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Abstract. The group of diffeomorphisms of a compact manifold endowed with the L2 metric
acting on the space of probability densities gives a unifying framework for the incompressible

Euler equation and the theory of optimal mass transport. Recently, several authors have extended

optimal transport to the space of positive Radon measures where the Wasserstein-Fisher-Rao
distance is a natural extension of the classical L2-Wasserstein distance. In this paper, we show a

similar relation between this unbalanced optimal transport problem and the Hdiv right-invariant
metric on the group of diffeomorphisms, which corresponds to the Camassa-Holm (CH) equation

in one dimension. On the optimal transport side, we prove a polar factorization theorem on the

automorphism group of half-densities. Geometrically, we present an isometric embedding of the
group of diffeomorphisms endowed with this right-invariant metric in the automorphisms group of

the fiber bundle of half densities endowed with an L2 type of cone metric. This leads to a new

formulation of the (generalized) CH equation as a geodesic equation on an isotropy subgroup of
this automorphisms group; On S1, solutions to the standard CH thus give particular solutions of

the incompressible Euler equation on a group of homeomorphisms of R2 which preserve a radial

density that has a singularity at 0. An other application consists in proving that smooth solutions
of the Euler-Arnold equation for the Hdiv right-invariant metric are length minimizing geodesics

for sufficiently short times.

1. Introduction

In his seminal article [2], Arnold showed that the incompressible Euler equation can be viewed
as a geodesic flow on the group of volume preserving diffeomorphisms of a Riemannian manifold
M . His formulation had an important impact in the mathematical literature and it has led to many
different works. Among others, let us emphasize two different points of view which have proven to
be successful.

The first one has been investigated by Ebin and Marsden in [19] where the authors have taken an
intrinsic point of view on the group of diffeomorphisms as an infinite dimensional weak Riemannian
manifold. Formulating the geodesic equation as an ordinary differential equation in a Hilbert man-
ifold of Sobolev diffeomorphisms, they proved, among others, local well-posedness of the geodesic
equation for smooth enough initial conditions. Since then, many fluid dynamic equations, including
the Camassa-Holm equation, have been written as a geodesic flow on a group of diffeomorphisms
endowed with a right-invariant metric or connection [35, 30, 48, 21, 29] and analytical properties
have been derived in the spirit of [19]. Note in particular that all these works assume a strong
ambient topology such as Hs for s high enough and the topology given by the Riemannian metric
is generically weaker, typically L2 in the case of incompressible Euler.

Another point of view, motivated by the variational interpretation of geodesics as minimizers of
the action functional, was initiated by Brenier. He developed an extrinsic approach by considering
the group of volume preserving diffeomorphisms as a Riemannian submanifold embedded in the
space of maps L2(M,M) which is particularly simple when M is the Euclidean space or torus. In
particular, his polar factorization theorem [5] was motivated by a numerical scheme approximating
geodesics on the group of volume preserving diffeomorphisms. Optimal transport then appeared as
a key tool to project a map onto this group by minimizing the L2 distance and it can be interpreted
as a non-linear extension of the pressure in the incompressible Euler equation. Since then, optimal
transport has witnessed an impressive development and found many important applications inside
and outside mathematics, see for instance the gigantic monograph of Villani [57]. Brenier also used
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optimal transport in order to define the notion of generalized geodesics for the incompressible Euler
equation in [6].

In this article, we develop Brenier’s point of view for a generalization in any dimension of the
Camassa-Holm equation. Indeed, we present an isometric embedding of the group of diffeomor-
phisms endowed with the right-invariant Hdiv metric into a space of maps endowed with an L2

metric. Moreover, the recently introduced Wasserstein-Fisher-Rao distance [13, 12], a generalization
of optimal transport to measures that do not have the same total mass, plays the role of the L2

Wasserstein distance for the incompressible Euler equation.
Before presenting our contributions in more details, we give a brief overview of the link between

optimal transport and the incompressible Euler equation hereafter.

1.1. Optimal transport and the incompressible Euler equation. We first start from the
usual static formulation of optimal transport and then present the dynamical formulation proposed
by Benamou and Brenier. The link between the two formulations can be introduced via Otto’s Rie-
mannian submersion, which also provides a clear connection between incompressible Euler equation
and the dynamical formulation of optimal transport. Our presentation closely follows the discussion
in [32, Appendix A.5] and interesting complements can be found in [50, 30, 31]. In the rest of the
section, unless otherwise mentioned, M denotes the flat torus; However, most of the results discussed
hereafter are valid on Riemannian manifolds and also on much more general spaces.

