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We show that the widely used model governing the motion of two incompressible 
immiscible fluids in a possibly heterogeneous porous medium has a formal gradient-flow 
structure. More precisely, the fluid composition is governed by the gradient flow of some 
non-smooth energy. Starting from this energy together with a dissipation potential, we 
recover the celebrated Darcy–Muskat law and the capillary pressure law governing the 
flow thanks to the steepest descent condition for the energy. Our interpretation does not 
require the introduction of any algebraic transformation like, e.g., the global pressure or 
the Kirchhoff transform, and can be transposed to the case of more phases.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous montrons qu’un modèle très couramment utilisé dans l’industrie pour décrire un 
écoulement diphasique incompressible et immiscible dans un milieux poreux possiblement 
hétérogène possède une structure de flot gradient. Plus précisément, la composition du 
fluide est gouvernée par le flot gradient d’une énergie singulière. En partant de cette 
énergie et d’un potentiel de dissipation, nous retrouvons les lois de Darcy–Muskat et de 
pression capillaire gouvernant l’écoulement à l’aide d’un principe de moindre dissipation 
de l’énergie. Notre interprétation ne nécessite pas l’introduction d’une transformation 
algébrique du type pression globale ou transformée de Kirchhoff, ce qui permet son 
extension à un nombre plus grand de phases.
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1. Introduction

1.1. General motivations

The models for multiphase porous media flows have been widely studied in the last decades, since they are of great 
interest in several fields of applications, like, e.g., oil-engineering, carbon dioxide sequestration, or nuclear waste repository 
management. We refer to the monographs [5,6] for an extensive discussion on the derivation of models for porous media 
flows, and to [4,11,3,13] for numerical and mathematical studies.

More recently, F. Otto showed in his seminal work [17] that the so-called porous medium equation:

∂tρ − �ρm = 0 for (x, t) ∈R
N ×R+ and m > 1,

which is a very simplified model corresponding to the case of an isentropic gas flowing within a porous medium, can be 
reinterpreted in a physically relevant way as the gradient flow of the free energy with respect to some Wasserstein metric 
in the space of Borel probability measures. Extensions to more general degenerate parabolic equations were then proposed, 
for example in [1,15].

In this note, we will focus on the model governing the motion of an incompressible immiscible two-phase flow in a 
possibly heterogeneous porous medium, that will appear in the sequel as (3) and (11)–(13). This model is relevant, for 
instance, for describing the flow of oil and water, whence the subscripts “o” and “w” appearing in the sequel of this note, 
within a rock that is possibly made of several rock types. Our goal is to show that, at least formally, this model can 
be reinterpreted as the gradient flow of some singular energy. This will motivate the application of structure-preserving 
numerical methods inspired from [9] to this model in the future.

Our approach is inspired from the one of A. Mielke [16] and, more closely, to the one of M. A. Peletier [18]. The basic 
recipe for variational modeling is recalled in Section 1.2, then its ingredients are identified in Section 2. This approach 
is purely formal, but it can be made rigorous under some unphysical strict positivity assumption on the phase mobilities 
ηo, ηw defined below. We will remain sloppy about regularity issues all along this note.

1.2. The recipe of getting formal variational models

Here we recall very briefly the main ingredients needed for defining a formal gradient flow.

i. The state space M is the set where the solution to the gradient flow can evolve.
ii. At a point s ∈ M, the tangent space TsM, to whom would belong ∂t s, is identified in a non-unique way with a 

so-called process space Zs (that might depend on s). More precisely, we assume that for each s ∈ M, there exists an 
onto linear application P(s) :Zs → TsM.

iii. The energy functional E :M →R ∪ {+∞} admits a (local) sub-differential ∂sE(s) ⊂ (TsM)∗ at s ∈M.
iv. The dissipation potential D is such that, for all s ∈ M and all V ∈ Zs , one has D(s; V) ≥ 0. It is supposed to be convex 

and coercive w.r.t. to its second variable.
v. The initial data s0 belongs to M.

All these ingredients being defined, we obtain from the steepest descent condition that s : R+ → M is the gradient flow of 
the energy E for the dissipation D if

∂t s = P(s)V where V ∈ argmin
V̂∈Zs

(
max

h∈∂sE(s)

(
D

(
s(t); V̂(t)

) +
〈
h , P(s)̂V

〉
(TsM)∗,TsM

))
. (1)

The formula (1) means that a gradient flow is lazy and smart: the motion aims to minimize the dissipation while maxi-
mizing the decay of the energy. We refer to [16,18] for additional material on such a formal modeling and to [2] for an 
extensive (and rigorous) discussion on gradient flows in metric spaces.

