρyt(q, I(yt))

}
|ẏt|2yt

|qt − qt|2yt

for every t ∈ [0, 1] \ {t1, . . . , tN}. Since by compactness of M there is a uniform
constant E > 0 such that∣∣ẏt∣∣yt

≤ E
∣∣v0 − v1

∣∣
x

and
∣∣qt − qt

∣∣
yt

≤ E,

we get

ḧ(t) ≥ −CE2|ḣ(t)|
∣∣v1 − v0

∣∣
x
−DE4κ

∣∣v1 − v0
∣∣2
x

∀ t ∈ [0, 1] \
{
t1, . . . , tN

}
.

Thus Lemma 4.2 gives

h(t) ≤ 4e(1+CE2)DE4κ t(1− t)|v1 − v0|2x ∀ t ∈ [0, 1],
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and so by property (2) in Theorem 4.1 we get that I(x) ∩ B(r) is (κK)-radial-

semiconvex with K = 2K4e(1+CE2)DE4.
We are ready to apply our bootstrap arguments. We recall that the property

P(r) is satisfied if for any x ∈ M the set Bx(r) ∩ I(x) is convex. As before, in order
to conclude the proof of Theorem 4.1 we need only prove the following result.

Lemma 4.4. The set of r for which P(r) holds is open in [0,∞).
Proof of Lemma 4.4. Assume that P(r) holds. The proof is divided into two

steps: first we show that there are β0,K > 0 such that, for any β ∈ (0, β0), the
sets Bx(r + β) ∩ I(x) are ((K + 1)Kβ)-radial-semiconvex for any x ∈ M . Then in
Step 2 we show the following ”bootstrap-type” result: if the sets Bx(r+ β)∩ I(x) are
A-radial-semiconvex for all x ∈M , then they are indeed (A/2)-radial-semiconvex. As
before, the combination of Steps 1 and 2 proves the convexity of the Bx(r+β)∩ I(x).

Step 1. I(x) ∩Bx(r + β) is ((K + 1)Kβ)-radial-semiconvex for any β ∈ (0, β0).
Fix x ∈ M and β ∈ (0, β(r)). Since Bx(r + β) ∩ I(x) is star shaped, we can

find vr0 , v
r
1 ∈ I(x) ∩ B(r) with, for i = (0, 1), ρx(vi, v

r
i ) ≤ β. Thus P(r) implies that

ρx(vt, I(x)) ≤ β for all t ∈ [0, 1], that is, vt ∈ Iβ(x), and it follows from Lemma 2.2
that qt ∈ IKβ(yt). By construction we also have

|qt|yt = |vt|x < r + β, |qt|yt ≤ |vt|x < r + β, qt ∈ I(yt).

Since qt ∈ IKβ(yt), we can find q′t ∈ I(yt) ∩Byt(r + β) such that

ρyt

(
qt, I(yt)

)
= |qt − q′t| ≤ Kβ.

Moreover, using that I(yt) is star shaped and that qt, q
′
t ∈ Byt(r+ β), we can find qrt ,

q′rt ∈ Byt(r) ∩ I(yt) such that ρyt(qt, q
r
t ) ≤ β and ρyt(q

′
t, q

′r
t ) ≤ β. Again P(r) implies

that [qrt , q
′r
t ] ⊂ I(yt), so (see Figure 1)

max
q∈[qt,qt]

{
ρyt

(
q, I(yt)

)}
≤ max

q∈[qt,qt]

{
ρyt

(
q, [qrt , q

′r
t ]
)}

= max
{
ρyt

(
qt, q

r
t

)
, ρyt

(
qt, q

′r
t

)}
≤ β +Kβ,

where at the second line we used that the maximum is attained at one of the extrema
of the segment. Thus, Lemma 4.3 implies that Bx(r+β)∩ I(x) is ((K+1)Kβ)-radial-
semiconvex for any β ∈ ]0, β(r)].

Step 2. If all I(x)∩Bx(r+β) are A-radial-semiconvex, then they are (A/2)-radial-
semiconvex.

Let v0, v1 ∈ I(x)∩Bx(r+β); as before, we define in the plane generated by 0, v0, v1
in TxM the curve γ : [0, 1] → I(x) by (see Figure 2)

γ(t) = w, where ρx
(
vt, I(x)

)
= |vt − w|x ∀ t ∈ [0, 1],

and denote by a = γ(ta) the first point of γ which enters Bx(r) and b = γ(tb) the last
one. Since both v0, v1 belong to Bx(r+β) and Bx(r)∩ I(x) is convex, the intersection
of the segment [v0, v1] with Bx(r) is a segment [Q1, Q2] such that∣∣Q1 − v0

∣∣, ∣∣Q2 − v1
∣∣
x
≤ K̃

√
β

for some uniform constant K̃ > 0 and β > 0 small enough. Since∣∣vta − v0
∣∣
x
≤

∣∣Q1 − v0
∣∣
x

and
∣∣vtb − v1

∣∣
x
≤

∣∣Q2 − v1
∣∣
x
,
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both ta and 1− tb are bounded by
˜K
√
β

|v0−v1|x . Let us distinguish two cases:

– On [ta, tb], P(r) is true, so [a, b] ⊂ I(x). Then

sup
v∈[vta ,vtb ]

{
ρx

(
v, I(x)

)}
≤ max

{
ρx

(
vta , I(x)

)
, ρx

(
vtb , I(x)

)}
.

– On [0, ta] (similarly on [1− tb, 1]), Bx(r + β) ∩ I(x) is A-radial-semiconvex, so

ρx
(
vt, I(x)

)
≤ A

t(1− t)

2
|v1 − v0|2x ≤ AEK̃

√
β.

Combining these two estimates we get, for all t ∈ [0, 1],

ρx
(
vt, I(x)

)
≤ A

t(1− t)

2
|v1 − v0|2x ≤ AEK̃

√
β.