Static formulation of optimal mass transport: The optimal mass transport problem as
introduced by Monge in 1781 consists in finding, between two given probability measures ν1 and ν2,
a map ϕ such that ϕ∗ν1 = ν2, i.e. the image measure of ν1 by ϕ is equal to ν2 and which minimizes
a cost given by

(1.1)

∫
M

c(x, ϕ(x)) dν1(x) ,

where c is a positive function that represents the cost of moving a particule of unit mass from
location x to location y. This problem is ill-posed in the sense that solutions may not exist and the
Kantorovich formulation of the problem is the correct relaxation of the Monge formulation, which
can be presented as follows: On the space of probability measures on the product space M ×M ,
denoted by P(M ×M), find a minimizer to

(1.2) I(m) =

∫
M2

c(x, y) dm(x, y) such that p1
∗(m) = ν1 and p2

∗(m) = ν2 ,

where p1
∗(m), p2

∗(m) denote respectively the image measure of m ∈ P(M ×M) under the projections
on the first and second factors on M ×M . Most often in the litterature, the cost c is chosen as a
power of a distance. From now on, we will only discuss the case c(x, y) = d(x, y)2 where d is the
distance associated with a Riemannian metric on M . In this case, the Kantorovich minimization
problem defines the so-called L2-Wasserstein distance on the space of probability measures. The
Monge formulation can be expressed as a minimization problem as follows

(1.3) W2(µ, ν)2 def.
= inf

ϕ∈Diff(M)

{∫
M

d(ϕ(x), x)2 dν1(x) : ϕ∗ν1 = ν2

}
,

where Diff(M) denotes the group of smooth diffeomorphisms of M .
Dynamic formulation: In [3], Benamou and Brenier introduced a dynamical version of optimal

transport which was inspired and motivated by the study of the incompressible Euler equation. Let
ρ ∈ C∞(M,R+) be a positive function, note that all the quantities will be implicitly time dependent.
The dynamic formulation of the Wasserstein distance consists in minimizing

(1.4) E(v) =

∫ 1

0

∫
M

‖v(t, x)‖2ρ(t, x) dvol(x) dt ,

subject to the constraints ρ̇ + div(vρ) = 0 and initial condition ρ(0) = ρ0 and final condition
ρ(1) = ρ1. The notation ‖ · ‖ stands for the Euclidean norm.
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Equivalently, following [3], a convex reformulation using the momentum m = ρv reads

(1.5) E(m) =

∫ 1

0

∫
M

‖m(t, x)‖2

ρ(t, x)
dvol(x) dt ,

subject to the constraints ρ̇+div(m) = 0 and initial condition ρ(0) = ρ0 and final condition ρ(1) = ρ1.
Let us underline that the functional E is convex in ρ,m and the continuity equation is linear in (ρ,m),
therefore convex optimization methods can be applied for numerical purposes. Due to the continuity
equation, the problem is feasible if and only if the initial and final densities have the same total mass
using Moser’s lemma [51].

Otto’s Riemannian submersion: The link between the static and dynamic formulations is
made clear using Otto’s Riemannian submersion [52] which emphasizes the idea of a group action
on the space of probability densities. Let Densp(M) be the set of probability measures that have
smooth positive densities with respect to the volume measure vol. We consider such a probability
density denoted by ρ0. Otto showed that the map

π : Diff(M)→ Densp(M)

π(ϕ) = ϕ∗(ρ0)

is a formal Riemannian submersion of the metric L2(ρ0) on Diff(M) to the L2-Wasserstein metric
on Densp(M). For a brief reminder on Riemannian submersions, we refer the reader to Appendix
A.1. The fiber of this Riemannian submersion at point ρ0 ≡ 1 is the subgroup of diffeomorphisms
preserving the volume measure vol, we denote it by SDiff(M) and we denote its tangent space at
Id by SVect(M), the space of divergence free vector fields. The vertical space at a diffeomorphism

ϕ ∈ Diff(M) for ρ
def.
= ϕ∗ρ0 is

(1.6) Vertϕ = {v ◦ ϕ ; v ∈ Vect(M) s.t. div(ρv) = 0} .

In particular, consider ϕ ∈ SDiff(M), the vertical space is Vertϕ = {v ◦ ϕ ; v ∈ SVect(M)}. and the
horizontal space is

(1.7) Horϕ = {∇p ◦ ϕ ; p ∈ C∞(M,R)} .

Incompressible Euler equation: On the fiber SDiff(M), the L2(vol) metric is right-invariant.
In Arnold’s seminal work [2], it is shown that the Euler-Lagrange equation associated with this metric
is the incompressible Euler equation. Arnold derived this equation as a particular case of geodesic
equations on a Lie group endowed with a right-invariant metric. In its Eulerian formulation, the
incompressible Euler equation is, when M = Td the flat torus for the Lebesgue measure,

(1.8)


∂tv(t, x) + v(t, x) · ∇v(t, x) = −∇p(t, x), t > 0, x ∈M ,

div(v) = 0 ,

v(0, x) = v0(x) ,

where v0 ∈ SVect(M) is the initial condition and p is the pressure function. On a general Riemannian
manifold (M, g) compact and without boundary, the formulation is similar, omitting the time and
space variables, for the volume measure,

(1.9)


∂tv +∇vv = −∇p, t > 0, x ∈M ,

div(v) = 0 ,

v(0, x) = v0(x) ,

where, in this case, the symbol∇ denotes the Levi-Civita connection associated with the Riemannian
metric on M and div denotes the divergence w.r.t. the volume measure. Another fruitful point of
view consists in considering the group SDiff(M) as isometrically embedded in the group Diff(M)
endowed with the L2(vol) (non right-invariant) metric. Therefore the geodesic equations are simply
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geodesic equations on the Riemannian submanifold SDiff(M) and the geodesic equations can be
written as

(1.10) φ̈ = −∇p ◦ φ ,

where φ ∈ SDiff(M) and p is still a pressure function. Using this Riemannian submanifold approach,
Brenier was able to prove that solutions for which the Hessian of p is bounded in L∞ are length
minimizing for short times and several of his analytical results were derived from this formulation
[4, 6].