2. Variational modeling for two-phase flows in porous media

2.1. State space and process space

Let � be an open subset of RN representing a (possibly heterogeneous) porous medium, let φ : � → (0, 1) be a measurable 
function (called porosity) such that φ ≤ φ(x) ≤ φ for a.e. x ∈ � for some constants φ, φ ∈ (0, 1), and let so, sw : � → [0, 1)

be two measurable functions (so-called residual saturations) such that so(x) + sw(x) < 1 for a.e. x ∈ �. In what follows, we 
denote by

so(x) = 1 − sw(x), sw(x) = 1 − so(x), for a.e. x ∈ �.

For almost all x ∈ �, we denote by
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�x =
{

s = (so, sw) ∈R
2
∣∣ so + sw = 1 with sα(x) ≤ sα ≤ sα(x) for α ∈ {o,w}

}
.

Let s0 = (s0
o, s0

w) be a given initial saturation profile, we denote by mα (α ∈ {o, w}) the volume occupied by the phase α
in the porous medium, i.e.,

mo =
∫
�

φ(x)s0
o(x)dx, and mw =

∫
�

φ(x)s0
w(x)dx.

For simplicity, we restrict our attention to the case where the volume of each phase is preserved: no source term and no-flux 
boundary conditions (otherwise, non-autonomous gradient flows should be considered). Hence the saturation profile lies at 
each time in the so-called state space M, defined by

M =
⎧⎨⎩s = (so, sw)

∣∣∣∣∣∣ sα : � →R+ with
∫
�

φ(x)sα(x)dx = mα for α ∈ {o,w}
⎫⎬⎭ .

Let us now describe the processes that allow one to transform the saturation profile. We denote by

Zs =
{

V = (vo, vw)

∣∣∣ vα : � →R
N with vα · n = 0 on ∂�

}
the process space of the admissible processes for modifying a saturation profile s ∈ M. The identification between V =
(vo, vm) ∈Zs and ṡ = (ṡo, ̇sw) ∈ TsM is made through the onto operator P(s) :Zs → TsM defined by

P(s)V =
(

− 1

φ
∇ · vo ; − 1

φ
∇ · vw

)
, ∀V ∈ Zs. (2)

Since ∂t s ∈ TsM, the relation (2) yields the existence of some phase filtration speeds (vo, vw) ∈Zs such that the following 
continuity equations hold:

φ ∂t sα + ∇ · vα = 0, α ∈ {o, w}. (3)

The relation (3) must be understood as the local volume conservation of each phase α ∈ {o, w}. Finally, the duality bracket 
〈· , ·〉(TsM)∗,TsM is given by

〈h, ṡ〉(TsM)∗,TsM =
∑

α∈{o,w}

∫
�

φhα ṡα = −
∑

α∈{o,w}

∫
�

hα∇ · vα =
∑

α∈{o,w}

∫
�

∇hα · vα.

2.2. About the energy

For a.e. x ∈ �, we assume the capillary pressure graph π(·, x) : [so(x), so(x)] → 2R to be a maximal monotone graph 
whose restriction π|(so,so)

(·, x) to the open interval (so(x), so(x)) is an increasing (single-valued) function belonging to 
L1(so(x), so(x)). In particular, π−1(·, x) :R → [so(x), so(x)] is a single-valued function.

We denote by 
 :R × � →R ∪ {+∞} the (strictly convex w.r.t. its first variable) function defined by


(so, x) =

⎧⎪⎪⎨⎪⎪⎩
so∫

σ (x)

π(a, x)da − (ρo − ρw)sgz if so ∈ [so(x), so(x)],

+∞ otherwise,

where, denoting by ez the downward unit normal vector of RN , we have set z = x · ez , and where g and ρα denote the 
gravity constant and the density of the phase α respectively, and where σ is such that x 
→ π(σ (x), x) − (ρo − ρw)g z is 
constant. Since π|(so,so)

(·, x) ∈ L1(so(x), so(x)), we get that 
(so(x), x) and 
(so(x), x) are finite for a.e. x ∈ �.

The volume energy function E :R2 × � →R ∪ {+∞} is defined by

E(s, x) =
{


(so, x) if s = (so, sw) ∈ �x,

+∞ otherwise.
(4)

The function E(·, x) is convex and finite on �x for a.e. x ∈ �. Its sub-differential is given by

∂s E(s, x) =
{{

(ho,hw) ∈R
2 | ho − hw + (ρo − ρw)gz ∈ π(so, x)

}
if s ∈ �x,

∅ otherwise.