Then we define as above q′t such that ρyt

(
qt, I(yt)

)
= |qt − q′t|. By Lemma 2.2 we get

max
q∈[qt,qt]

{
ρyt

(
q, I(yt)

)}
≤ ρyt

(
qt, I(yt)

)
+ max

q̂∈[q′t,qt]

{
ρyt

(
q̂, I(yt)

)}
≤ KAEK̃

√
β + max

q̂∈[q′t,qt]

{
ρyt

(
q̂, I(yt)

)}
.

Since Bx(r + β) ∩ I(x) is A-radial-semiconvex for every x ∈ M , the same argument
used above for [v0, v1] is also valid on each segment [q′t, qt], and hence

max
q∈[qt,qt]

{
ρyt

(
q, I(yt)

)}
≤ KAEK̃

√
β +AEK̃

√
β.

Therefore, if we choose β(r) > 0 sufficiently small, we get

sup
q∈[qt,qt]

{
ρyt

(
q, I(yt)

)}
≤ A

2K
,

and in turn, by Lemma 4.3,

ρx
(
vt, I(x)

)
≤ A

2

t(1− t)

2

∣∣v0 − v1
∣∣2
x

∀ t ∈ [0, 1],

which proves the (A/2)-radial-semiconvexity.
The proof of Lemma 4.4 concludes the proof of Theorem 4.1.
We leave it to the reader to check that whether (M, g) is nonfocal; then the

properties in Theorem 4.1 are satisfied (take Z = Iμ, which was defined in section 3).
As a consequence, Theorem 1.7 can be seen as a corollary of Theorem 4.1.

5. Conclusion and perspectives. We can develop our proof further to cover
all the results obtained in [18]; namely, modifying Lemma 4.2 just a bit, we can prove
that (MTW(κ0,∞)) for κ0 > 0 gives κ-uniform convexity for some κ > 0. For a
definition of κ uniform convexity we refer the reader to [18] or Appendix A.

Lemma 5.1 (modified lemma). Let h : [0, 1] → [0,∞) be a semiconvex function
such that h(0) = h(1) = 0, and let c, C > 0 be two fixed constants. Assume that there
are t1 < · · · < tN in (0, 1) such that h is not differentiable at ti for i = 1, . . . , N , is of
class C2 on (0, 1) \ {t1, . . . , tN}, and satisfies

ḧ(t) ≥ −C|ḣ(t)|+ c ∀ t ∈ [0, 1] \
{
t1, . . . , tN

}
.(5.1)
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Then

h(t) ≤ −4ce(1+C)t(1 − t) ∀ t ∈ [0, 1].(5.2)

It leads to the following theorem.
Theorem 5.2. Let (M, g) be a nonfocal Riemannian manifold that satisfies

(MTW(κ0,∞)), with κ0 > 0. Then there exists κ > 0 such that all injectivity domains
of M are κ uniformly convex.

Sketch of the proof. Thanks to Theorem 1.7 we know that for all x ∈ M , I(x) is
convex. Therefore we can define that for all v0, v1 ∈ ∂I(x), vt = (1− t)v0+ tv1 ∈ I(x),
qt = expx (tc(vt)vt), and

h(t) :=
|vt|2x
2

− d(x, yt)
2

2
∀ t ∈ [0, 1].

According to [18] we deduce from (MTW(κ0,∞)) that M satisfies (MTW(κ0, C)),
where C > 0. We conclude thanks to Lemmas 3.6 and 5.1.

Theorem 4.1 is very general; it can be extended to κ uniform convexity.
We need only find a domain satisfying the control conditions (1)–(4) of Theorem

4.1. For this construction we face two difficulties located around the purely focal
points. The first one is to give a sign to the extended tensor near these points. The
second one is to isolate them. For this to be done, we need to better understand the
repartition of purely focal points and the behavior of the tensor near them. We adopt
this strategy for an analytic manifold of dimension 2 in [3]. If one succeeds in proving
Villani’s conjecture, it will give a very nice formulation of necessary and sufficient
conditions for regularity of optimal transport maps [8].

Appendix A. Semiconvexity. Following [18] we recall several equivalent defi-
nitions for semiconvex functions.

Definition A.1 (semiconvexity). Let O be a convex subset of Rn. A function
f : O → R is said to be δ-semiconvex if equivalently, for any x, y in Rn and t in
[0, 1], the following hold:

(i) f((1− t)x+ t(y)) ≤ (1− t)f(x) + tf(y) + δt(1 − t) |x−y|2
2 .

(ii) f + δ |x|2
2 is convex.

(iii) ∇2f ≥ −δ.
Here (iii) has to be understood in a distributional sense where f is not differen-

tiable. The equivalent of (i), (ii), and (iii) is a classical convexity result. Note that
(iii) tells us that as with convexity, semiconvexity may be seen as a local property.
When δ < 0 we find the uniform convexity.

Definition A.2. An open set V ⊂ Rn+1 is a Lipschitz radial set if it is star
shaped around 0 and its boundary is Lipschitz.

Here and in what follows, ρ denotes the radial distance as defined in section 2.
Definition A.3. A radial set V is said to be
• δ-distance-semiconvex if dist(·, V ) is δ-semiconvex, that is, for any x, y ∈ V ,
the function h(t) := dist((1 − t)x+ ty, V ) is δ-semiconvex on [0, 1];

• locally δ-distance-semiconvex if there exists ν > 0 such that for any x, y ∈ V
with |x − y| < ν, the function h(t) := dist((1 − t)x + ty, V ) is δ-semiconvex
on [0, 1];

• δ-radial-semiconvex if ρ is δ semiconvex, that is, for any x, y ∈ V the function
h(t) := ρ((1 − t)x+ ty, V ) is δ-semiconvex on [0, 1]; and
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• locally δ-radial-semiconvex if there exists ν > 0 such that for any x, y ∈ V
with |x − y| < ν, the function h(t) := ρ((1 − t)x + ty, V ) is δ-semiconvex on
[0, 1].