Inviscid Burgers equation: The geodesic equation on the group of diffeomorphisms for the
L2 metric written in Eulerian coordinates is the compressible Burgers equation. Its formulation on
M = Td is

(1.11) ∂tu(t, x) + u(t, x) · ∇u(t, x) = 0 ,

or on a general Riemannian manifold

(1.12) ∂tu+∇uu = 0 .

This formulation is obviously related to the incompressible Euler equation where the pressure p can
be interpreted as a Lagrange multiplier associated with the incompressibility constraint, which is
not present in Burgers equation. Since the map π is a Riemannian submersion, geodesics on the
space of densities can be lifted horizontally to geodesics on the group. These horizontal geodesics are
potential solutions of the Burgers equation, if u0 = ∇q0, i.e. u is a potential at the initial time, then
ut stays potential for all time (until it is not well defined any longer). The corresponding equation
for the potential q is the Hamilton-Jacobi equation

(1.13) ∂tq(t, x) +
1

2
‖∇q(t, x)‖2 = 0 ,

which, in this formulation, makes sense on a Riemannian manifold.

1.2. Previous works and contributions. Recently, several authors including the second author
extended optimal transport to the case of unbalanced measures, i.e. measures that do not have the
same total mass. Although several works extended optimal transport to this setting, surprisingly
enough, the equivalent of the L2-Wasserstein distance in this unbalanced setting has been introduced
in 2015 simultaneously by [13, 12] motivated by imaging applications, [38, 39] motivated by gradient
flows as well as [34] and by [53] for optimal transport of contact structures. In this paper, we show
that, in the case of the Wasserstein-Fisher-Rao metric, the equivalent to the incompressible Euler
equation is a generalization of the Camassa-Holm equation, namely the Euler-Arnold equation for
the right-invariant metric Hdiv on the group of diffeomorphisms. In one dimension, geodesics for
the right-invariant Hdiv metric are the solutions to the Camassa-Holm equation introduced in [11].
Since its introduction, the Camassa-Holm equation has attracted a lot of attention since it is a
bi-Hamiltonian system as well as an integrable system, it exhibits peakon solutions and it is a model
for waves in shallow water [16, 14, 37, 15, 8, 17, 28]. In particular, this equation is known for its
well understood blow-up in finite time and is a model for wave breaking [43].

Although the title of [9], which refers to optimal transport and the Camassa-Holm equation, is
seemingly close to our article, the authors introduce a metric based on optimal transport which gives
Lipschitz estimates for the solutions of the Camassa-Holm equation and it is a priori completely
different to our construction. Indeed, in our article, the optimal transport metric measures the
discrepancy of not being in the stabilizer of the group action defined in Section 2.3 where the
solutions of the Camassa-Holm equation lie.

Two complementary directions are developed in this article:
First, we study in details the associated optimal transport problem on Riemannian manifolds. In

particular, we prove an equivalence between the dynamic and static formulations of the unbalanced
optimal transport problem on Riemannian manifolds and we provide a detailed study of the dual
problem. This enables us to formulate a generalization of the polar factorization on the automor-
phism group of the fiber bundle of half-densities.
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Second, we rewrite the geodesic flow of the right-invariant Hdiv metric on the diffeomorphism
group as a geodesic equation on a constrained submanifold of a semidirect product of group or
equivalently on the automorphism group of the half-densities fibre bundle endowed with the cone
metric (see Section 2.2 for its definition). This point of view has three applications: (1) We inter-
pret solutions to the Camassa-Holm equation and one of its generalization in higher dimension as
particular solutions of the incompressible Euler equation on the plane for a radial density which has
a singularity at 0. This correspondence can be introduced via a sort of Madelung transform. (2) We
generalize a result of Khesin et al. in [30] by computing the curvature of the group as a Riemannian
submanifold. (3) Generalizing a result of Brenier to the case of Riemannian manifolds, which states
that solutions of the incompressible Euler equation are length minimizing geodesic for sufficiently
short times, we prove similar results for the Camassa-Holm equation.