Finally, we can define the so-called global energy E :M →R ∪ {+∞} by
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E(s) =
∫
�

φ(x)E(s(x), x)dx, ∀s = (so, sw) ∈ M. (5)

The saturation profile s ∈ M is of finite energy E(s) < ∞ if and only if s(x) ∈ �x for a.e. x ∈ �. For s ∈ M with finite 
energy, one can check that the local sub-differential ∂sE(s) of E at s is given by

∂sE(s) =
{

h = (ho,hw) : � →R
2 |ho − hw + (ρo − ρw)g z ∈ π(so, x) for a.e. x ∈ �

}
. (6)

2.3. About the dissipation

The permeability tensor field � ∈ L∞(�; RN×N ) is assumed to be such that �(x) is a symmetric and positive matrix for 
a.e. x ∈ �. Moreover, we assume that there exist λ
, λ
 ∈R

∗+ such that

λ
|u|2 ≤ �(x)u · u ≤ λ
|u|2, for all u ∈R
N and a.e. x ∈ �.

This ensures that �(x) is invertible for a.e. x ∈ �. Its inverse is denoted by �−1(x).
We also need the two Carathéodory functions ηo, ηw : R × � → R+ — the so-called phase mobilities — such that ηα(·, x)

are Lipschitz continuous and nondecreasing on R+ for a.e. x ∈ � and α ∈ {o, w}. Moreover, we assume that ηα(s, x) = 0 if 
s ≤ sα(x) and that ηα(s, x) > 0 if s > sα(x).

Given s = (so, sw) ∈M and V = (vo, vw) ∈Zs , we define the dissipation potential D by

D(s,V) = 1

2

∑
α∈{o,w}

∫
�

�−1 vα · vα

ηα(sα)
dx, ∀s ∈ M, ∀V ∈ Zs.

The finiteness of the dissipation, i.e., D(s, V) < ∞, implies vα = 0 a.e. on {x ∈ � | sα(x) ≤ sα(x)}.

2.4. Steepest descent condition and resulting equations

Let us consider the gradient flow governed by the energy E , the continuity equation (3), and the dissipation D. Let 
s ∈M be a finite energy saturation profile, then because of the steepest descent condition (1) and of the definition (2) of the 
operator P(s) : Zs → TsM, the process V = (vo, vw) ∈ Zs and the hydrostatic phase pressures h = (ho, hw) must be chosen 
so that (V, h) is the min–max saddle-point of the functional

(̂V, ĥ) 
→ D(s, V̂) −
∑

α∈{o,w}

∫
�

ĥα∇ · v̂αdx. (7)

One can first fix ̂h ∈ ∂sE(s) and minimize w.r.t. V. This provides

argmin
V̂∈Z

⎛⎝D(s, V̂) −
∑

α∈{o,w}

∫
�

ĥα∇ · v̂α dx

⎞⎠ = (−ηo(so)�∇ĥo,−ηw(sw)�∇ĥw
)
. (8)

Injecting this expression in (7) and maximizing w.r.t. ̂h ∈ ∂sE(s), that is minimizing

h = argmin
ĥ∈∂sE(s)

⎛⎝1

2

∫
�

ηα(sα)�∇ĥα · ∇ĥα

⎞⎠ (9)

among all elements ̂h in the subdifferential ∂sE(s), yields

−∇ ·
(

vo + vw

)
= 0, vα = −ηα(sα)�∇hα. (10)

In (10) the first condition follows from the constraint ĥ ∈ ∂sE(s) in (9), and the second one from (8).
Define the phase pressures p = (po, pw) by pα(x) = hα(x) + ρα gz, for a.e. x ∈ � and α ∈ {o, w}, then we recover the 

classical Darcy–Muskat law:

vα = −ηα(sα)�∇ (pα − ρα g z) , α ∈ {o,w}. (11)

Moreover, it follows from (6) that the following capillary pressure relation holds:

po(x) − pw(x) ∈ π(so(x), x) a.e. in �. (12)

We recover here the multivalued capillary pressure relation proposed in [19,7,8,10].
Combining (3) and (10) easily gives ∂t(so + sw) = 0, so that the condition
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so + sw = 1 a.e. in �, (13)

is preserved along time and the whole pore volume remains saturated by the two fluids.
Gathering (3), (11), (12) and (13) gives the usual system of equations governing immiscible incompressible two-phase 

flows in porous media [5,11,3,12,10].

Remark 1. By similarity with the classical Wasserstein distance used in optimal mass transport [17], one could here endow 
the tangent space TsM at s ∈M with a weighted Ḣ−1-scalar product(

ṡ1, ṡ2
)

TsM =
∑

α∈{o,w}

∫
�

ηα(sα)�∇h1,α · ∇h2,αdx,

where, for i ∈ {1, 2} and α ∈ {o, w}, we have set ṡi = (ṡi,o, ̇si,w) and where hi,α solves

−∇ · (ηα(sα)�∇hi,α
) = ṡi,α in �, ηα(sα)�∇hi,α · n = 0 on ∂�.

Under some conditions on the functions ηα (see [14]), this should allow us to consider M as a metric space endowed with 
the corresponding distance, but E is not locally λ-convex for this Riemannian structure. The minimization (9) then consists 
in the selection of the subgradient with minimal norm.
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