These definitions are very much inspired by the definition of κ-uniform convexity
in [18]. To obtain both notions in one definition one needs to consider the signed
distance function distsign(·, ∂V ) (resp., ρsign(·, ∂V )) instead of dist(·, V ) (resp., ρ):
we take the distance with the negative sign when we are inside V .

Proposition A.4. If a radial set V is (locally) δ-distance-semiconvex, then it
is (locally) K∗δ-radial-semiconvex for some K∗ > 0. Reciprocally, if V is (locally)
δ-radial-semiconvex, then it is (locally) δ-distance-semiconvex.

Proof. Equation (A.4) of [18] provides a constant K∗ > 0 depending on the
dimension, the Lipschitz regularity, and the diameter of V such that

dist(·, ∂V ) ≤ ρ(·, ∂V ) ≤ K∗dist(·, ∂V ).

Proposition A.5. If a radial set V is 0-radial-semiconvex, then it is convex.
Proof. For any x, y ∈ V we have ρ((1− t)x+ ty, V ) ≤ 0, that is, [x, y] ∈ V .
Proposition A.6. Let V be a radial set which is locally δ-distance-semiconvex;

then V is δ-distance-semiconvex. If V is locally δ-radial-semiconvex, then V is K∗δ-
radial-semiconvex, where K∗ is given by Proposition A.4.

Proof. The first assertion can be deduced from Proposition A.4 of [18]. The
second follows from our Proposition A.4.

Appendix B. The tangent cut loci are Lipschitz continuous.

B.1. Introduction. Let (M, g) be a smooth compact Riemannian manifold of
dimension n ≥ 2. We know that the function tcut defined in section 2 is bounded from
below by the injectivity radius of M and bounded from above by the diameter of M .

In the spirit of the definition of tcut and tf we define, for any subset O of TM
with star-shaped fibers, the boundary function tb : UM → R+ by

tb(x, v) := sup
{
t ≥ 0 | tv ∈ Ox

}
.

We then give the notion of κ-Lipschitz continuity for O.
Definition B.1 (κ-Lipschitz continuity). Let O ⊂ TM be such that, for any x ∈

M , the fiber Ox is star shaped. The set O is κ-Lipschitz continuous if for any (x, v) ∈
UM , there exists a κ-Lipschitz continuous function τ defined on a neighborhood in
UM of (x, v) such that tb(x, v) ≤ τ(x, v) and tb(x, v) = τ(x, v), where tb is the
boundary function for O.

This definition implies that the boundary of Ox is locally a κ-Lipschitz continuous
function. Our aim is to prove the following theorem.

Theorem B.2 (Lipschitz continuity of the tangent cut loci).

1. There exists κ > 0 such that for each x ∈ M the set I(x) is κ-Lipschitz
continuous. Moreover, for any (x, v) ∈ UM and (y, w) ∈ Uexpx (Rv)M we
have

|tcut(y, w)− tcut(x, v)| ≤ κ dTM ((x, v), (y, w)) .

We call this property the Lipschitz continuity in the geodesic direction.
2. If M satisfies δ(TM) > 0, then there exists κ > 0 such that {(x, p) |x ∈ M,
p ∈ I(x)} is κ-Lipschitz continuous.
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3. If M has dimension 2, then there exists κ > 0 such that {(x, p) |x ∈ M,
p ∈ I(x)} is κ-Lipschitz continuous.

To prove this theorem, we first prove the two following results.
Theorem B.3 (Lipschitz continuity of the tangent focal loci). There exists a

constant κ such that {(x, p) |x ∈M, p ∈ NF(x)} is κ-Lipschitz continuous.
Theorem B.4 (semiconcavity of the tangent focal loci). The set {(x, p) |x ∈M,

p ∈ NF(x)} is semiconcave.
The definition of semiconcavity is similar to Definition B.1, where we ask τ to be

semiconcave instead of Lipschitz continuous.
Remark B.5. The first item of Theorem B.2 is a result due to Li and Nirenberg

[16], Itoh and Tanaka [13], and Castelpietra and Rifford [1], while the second and
third ones are new.

B.2. Proof of Theorem B.3: Lipschitz continuity of the tangent focal
loci. The proof uses the Hamiltonian structure hidden in the Jacobi field equation.
It is based on the one given in the paper of Castelpietra and Rifford [1]; the main
difference is that we adopt here a Lagrangian point of view, whereas Castelpietra and
Rifford used an Hamiltonian point of view.

B.2.1. Focalization and Jacobi fields. Let (x, v) ∈ TM , and consider the
geodesic path γ0 : t ∈ R+ �→ expx (tv). We choose an orthonormal basis of TxM
given by (v, e2, . . . , ei, . . . , en) and define by parallel transport an orthonormal basis
of Texpx(tv)

M :

B(t) = (e1(t), e2(t), . . . , ei(t), . . . , en(t)) .

We identify Texpx(tv)
M with Rn thanks to the basis B(t). By definition the Jacobi

field equation along γ0 is given by [11, 21]

J̈(t) +R(t)J(t) = 0, t ∈ R
+,(B.1)

J(0) = h, h ∈ TxM,

J̇(0) = p, p ∈ TxM,

where R(t) is the symmetric operator given, in the basis B(t), by R(t)ij = 〈R(ei, ej)ei,
ej〉, where R is the Riemann tensor. The Jacobi fields describe how a small pertur-
bation of the geodesic path evolves along it. Since a focal point is related to the size
of the neighborhood, one can “visit” by perturbing the geodesic path, and one can
understand that both notions are linked. The Jacobi field equation (B.1) is a linear
equation of order two, and hence we define J1

0 : t �→ Mn (R) as the solution of the
following matricial Jacobi field equation:

J̈(t) +R(t)J(t) = 0, t ∈ R
+,

J(0) = In,

J̇(0) = 0.