1.3. Plan of the paper. In Section 2, we introduce the Wasserstein-Fisher-Rao metric which gen-
eralizes the L2 Wasserstein metric on the space of probability densities to the space of densities, thus
relaxing the mass constraint. Its presentation emphasizes the dynamical formulation, similar to
the Benamou-Brenier formulation. This dynamical formulation naturally introduces a cone metric
which is detailed in Section 2.2. Then, we present the generalization of Otto’s Riemannian submer-
sion to this unbalanced case. This generalization uses a semidirect product of group which can be
interestingly interpreted as the automorphism group of the principal fibre bundle of half-densities,
as explained in Section 2.3. This semidirect product of group has a natural left action on the space
of densities and it gives the Riemannian submersion between an L2 type of metric on the group and
the Wasserstein-Fisher-Rao metric on the space of densities. This group action point of view is a key
point to introduce, in Section 3, the Monge formulation of the Wasserstein-Fisher-Rao metric and
we also prove, in Section 3.2, that the dynamic formulation is equivalent to its Kantorovich coun-
terpart in the case of a compact Riemannian manifold. This is done by a direct generalization of
the arguments in [42]. In Section 3, we also propose a generalization of Brenier’s polar factorization
in this context which can be interpreted as a constrained version of it on the automorphism group
of the half-densities principal fibre bundle.

In Section 4, we explain the Euler-Arnold derivation of the incompressible Euler equation and
other fluid dynamic equations such as the Camassa-Holm equation. We then recall in Section 4.3
the Ebin-Marsden approach to show local well-posedness of the Camassa-Holm equation.

Section 5 presents the corresponding submanifold point of view corresponding to the Camassa-
Holm equation (its generalization). The submanifold is the isotropy subgroup of the left action
of the semidirect product of group and the ambient metric is the L2 type of metric. As a direct
consequence, it gives a generalization of a result on the sectional curvature written in [30, Theorem
A.2].

Two main applications are detailed in Section 6. In Section 6.1, we show that solutions of the
Camassa-Holm equation (its generalization) can be seen as particular solutions of an incompressible
Euler equation for a particular density on the cone which has a singularity at 0. In Section 6.2, we
improve a result of Ebin and Marsden by applying Brenier’s approach to show that every smooth
geodesics are length minimizing on a sufficiently short time interval under mild conditions.

1.4. Notations. Hereafter is a non exhaustive list of notations used throughout the paper.

• (M, g) is a smooth orientable Riemannian manifold which is assumed compact and without
boundary. Its volume form is denoted by vol, TM and T ∗M denote respectively the tangent
and the cotangent bundle.

• The distance on (M, g) is sometimes denoted by dM when a confusion might occur.
• For x ∈M , the squared norm of a vector v ∈ TxM will be denoted by ‖v‖2 or g(x)(v, v).
• For x ∈ M , we denote by expMx : TxM → M , the exponential map, the superscript being a

reminder of the underlying manifold.
• C(M) is the Riemannian cone over (M, g) and is introduced in Definition 2.
• The operator div is the divergence w.r.t. the volume form on (M, g).
• The Lie bracket between two vector fields X,Y on M is denoted by [X,Y ].
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• If f ∈ C1(M,R), then ∇f is the gradient of f w.r.t. the metric g. Sometimes, we use the
notation ∇x to make clear which variable we consider.

• The group of invertible linear maps on Rd is denoted by GLd(R).

• For a quantity f(t, x) that depends on time and space variable, we denote by ḟ its time
derivative.

• On R and C, | · | denotes respectively the absolute value and the module.
• M = Sn(r) the Euclidean sphere of radius r in Rn+1.
• The Lebesgue measure is denoted by Leb.

• Sometimes, we use the notation a
def.
= b to define a as b.

2. A Geometric Point of View on Unbalanced Optimal Transport

2.1. The Wasserstein-Fisher-Rao metric, its dynamical formulation. The continuity equa-
tion enforces the mass conservation property in the Benamou-Brenier formulation (1.4). This con-
straint can be relaxed by introducing a source term µ ∈ C∞(M,R),

(2.1) ρ̇ = −div(ρv) + µ .

For a given variation of the density ρ̇, there exist a priori many couples (v, µ) that reproduce this
variation. Following [55], it can be determined via the minimization of the norm of (v, µ), for a
given choice of norm. The penalization of µ was chosen in [41] as the L2 norm but a natural choice
is rather the Fisher-Rao metric

FR2(µ) =

∫
M

µ(t, x)2

ρ(t, x)
dvol(x) ,

because it is homogeneous. In other words, this is the L2 norm of the growth rate w.r.t. the density

ρ since it can be written as
∫
M
α(t, x)2ρ(t, x) dvol(x) where α is the growth rate α(t, x)

def.
= µ(t,x)

ρ(t,x) .

Note in particular that this action is 1-homogeneous with respect to the couple (µ, ρ). This point
is important for convex analysis properties and especially, in order to define the action functional
on singular measures via the same formula. Obviously, there are many other choices of norms that
satisfies this homogeneity property but this particular one can be related to the Camassa-Holm
equation.

Thus, the Wasserstein-Fisher-Rao functional also known as Hellinger-Kantorovich [38], or Kantorovich-
Fisher-Rao [26], is simply given by the infimal convolution between the Wasserstein and the Fisher-
Rao metric tensor.

Definition 1 (WF metric). Let (M, g) be a smooth Riemannian manifold compact and without
boundary, a, b ∈ R∗+ be two positive real numbers and ρ0, ρ1 ∈ M+(M) be two nonnegative Radon
measures. The Wasserstein-Fisher-Rao metric is defined by

(2.2) WF2(ρ0, ρ1) = inf
ρ,m,µ

J (ρ,m, µ) ,

where

(2.3) J (ρ,m, µ) = a2

∫ 1

0

∫
M

g−1(x)(m̃(t, x), m̃(t, x))

ρ̃(t, x)
dν(t, x) + b2

∫ 1

0

∫
M

µ̃(t, x)2

ρ̃(t, x)
dν(t, x)

over the set (ρ,m, µ) satisfying ρ ∈M([0, 1]×M), m ∈ (Γ0
M ([0, 1]×M,TM))∗ which denotes the dual

of time dependent continuous vector fields on M (time dependent sections of the tangent bundle),
µ ∈M([0, 1]×M) subject to the constraint

(2.4)

∫ 1

0

∫
M

∂tf dρ+

∫ 1

0

∫
M

m(∇xf)− fµdν =

∫
M

f(1, ·) dρ1 −
∫
M

f(0, ·) dρ0

satisfied for every test function f ∈ C1([0, 1] ×M,R). Moreover, ν is chosen such that ρ,m, µ are
absolutely continuous with respect to ν and ρ̃, m̃, µ̃ denote their Radon-Nikodym derivative with
respect to ν.
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Remark 1. Note that, in the previous definition, the divergence operator div(·) is defined by duality
on the space of C1 functions. In addition, since the functions in the integrand of formula (2.2) are
one homogeneous with respect to the triple of arguments (ρ̃, m̃, µ̃), the functional does not depend
on the choice of ν which dominates the measures. Last, the Radon-Nikodym theorem applied to the
measure m gives m = m̃ν where m̃ is a measurable section of T ∗M .

The following property is immediate to check.

Proposition 1. The WF2 functional is convex and positively one homogeneous on the space of
Radon measures. Moreover, WF defines a distance on the space of nonnegative Radon measures
which is continuous w.r.t. to the weak-* topology.

This dynamical formulation enjoys most of the analytical properties of the initial Benamou-
Brenier formulation (1.4) and especially convexity. An important consequence is the existence of
optimal paths in the space of time-dependent measures [13] by application of the Fenchel-Rockafellar
duality theorem as stated in the next proposition. We omit the proof here since it is similar to the
one given in [12] in the Euclidean case and it is also proven in more general spaces in [38].

Proposition 2 (Hamilton-Jacobi). There exists a minimum to the minimization problem (2.2) and
it holds

(2.5) WF2(ρ0, ρ1) = sup
q∈C

∫
M

q(1, ·) dρ1 −
∫
M

q(0, ·) dρ0

where C is the set of functions q ∈ C1([0, 1]×M,R) such that

(2.6) ∂tq(t, x) +
1

2a2
‖∇q(t, x)‖2 +

1

2b2
q(t, x)2 ≤ 0 .

Not only analytical properties of standard optimal transport are conserved but also some inter-
esting geometrical properties such as the Riemannian submersion highlighted by Otto, as explained
in the introduction. More precisely, the group of diffeomorphisms can be replaced by a semi-direct
product of group between Diff(M) and the space C∞(M,R∗+) which is a group under pointwise mul-
tiplication. In addition, this group acts on the space of densities Dens(M) and this action gives a
Riemannian submersion between the group endowed with an L2 type of metric, namely L2(M, C(M))
and the space of densities endowed with the Wasserstein-Fisher-Rao metric. The notation C(M) is
the cone over M defined in the next section 2.2, it is the manifold M × R∗+ endowed with the
Riemannian metric given in Definition 2. Moreover, this semidirect product of groups is naturally
identified as the automorphism group of the fibre bundle of half densities in section 2.3.

2.2. A cone metric. To motivate the introduction of the cone metric, let us first discuss informally
what happens for a particle of mass m(t) at a spatial position x(t) in a Riemannian manifold (M, g)
under the generalized continuity constraint (2.1). Let us assume the following structure for the
measure m(t)δx(t) where m(t) ∈ R∗+ is the mass of the Dirac measure and x(t) ∈M its location, the
system reads

(2.7)

{
ẋ(t) = v(x(t))

ṁ(t) = α(x(t))m(t)

where α = µ
ρ is the growth rate. The action associated with formula (2.2) reads

∫ 1

0
a2|v(x(t))|2m(t)+

b2 ṁ(t)2

m(t) dt. Thus, considering the particle as a point in M × R∗+, the Riemannian metric seen by

the particle is a2mg + b2 dm2

m . Therefore, it will be of importance to study this Riemannian metric
M × R∗+. Actually, this space is isometric to the standard Riemannian cone defined below.