We similarly define J0
1 as the solution of

J̈(t) +R(t)J(t) = 0, t ∈ R
+,

J(0) = 0,

J̇(0) = In.
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Any solution J of the Jacobi field equation (B.1) can be written for any t ∈ R+ as

(B.2) J(t) = J1
0 (t)J(0) + J0

1 (t)J̇(0).

Let us now exhibit two very particular families of Jacobi fields. For any h ∈ TxM we
define the path

γα(s, t) = expexpx(sh)
(tv) , (s, t) ∈ [0, 1]× R

+,(B.3)

γβ(s, t) = expx (t(v + sh)) , (s, t) ∈ [0, 1]× R
+.(B.4)

It leads to the following families of Jacobi fields:

Jα(t) :=
d

ds

∣∣∣∣
s=0

γα(s, t) = (dx exp·(tv)) · (h),(B.5)

Jβ(t) :=
d

ds

∣∣∣∣
s=0

γβ(s, t) = (dp=tv expx) · (th).(B.6)

Notice that the Jacobi field Jβ is nothing but J0
1 (·)h since Jβ(0) = 0 and J̇β(0) = h.

Analogously the Jacobi field Jα is equal to J1
0 (·)h. The link with focalization is

enclosed in the following lemma.
Lemma B.6. Let (x, v) ∈ UM ; then

(B.7) tf (x, v) = inf
{
t ∈ R

+ | ∃ q ∈ UxM with J0
1 (t)q = 0

}
.

The direction q is called a focal direction at (x, v).
Proof. The proof is a direct consequence of (B.6): for any t > 0, J0

1 (t)h =
(dp=tv expx) · (th).

B.2.2. Proof of Theorem B.3. We start with some remarks on the symplectic
structure coming with a Riemannian manifold.

Definition B.7 (the symplectic form). Let M be a Riemannian manifold of
dimension n. For any x ∈ M we fix a base B of (TxM × TxM), and we define the
symplectic form σ as

σ : (TxM × TxM)
2 → R,

(h, q)B, (h′, q′)B �→ 〈h, q′〉 − 〈h′, q〉 = (h, q)t J (h′, q′),

where the matrix

J =

(
0 In

−In 0

)
.

A change of coordinates given by a matrix P is symplectic if P tJP = J . In this case
in the new base B′ we have

σ : (TxM × TxM)
2 → R,

(a, b)B′ , (a′, b′)B′ �→ 〈a, b′〉 − 〈a′, b〉 = (a, b)tP t
JP (a′, b′).

Definition B.8 (Lagrangian subspace). A subspace L ∈ TxM × TxM is said to
be Lagrangian if dim(L) = n and σ|L×L is equal to 0.
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For example, the vertical subspace {0}×TxM ⊂ TxM ×TxM and the horizontal
subspace TxM ×{0} ⊂ TxM ×TxM are Lagrangian. The matrices J0

1 and J1
0 are the

fundamental solutions of the Jacobi field equation (B.1) on those subspaces.
Lemma B.9. Let L be a Lagrangian subspace, and let E,F be two vectorial spaces

of dimension n such that E
⊥
⊕ F = TxM ×TxM and the change of coordinates matrix

is symplectic. Suppose that L∩E×{0} = {0}. Then there exists a symmetric matrix
S such that

L =
{
(Sq, q)E,F | q ∈ F

}
.

We say that L is a graph above F .
Proof. The matrix S exists since L has dimension n and no direction in E. To see

that S is symmetric we look at the symplectic form on two vectors of L: let q, q′ ∈ F .
Then by definition

0 = σ ((Sq, q) , (Sq′, q′))
= 〈Sq, q′〉 − 〈Sq′, q〉
= 〈Sq, q′〉 − 〈q, Sq′〉 .

An important link between the symplectic form and the Jacobi field is that the
symplectic form is preserved along the flow of the Jacobi field equation.

Lemma B.10. Let J1 and J2 be two solutions of the Jacobi field equation (B.1).
Then for any t > 0,

σ
((
J1(t), J̇1(t)

)
,
(
J2(t), J̇2(t)

))
= σ

((
J1(0), J̇1(0)

)
,
(
J2(0), J̇2(0)

))
.

Equivalently, defining

M(t) =

(
J1(t) J2(t)

J̇1(t) J̇2(t)

)
we have M t(t)JM(t) = J. In this case we say that M(t) is symplectic.

We now define a particular Lagrangian subspace in order to find a new formulation
for tf .

Definition B.11. Let (x, v) ∈ UM . We define the following:
• the horizontal subspace at expx(tv):

Ht,v := Texpx(tv)M × {0} ⊂ Texpx(tv)M × Texpx(tv)M ;

• the vertical subspace at expx(tv):

Vt,v := {0} × Texpx(tv)M ⊂ Texpx(tv)M × T ′
expx(tv)M

;

• the subspace Lt,v of initial conditions such that at time t the Jacobi field is
equal to 0:

Lt,v :=
{
(h, q) ∈ TxM × TxM | J1

0 (t)h+ J0
1 (t)q = 0

}
.

Notice that Lt,v can be equivalently defined as Lt,v =M−1(t)Vt,v , where

M(t) :=

(
J1
0 (t) J0

1 (t)

J̇1
0 (t) J0

1 (t)

)
.
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Proposition B.12. The space Lt,v is a Lagrangian subspace of TxM × TxM .
Proof. Since M t(t)JM(t) = J, the matrix M(t) is invertible, and therefore Lt,v is

a vectorial subspace of dimension n.
To see that it is Lagrangian we use that σ is preserved along the flow: let

(h, q), (h′, q′) ∈ Lt,v, and denote by Jh,q the solution of the Jacobi field equation

(B.1) with Jh,q(0) = h and J̇h,q(0) = q. Then, for any t > 0,

σ ((h, q), (h′, q′)) = σ
(
(Jh,q(t), J̇h,q(t)), (Jh′,q′(t), J̇h′,q′(t))

)
= σ

(
(0, J̇h,q(t)), (0, J̇h′,q′(t))

)
= 0.