Definition 2 (Cone). Let (M, g) be a Riemannian manifold. The cone over M denoted by C(M) is
the quotient space (M × R+) / (M × {0}). The cone point M ×{0} is denoted by S. The cone will

be endowed with the metric gC(M)
def.
= r2g + dr2 defined on M × R∗+ and r is the variable in R∗+.
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The isometry is given by the square root change of variable on the mass, as stated in the following
proposition.

Proposition 3. The space (M ×R∗+,mg+ 1
4m dm2) is isometric to (C(M), gC(M)) by the change of

variable r =
√
m. Therefore, the distance on (M × R∗+, a2mg + b2

m dm2) is given by

(2.8) d((x1,m1), (x2,m2))2 = 4b2
(
m2 +m1 − 2

√
m1m2 cos

( a
2b
dM (x1, x2) ∧ π

))
.

Moreover, if c is a geodesic for the metric a2

4b2 g, an isometry S : C \ R− → M × R∗+ is defined by

S(
√
meiθ) = (c(θ), 2bm).

In physical terms, it implies that mass can ”appear” and ”disappear” at finite cost. In other
words, the Riemannian cone is not complete but adding the cone point, which represents M × {0},
to M × R∗+ turns it into a complete metric space when M is complete. Importantly, the distance
associated with the cone metric (2.8) is 1-homogeneous in (m1,m2). In the rest of the paper, unless
explicitly mentioned, we consider the case a = 1 and b = 1/2. We now collect known facts about
Riemannian cones.

Proposition 4. On the cone C(M), we denote by e the vector field defined by ∂
∂m . The Levi-Civita

connection on (M, g) will be denoted by ∇g. For a given vector field X on M , define its lift as a

vector field on M × R∗+ by X̂(x, r) = (X(x), 0). The Levi-Civita connection on C(M) denoted by ∇
is given by

∇X̂ Ŷ = ∇̂gXY − rg(X,Y )e , ∇ee = 0 and ∇eX̂ = ∇X̂e =
1

r
X̂ .

The curvature tensor R on the cone satisfies the following properties,

(2.9) R(X̂, e) = 0 and R(X̂, Ŷ )Ẑ = (Rg(X,Y )Z − g(Y,Z)X + g(X,Z)Y, 0)

where Rg denotes the curvature tensor of (M, g). Let X,Y be two orthornormal vector fields on M ,

(2.10) K(X̂, Ŷ ) = Kg(X,Y )− 1

where K and Kg denote respectively the sectional curvatures of C(M) and M .

Proof. Direct computations, see [23]. �

Let us give simple comments on Riemannian cones: Usual cones, embedded in R3 are cones over S1

of length less than 2π. Although Riemannian cones over a segment in R are locally flat, the curvature
still concentrates at the cone point. The cone over the sphere is isometric to the Euclidean space
(minus the origin) and the cone over the Euclidean space has nonpositive curvature. In particular,
the cone over S1 is isometric to R2 \ {0}. We refer to [10] for more informations on cones from the
point of view of metric geometry.

We need the explicit formulas for the geodesic equations on the cone.

Corollary 5. The geodesic equations on the cone C(M) are given by

D

Dt

g

ẋ+ 2
ṙ

r
ẋ = 0(2.11a)

r̈ − rg(ẋ, ẋ) = 0 ,(2.11b)

where D
Dt

g
is the covariant derivative associated with (M, g).

Alternatively, the geodesic equations on (M × R∗+, a2mg + b2

m dm2) can be written w.r.t. the initial
”mass” coordinate as follows

D

Dt

g

ẋ+
ṁ

m
ẋ = 0(2.12a)

m̈− ṁ2

2m
− a2

2b2
g(ẋ, ẋ)m = 0 .(2.12b)
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2.3. The automorphism group of the bundle of half-densities. The cone can be seen as a
trivial principal fibre bundle since C(M) is the direct product of M with the group R∗+. Let us
denote pM : C(M) 7→ M the projection on the first factor. The group R∗+ induces a group action

on C(M) defined by λ · (x, λ′) def.
= (x, λλ′), for all x ∈M and λ, λ′ ∈ R∗+. We now identify the trivial

fibre bundle of half densities with the cone.

Definition 3. Let M be a smooth manifold without boundary and (Uα, uα) be a smooth atlas. The
bundle of s-densities is the line bundle given by the following cocycle

Ψαβ : Uα ∩ Uβ 7→ GL1(R) = R∗

Ψαβ(x) = |det( d(uβ ◦ u−1
α )(uα(x))|s =

1

|det(d(uα ◦ u−1
β ))(uβ(x))|s

·

We denote by Denss(M) the set of sections of this bundle and we use Dens(M) instead of
Dens1(M), the space of densities. This definition shows that this fibre bundle is also a principal
fibre bundle over R∗+ and it will be the point of view adopted in the rest of the paper.

On any smooth manifold M , the fibre bundle of s-densities is a trivial principal bundle over R∗+
since there exists a smooth positive density on M . Note that this trivialization depends on the
choice of this reference positive density. If one chooses such a positive density, then the 1/2-density
bundle can be identified to the cone C(M). Let us fix the reference volume form to be the volume
measure vol. By this choice, we identify Dens1/2(M) with the set of sections of the cone C(M) in
the rest of the paper. Thus every element of Dens1/2(M) is a section of the cone C(M). We are now
interested in transformations that preserve the group structure. Namely, one can define

(2.13) Aut(C(M)) =
{

Φ ∈ Diff(C(M)) ; Φ(x, r) = r · Φ(x, 1) for all r ∈ R∗+
}
,

which is the instantiation, in this particular case, of the definition of the automorphisms group of
a principal fibre bundle. In other words, this is the subgroup of diffeomorphisms of the cone that
preserve the group action on the fibers. In particular, Aut(C(M)) is a subgroup of Diff(C(M)). Of
particular interest is the subgroup of Aut(C(M)) which is defined as

(2.14) Gau(C(M)) = {Φ ∈ Aut(C(M)) ; pM ◦ Φ = idM} .
The set Gau(C(M)) is called the gauge group and it is a normal subgroup of Aut(C(M)). We now
consider the injection s : Diff(M) ↪→ Aut(C(M)) defined by s(ϕ) = (ϕ, idR∗

+
). This is the standard

situation of a semidirect product of groups between i(Diff(M)) and Gau(C(M)) since the following
sequence is exact

(2.15) Gau(C(M)) ↪→ Aut(C(M))→ Diff(M) ,

where s defined above provides an associated section of the short exact sequence. Note that we
could also have chosen the natural section associated to the natural bundle of half-densities. As is
well-known for a trivial principal bundle, Aut(C(M)) is therefore equal to the semidirect product of
group:

(2.16) Aut(C(M)) = Diff(M) nΨ Gau(C(M)) ,

where Ψ : Diff(M) 7→ Aut(Gau(C(M))) is defined by Ψ(ϕ)(λ) = ϕ−1λϕ being the associated inner
automorphism of the group Gau(C(M)), where the composition is understood as composition of
diffeomorphisms of C(M). Being a trivial principal fibre bundle, the gauge group can be identified

with the space of positive functions on M . Let us denote Λ1/2(M)
def.
= C∞(M,R∗+) which is a group

under pointwise multiplication. The subscript 1/2 is a reminder of the fact that Λ1/2(M) is the
gauge group of C(M), the bundle of 1/2-densities. Note that we do not use the standard left action
but, instead, a right action for the inner automorphisms as presented in [33, Section 5.3], which fits
better to our notations, although these two choices are equivalent. The identification of Λ1/2 with
the gauge group Gau(C(M)) is simply λ 7→ (idM , λ) where (idM , λ) : (x,m) 7→ (x, λ(x)m). The
group composition law is given by

(2.17) (ϕ1, λ1) · (ϕ2, λ2) = (ϕ1 ◦ ϕ2, (λ1 ◦ ϕ2)λ2)
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and the inverse is

(2.18) (ϕ, λ)−1 = (ϕ−1, λ−1 ◦ ϕ−1) .

By construction, the group Aut(C(M)) has a natural left action on the space Dens1/2(M) as well as
on Dens(M). The action on Dens(M) is explicitly given by the map π defined by

π :
(
Diff(M) nΨ Λ1/2(M)

)
×Dens(M) 7→ Dens(M)

π ((ϕ, λ), ρ)
def.
= ϕ∗(λ

2ρ) .(2.19)

We will also use sometimes the notation π [(ϕ, λ), ρ]. For particular choices of metrics, this left
action is a Riemannian submersion as detailed below. Note that we will use both automorphism
group and semidirect product notations equally, depending on the context.

2.4. A Riemannian submersion between the automorphism group and the space of den-
sities. The semidirect product of group Diff(M) nΨ Λ1/2(M) will be endowed with the metric

L2(M, C(M)) with respect to the reference measure on M . This is probably the simplest type of
(weak) Riemannian metrics on spaces of mappings and it has been studied in details in [22] where, in
particular, the curvature is computed. Note in particular that this metric is not the right-invariant
metric L2 on the semidirect product of groups as in [29] or on the automorphism group which would
lead to an EPDiff equation on a principal fibre bundle as developed in [27].

Proposition 6. The geodesic equations on Aut(C(M)) endowed with the metric L2(M, C(M)) with
respect to the reference measure on ν are given by the geodesic equations on the cone (2.11), that is
D
Dt (ϕ̇, λ̇) = 0, or more explicitely

D

Dt

g

ϕ̇+ 2
λ̇

λ
ϕ̇ = 0(2.20a)

λ̈− λg(ϕ̇, ϕ̇) = 0 .(2.20b)

Remark 2. Note that the first equation (2.20a) is 0-homogeneous with respect to λ and the sec-
ond equation (2.20b) is one homogeneous with respect to λ. Therefore, the automorphism group
Aut(C(M)) is totally geodesic in Diff(C(M)) for the L2(C(M), C(M)) metric. This is a consequence
of the fact that R∗+-multiplication acts as an affine isometry on C(M).