We can now give a new formulation of Lemma B.6.
Lemma B.13. Let (x, v) ∈ UxM . Then

(B.8) tf (x, v) = inf
{
t ∈ R

+ |Lt,v ∩ V0,v 	= {0}
}
.

The set Lt,v ∩ V0,v is called the focal set at (x, v).
Proof. Let q ∈ UxM \ {0} satisfy (0, q) ∈ Lt,v ∩ V0,v. Then J0,q(t) = J0

1 (t)q = 0
and Lemma B.6 concludes the proof.

We recall that we identify Texpx(tv)
M with Rn through the basis

B(t) = (e1(t), . . . , ei(t), . . . , en(t)) .

According to Lemma B.9 the obstruction to see Ltf (x,v),v as a graph above V0,v comes
from the intersection of Ltf (x,v),v with the horizontal space. By definition we have

Ltf (x,v),v ∩H0,v = KerJ1
0 (tf (x, v)).

Let us identify, for any u ≥ 0, Hu,v with Vect (e′1(u), . . . , e
′
i(u), . . . , e

′
n(u)) and Vu,v

with Vect (f1(u), . . . , fi(u), . . . , fn(u)) , where e
′
i(u) = ei(u)×{0} ∈ Texpx(uv)

×Texpx(uv)

and fi(u) = {0} × ei(u) ∈ Texpx(uv)
× Texpx(uv)

. With this notation, without loss of
generality we can suppose there exists an index l > 1 such that KerJ1

0 (tf (x, v)) =
Vect (e′l, . . . , e

′
n). Therefore, for any i ≥ l we can change e′i(u) by fi(u) and fi(u) by

−e′i(u) to get two new orthonormal spaces of dimension n:

E(u) = Vect
(
e′1(u), . . . , e

′
l−1(u), fl(u), . . . , fn(u)

)
,

F (u) = Vect (f1(u), . . . , fl−1(u),−e′l(u), . . . ,−e′n(u)) .

Remark B.14. The change of coordinates is symplectic, that is, P tJP = J , where
P is the change of basis matrix. Therefore for any (z, w), (z′, w′) ∈ E × F we have

σ ((z, w), (z′, w′)) = 〈z, w′〉 − 〈z′, w〉 .

By construction for any u ≥ 0 we have

1. E(u)
⊥
⊕ F (u) = Texpx(uv)

× Texpx(uv)
and

2. Ltf (x,v),v ∩ E(0) = {0}.
Since Lu,v′ is smooth with respect to (x′, v′, u), there exists a neighborhoodOx,v,tf (x,v)

⊂ TM × R+ of (x, v, tf (x, v)) such that, for any (x′, v′, t) ∈ Ox,v,tf (x,v), we have

(B.9) Lt,v′ ∩ E(0) = {0} .



ON THE CONVEXITY OF INJECTIVITY DOMAINS 993

Moreover, Lemma B.9 implies that there exists a smooth function

S : Ox,v,tf (x,v) → Sn (R) ,

(x′, v′, t) �→ S(t)

such that, for any w ∈ F (0), we have S(t)w ∈ E(0) and

Lt,v′ =
{
(S(t)w,w)E(0)×F (0) with w ∈ F (0)

}
.

Remark B.15. Notice that the matrix S(t) as well as the subspaces E(u) and
F (u) depend on (x′, v′, t), but the indices l used to define E(u) and F (u) for any
(x′, v′, t) ∈ Ox,v,tf (x,v) depend only on x, v, tf (x, v).

The following lemma is the key tool for later applying the implicit function the-
orem.

Lemma B.16. Let (x, v) ∈ TM .
1. Let q ∈ UxM satisfy ({0} , q) ∈ Ltf (x,v),v ∩ V0,v. Then q ∈ F (0) and
qt S(tf (x, v))q = 0.

2. There exists δ > 0 such that, for any (x, v) ∈ TM , ||Ṡ(tf (v))|| ≥ δ.
3. For any (x′, v′, t) ∈ Ox,v,tf (x,v), if q

t S(t)q = 0, then tf (v
′) ≤ t.

Notice that q is defined only in TxM , but for any x′ close to x we can see it also
as an element of Tx′M thanks to the identification with the coordinates. The dot
always stands for the derivative along the Jacobi field ( d

dt).
Proof. Let q ∈ Ltf (x,v),v∩V0,v. Since Ltf (x,v),v∩H0,v = Vect (e′l, . . . , e

′
n), using the

symplectic form σ we find that qi = 0 for any i = l, . . . , n. This gives that q ∈ F (0).
Moreover, S(tf (x, v))q ∈ V0,v, and thus (S(tf (x, v))q)i = 0 for any i = 1, . . . , l − 1.
Consequently, qt S(tf (x, v))q = 0.

To compute the derivative with respect to t we again use the symplectic form. Let
(0, z) ∈ Vt,v for any t such that (x, v, t) ∈ Ox,v,tf (x,v). There exists φ(t) = (ht, qt) =
(S(t)wt, wt)E(0)×F (0) ∈ Lt,v such that M(t)φ(t) = (0, z). On one side,

σ
(
φ(t), φ̇(t)

)
= σ

(
(S(t)wt, wt)E(0)×F (0), (Ṡ(t)wt + S(t)ẇt, ẇt)E(0)×F (0)

)
= σ ((S(t)wt, wt), (S(t)ẇt, ẇt)) + σ

(
(S(t)wt, wt), (Ṡ(t)wt, 0)

)
=

〈
Ṡ(t)wt, wt

〉
.

On the other side,

σ
(
φ(t), φ̇(t)

)
= σ

(
M(t)φ(t),M(t)φ̇(t)

)
.

Since M(t)φ(t) = (0, z), we have M(t)φ̇(t) = −Ṁ(t)φ(t). Moreover,

Ṁ(t) =

(
0 In

−R(t) 0

)
,

and thus

σ
(
φ(t), φ̇(t)

)
= −σ

(
M(t)φ(t), Ṁ(t)φ(t)

)
= −σ

(
M(t)φ(t),

(
0 In

−R(t) 0

)
M(t)φ(t)

)
= −σ ((0, z), (−z, 0)) = −|z|2.
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Hence 〈
Ṡ(t)wt, wt

〉
= −|z|2,

and by compactness we deduce the existence of a constant δ > 0 such that ||Ṡ(tf (x, v)||
≥ δ.

For the third item we reason by contradiction: we take (x′, v′, t′) ∈ Ox,v,tf (x,v)

and suppose that qt S(t′)q = 0 and t′ < tf (x
′, v′). By definition, q ∈ V0,v′ ∩F (0), and

thus qi = 0 for any i = l, . . . , n. Since t′ < tf (x
′, v′), the space Lt′(x,v),v is a graph on

the horizontal space. More precisely, according to (B.2), for any t ∈ (0, tf (x
′, v′)) we

have

Ltf (x,v),v =
{
(h,

(
J0
1 (tf (x, v))

)−1
J1
0 (t)h) |h ∈ H0,v

}
.

We denote
(
J0
1 (tf (x, v))

)−1
J1
0 (t) = K(t). Then the exact same computation done

above proves that 〈
K̇(t)h, h

〉
< 0 ∀h ∈ H0,v.

Since t
(
J0
1 (tf (x, v))

)−1
converges to In when t goes to zero, we deduce that for t

small enough K is symmetric positive definite.
For any h ∈ H0,v and q′ ∈ V0,v we denote h = (h1, h2), where h1 ∈ H0,v ∩ E(0),

h2 ∈ H0,v ∩ F (0), and q′ = (q′1, q
′
2) with q

′
1 ∈ V0,v ∩ E(0) and q′2 ∈ V0,v ∩ F (0). With

this notation we have ((h, q′) = (h1, q
′
2), (q

′
1, h2))E×F and we define the matrices Si(t),

Ki(t), i = 1, . . . , 4, such that

(q′1, q
′
2) = (K1(t)h1 +K2(t)h2,K3(t)h1 +K4(t)h2)

and

(h1, q
′
2) = (S1(t)q

′
1 + S2(t)h2, S3(t)q

′
1 + S4(t)h2) .

Since by hypothesis Lt′,v′ is a graph over H0,v and F (0), we deduce that S1(t
′) =

K−1
1 (t′), and in particular we see that K1(t

′) is invertible. In the focal direction
q ∈ F (0) ∩ V0,v′ we have q = (q1, 0)F (0) and

0 = qt S(t′) q = qt1 S1(t
′) q1 = ht1K1(t

′)h1,

where h1(t) = K−1
1 (t)q1. To get a contradiction we need only remark that, for any

A > 0, up to taking Ox,v,tf (x,v) smaller we have that, for any (x′, v′, t) ∈ Ox,v,tf (x,v)

with t ≤ tf (x
′, v′),

ht1(t)K1(t)h1(t) ≤ −Aht1(t)h1(t).

Also, in the direction (x, v), for any t ≤ tf (x, v) we have(
(S1 (t) q1, S3 (t) q1) , (q1, 0)

)
E×F

=
(
(h1 (t) , 0) , (K1 (t)h1 (t) ,K3 (t)h1 (t))

)
∈ Lt,v.

By definition of q we have S1(t)q1 = h1(t) → 0 when t→ tf (x, v) andK1(t)h1(t) = q1.
Assuming with no loss of generality that K1(t) is diagonal, we see that any eigenvalue
λi(t) corresponding to an eigenvector qi 	= 0 goes to −∞ (notice that it cannot go
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to +∞ since we proved that t �→ K(t) decreases). Hence, the eigenvalues being
continuous with respect to (x′, v′, t), by further shrinking Ox,v,tf (x,v) if needed we
have ht1(t)K1(t)h1(t) ≤ −Aht1h1.

Remark B.17. The last proof just says that, before focalization, when the La-
grangian space Lt,v has a vertical component it cannot at the same time be a graph
above the horizontal space and above F .

To conclude the proof of Theorem B.3 we apply the implicit function theorem in
order to find the function τ needed in Definition B.1. Let (x, v) ∈ UM and q ∈ UxM
be the associated focal direction. Then the function

Ψ : UM × R
+ → R,

(x, v, t) �→ qtS (t) q

is well defined on a neighborhood of (x, v, tf (x, v)). Moreover, Ψ(x, v, tf (x, v)) = 0
and by Lemma B.16 we have

|∂tΨ(x, v, tf (x, v))| =
∣∣∣qtṠ (tf (x, v)) q

∣∣∣ ≥ δ.

Hence, by the implicit function theorem we get a function τ defined in a neighborhood
Ox,v of (x, v) such that Ψ(x, v, τ(x, v)) = 0. By Lemma B.16 we find that tf (x, v) ≤
τ(x, v), and it only remains to check that τ is Lipschitz continuous. This follows from
the fact that, by compactness, there exists K > 0 such that

|dx,vτ | =
∣∣∣∣ 1

∂tΨ(x, v, tf (x, v))
dx,vΨ

∣∣∣∣
≤ K

δ
.

This concludes the proof of Theorem B.2.
Remark B.18. This method also proves Theorem B.4, as we easily see that the

second differential of τ at (x, v) is bounded from above.

B.3. Proof of Theorem B.2: Lipschitz continuity of the tangent cut
loci.

Proof of Theorem B.2. Let x ∈ M , ev ∈ UxM , v = tcut(ev)ev. We want to find
the function τ needed in Definition B.1 using the implicit function theorem. The
construction of the function τ will depend on x, v, and δ(v).

B.3.1. At the intersection with the tangent focal locus. If v ∈ TFL(x) ∩
TCL(x), then tcut(x, ev) = tf (x, ev) and for any (y, ew) ∈ UxM we have tcut(y, ew) ≤
tf (y, ew). Notice that by Theorem B.3 the function tf is κ-Lipschitz continuous, so
the choice τ = tf works.

B.3.2. Far from the tangent focal locus. If v 	∈ TFL(x) ∩ TCL(x), then
δ(v) > 0. Let v ∈ I(x) such that |v − v| = δ(v) and expx v = expx v = y. Let
K ⊂ TM be a compact neighborhood of the geodesic path t ∈ [0, 1] �→ expx(tv) and
0 < ε < tinj such that B(y, ε) ⊂ K(y). For any η ∈ TyS with z = expy η ∈ B(y, ε),
we construct a path s, t ∈ [0, ε]× [0, 1] �→ γ(s, t) satisfying the following conditions for
any (s, t) ∈ [0, ε]× [0, 1]:

1. γ(0, t) = γ(t) = expx(tv).
2. γ(s, 1) = expy(sη) = zs.
3. γ(s, 0) = x.
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4. γ(·, ·) ∈ C1([0, 1]2,M).
5. (γ(s, t), γ̇(s, t)) ∈ K.

Working in smooth charts this construction is easy to realize. Note that s ≤ ε ≤ tinj
implies that s �→ expy(sη) is a minimizing geodesic path, and therefore d2(y, zs) = s2

and zs ∈ B(y, ε). However, t �→ γ(s, t) and s �→ γ(s, t) are not necessarily geodesic
paths away from s = 0 and t = 1. Anyway, the first variation formula applied to γ
provides a constant K such that

d2(x, zs) ≤ A(γ(s, t)) ≤ A(γ(0, t)) + s 〈dv expx v, η〉+
s2

2
K(B.10)

≤ d2(x, y) + s 〈dv expx v, η〉+
K

2
d2(y, zs).

We can similarly add a perturbation of x. Hence we define u : B(x, ε)×B(y, ε) → R+

by

(B.11) u(x′, z) := d2(x, y) + 〈dv expx v, (expy)−1(z)〉 − 〈v, (expx)−1(x′)〉
+K

(
d2(x, x′) + d2(y, z)

)
.

Note that if we compare the above expression to the right-hand side of (B.10), we
have changed 1

2K to K: this modification shows that d2(x′, z) = u(x′, z) if and only
if z = y and x′ = x; otherwise d2(x′, z) < u(x′, z). Moreover, u is C1 and

(dx′=x,z=yu) · (ζ, η) = −〈v, ζ〉+ 〈dv expx v, η〉.

By continuity of expx there exists ε > 0 such that for any (x′, w) ∈ B ((x, v), ε) ⊂ TM ,
expx′(w) = z ∈ B(y, ε). Let γ(x′, w, θ) = expx′(θw); we define Φ : B ((x, v), ε) → R

by

w �→ u(expx′(w)) −A(γ(x′, w, θ)).

According to the first variation formula, Φ is C1 on B ((x, v), ε) and the differential
at x, v in the direction ζ, ξ (i.e., x′ = expx(rζ), w = v + sξ) is given by

(dx,vΦ)(ζ, ξ) = 〈dp=v expx v, dp=v expx ξ〉y − 〈dp=v expx v, dp=v expx ξ〉y + 〈v − v, ζ〉
(B.12)

= 〈q − q, η〉y + 〈v − v, ζ〉,

where dv expx v = −q, dv expx v = −q, and dv expx ξ = η.
The set Ox,v := {(x′, v′, t) ∈ UM × R+ | (x′, tv′) ∈ B ((x, v), ε)} is an open subset

of UM × R+, and (x, ev, tcut(ev)) ∈ Ox,v. We define Ψ by

Ψ : Ox,v → R,

Ψ(x′, v′, t) �→ Φ(x′, tv′).

By definition, Ψ(x, ev, tcut(ev)) = u(x, y) − A(γ(x, v, θ)) = 0, and for (x′, v′, t) 	=
(x, ev, tcut(ev)), if Ψ(x′, v′, t) = 0, then (B.10) implies

d2(x′, expx′(tv′)) < A(γ(x′, v′, t)),

and hence t > tcut(x
′, v′). Furthermore, we compute

∂

∂t
Ψ(x, ev, tcut(ev)) = dp=vΦ(x, ev) =

〈
q − q,− 1

tcut(ev)
q

〉
y

.



ON THE CONVEXITY OF INJECTIVITY DOMAINS 997

Since the geodesic flow is Lipschitz continuous, there exists A > 0 such that

1

A
≤ |q − q|y ≤ A|v − v|x.

Since |q|2y = |q|2y and tcut is bounded by a constant C on TM , we have

(B.13)
1

tcut(ev)
|〈q − q, q〉y| =

1

tcut(ev)
|q − q|2 ≥ 1

2AC
δ(v)2 > 0.

Therefore

(B.14)

∣∣∣∣ ∂∂tΨ(x, ev, tcut(ev))

∣∣∣∣ ≥ 1

2C′ δ(v)
2 > 0.

Hence we can apply the implicit function theorem to Ψ(x′, v′, t) = 0 at (x, ev, tcut(ev)),
in order to find a neighborhood ofO′

x,v ⊂ UM of (x, ev) and a function τ ∈ C1(O′
x,v,R

+)
such that

∀(x′, v′) ∈ O′
x,v tcut(x

′, v′) ≤ τ(x′, v′), tcut(x, ev) = τ(x, ev).(B.15)

The implicit function theorem also gives the differential of τ :

dx′=x,v′=ev τ(ζ, ξ) = − 1

dp=vΦ(x, ev)
dx′=x,p=vΦ(ζ, ξ)(B.16)

=
tcut(ev)

〈q − q, q〉y
[〈q − q, η〉y + 〈v − v, ζ〉x]

≤ C′′ (|η|y + |ζ|x)
δ(v)

.

We fix a small constant δ > 0 and distinguish two cases.
Case 1: δ(v) ≥ δ. In this case, (B.16) becomes

|dx′=x,v′=ev τ(ζ, ξ)| ≤
C

δ
(|ζ|+ |ξ|) .

Therefore the function τ is κ-Lipschitz continuous, near (x, ev), for any κ ≤ C
2δ
. In

this case we are done. We remark that we proved the Lipschitz continuity of tcut
for any perturbation of (x, v), so in particular we also obtained the second item of
Theorem B.2 in the case δ(v) ≥ δ. So we are left only to understand the case of speeds
near a purely focal point.

Case 2: δ(v) ≤ δ. In this case v is near a purely focal point, and we need to be
slightly more precise regarding the estimate of |dx′=x,v′=evτ(ζ, ξ)|. First of all we can
rewrite (B.13) as

(B.17)

∣∣∣∣ ∂∂tΨ(x, ev, tcut(ev))

∣∣∣∣ ≥ 1

2C′ |v − v|2.

Since the symplectic form is preserved along the Jacobi field, we have, for any t > 0,

(B.18) σ ((0, v − v), (ζ, ξ))

= σ
(
(J0

1 (t)(v − v), J̇0
1 (t)(v − v)), (J1

0 (t)ζ + J0
1 (t)ξ, J̇

1
0 (t)ζ + J̇0

1 (t)ξ)
)



998 A. FIGALLI, T. O. GALLOUËT, AND L. RIFFORD

and thus

(B.19) − 〈v − v, ζ〉x −
〈
J1
0 (t)ζ + J0

1 (t)ξ, J̇
0
1 (t)(v − v)

〉
y

=
〈
J0
1 (t)(v − v), J̇1

0 (t)ζ + J̇0
1 (t)ξ

〉
y
.

A Taylor formula together with the fact that expx(v) = expx(v) gives that there exists
A ∈ R+ such that

(B.20) |dp=v expx (v − v) |y = |J0
1 (tcut(ev))(v − v)|y ≤ A|v − v|2.

Thus the right-hand side of (B.19) is smaller than A|v−v|2. Thanks to (B.16), we can
show the Lipschitz continuity separately on each variable; we conclude by examining
three different cases. The first case is a perturbation along the variable v. The second
and third cases deal with a perturbation along the variable x.

• If we consider only a perturbation along the speed (ζ = 0), then (B.19) and
(B.20) give

(B.21)

∣∣∣∣〈η, J̇0
1 (t)(v − v)

〉
y

∣∣∣∣ ≤ A|v − v|2.

Moreover, a Taylor formula on q − q = dp=v expx(v) − dp=v expx(v) gives, for δ(v)
small enough,

(B.22) J̇0
1 (t)(v − v) = q − q + o(|v − v|2).

We deduce that there exist C > 0 and δ > 0 such that for any x ∈ M and v ∈ I(x)
with δ(v) ≤ δ we have, according to (B.12),

|dx′=x,p=vΦ(0, ξ)| =
∣∣∣〈η, q − q〉y

∣∣∣ ≤ C|v − v|2.

Together with (B.17) and (B.16), we obtain

dx′=x,v′=evτ(0, ξ) ≤
2C′C|v − v|2

|v − v|2 ≤ C,

which proves the Lipschitz continuity in the v variable. We recall that the constant
C can change in each inequality but is uniform on TM .

We now want to look for the Lipschitz continuity in the x variable.
• If the perturbation ζ is collinear to v (ζ = ±v), then (B.12) rewrites as

|dx′=x,p=vΦ(ζ, 0)| = | 〈v, v − v〉x | =
1

2
|v − v|2x.

Together with (B.17) in (B.16), we obtain that

dx′=x,v′=ev τ(ζ, 0) ≤ C.

This is exactly the Lipschitz continuity at (x, v) in the x variable along the geodesic
direction given by v, and this concludes the proof of the first item of Theorem B.2.

• If the perturbation ζ belongs to KerJ1
0 (tcut(ev)) and ξ = 0, then (B.19) becomes

(B.23) −〈v − v, ζ〉x =
〈
J0
1 (tcut(ev))(v − v), J̇1

0 (tcut(ev)) ζ
〉
y
,
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and together with (B.12) and (B.20) we get |dx′=x,p=vΦ(ζ, 0)| ≤ A|v − v|2x. By this
estimate combined with (B.17) in (B.16) we obtain a constant C > 0 such that

dx′=x,v′=ev τ(ζ, 0) ≤ C.

Therefore the function tcut is Lipschitz continuous along these directions.
Notice that in dimension two, for any (x, v) ∈ M we can take a basis with one

direction along ev and the other one in KerJ1
0 (tcut(ev)), and we deduce that tcut is

Lipschitz continuous on UM . This concludes the proof of Theorem B.2.
Remark B.19. We do not know whether in any dimension the function tcut is

Lipschitz continuous on UM . However, for any n-dimensional Riemannian manifold
such that

dim
[
KerJ1

0 (tcut(ev))
]
= n− 1,

we proved that tcut is Lipschitz continuous on UM . It is, for example, the case of Sn.
See also [12]. More generally we proved the following theorem.

Theorem B.20 (Lipschitz continuity of the tangent cut loci II). There exists
κ > 0 such that for each x ∈M the set I(x) is κ-Lipschitz continuous. Moreover, for
any (x, v) ∈ UM , ζ ∈ {KerJ1

0 (tcut(ev))} ∪ {±v}, and (y, w) ∈ Uexpx (Rζ)M , we have

|tcut(y, w)− tcut(x, v)| ≤ κ dTM ((x, v), (y, w)) .
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