Let us first recall some useful notions. From the point of view of fluid dynamics, the next definition
corresponds to the change of variable between Lagrangian and Eulerian formulations.

Definition 4 (Right-trivialization). Let H be a group and a smooth manifold at the same time,
possibly of infinite dimensions, the right-trivialization of TH is the bundle isomorphism τ : TH 7→
H × TIdH defined by τ(h,Xh)

def.
= (h, dRh−1Xh), where Xh is a tangent vector at point h and

Rh−1 : H → H is the right multiplication by h−1, namely, Rh−1(f) = fh−1 for all f ∈ H.

In fluid dynamics, the right-trivialized tangent vector dRh−1Xh corresponds to the spatial or
Eulerian velocity and Xh is the Lagrangian velocity. Importantly, this right-trivialization map
is continuous but not differentiable with respect to the variable h. Indeed, right-multiplication
Rh is smooth, yet left multiplication is continuous and usually not differentiable, due to a loss of
smoothness.

Example 7. For the semi-direct product of groups defined above, we have

(2.21) τ((ϕ, λ), (Xϕ, Xλ)) = ((ϕ, λ), (Xϕ ◦ ϕ−1, (Xλλ
−1) ◦ ϕ−1)) .

We will denote by (v, α) an element of the tangent space of T(Id,1) Diff(M) nΨ Λ1/2(M).

As an immediate consequence of Proposition 6, we write the geodesic equation in Eulerian coor-
dinates.
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Corollary 8 (Geodesic equations in Eulerian coordinates). After right-trivialization, that is under

the change of variable v
def.
= ϕ̇ ◦ ϕ−1 and α

def.
= λ̇

λ ◦ ϕ
−1, the geodesic equations read

(2.22)

{
v̇ +∇vv + αv = 0

α̇+ 〈∇α, v〉+ α2 − g(v, v) = 0 .

Recall now the infinitesimal action associated with a group action.

Definition 5 (Infinitesimal action). For a smooth left action of H a Lie group on a manifold M
and q ∈M , the infinitesimal action is the map TIdH ×M 7→ TM defined by

(2.23) ξ · q def.
=

d

dt

∣∣∣∣
t=0

(exp(ξt) · q) ∈ TqM

where · denotes the left action of H on M and exp(ξt) is the Lie exponential, that is the solution to

ḣ = dRh(ξ) and h(0) = Id.

Example 9. For Diff(M)nΨ Λ1/2(M) acting on Dens(M), the previous definition gives (v, α) · ρ =
−div(vρ) + 2αρ. Indeed, one has

(ϕ(t), λ(t)) · ρ = Jac(ϕ(t)−1)(λ2(t)ρ) ◦ ϕ−1(t) .

First recall that ∂tϕ(t) = v ◦ ϕ(t) and ∂tλ = αλ(t). Once evaluated at time t = 0 where ϕ(0) = Id
and λ(0) = 1, the differentiation with respect to ϕ gives − div(vρ) and the second term 2αρ is given
by the differentiation with respect to λ.

We now recall the result of [46, Claim of Section 29.21] in a finite dimensional setting. This result
presents a standard construction to obtain Riemannian submersions from a transitive group action.

Proposition 10. Consider a smooth left action of Lie group H on a manifold M which is transitive
and such that for every ρ ∈ M , the infinitesimal action ξ 7→ ξ · ρ is a surjective map. Let ρ0 ∈ M
and a Riemannian metric G on H that can be written as:

(2.24) G(h)(Xh, Xh) = g(h · ρ0)(dRh−1Xh, dRh−1Xh)

for g(h · ρ0) an inner product on TIdH. Let Xρ ∈ TρM be a tangent vector at point h · ρ0 = ρ ∈M ,
we define the Riemannian metric g on M by

(2.25) g(ρ)(Xρ, Xρ)
def.
= min

ξ∈TIdH
g(ρ)(ξ, ξ) under the constraint Xρ = ξ · ρ .

where ξ = Xh · h−1.
Then, the map π0 : H →M defined by π0(h) = h · ρ0 is a Riemannian submersion of the metric

G on H to the metric g on M .

The formal application of this construction in our infinite dimensional situation leads to the result,
stated in [12]:

Proposition 11. Let ρ0 ∈ Dens(M) and define the map

π0 : Aut(C(M))→ Dens(M)

π0(ϕ, λ) = ϕ∗(λ
2ρ0) .

Then, the map π0 is a Riemannian submersion of the metric L2(M, C(M)) on the group Aut(C(M))
to the Wasserstein-Fisher-Rao on the space of densities Dens(M).

Note also that the fibers of the submersion are right-cosets of the subgroup H0 in H. The proof of
the previous proposition is in fact given by the change of variables associated with right-trivialization.
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Let ρ0 be a reference density, the application of Proposition 10 gives

G(ϕ, λ)((Xϕ, Xλ),(Xϕ, Xλ))=

∫
M

g(v, v)ρdx+

∫
M

α2ρdx

=

∫
M

g(Xϕ ◦ ϕ−1, Xϕ ◦ ϕ−1)ϕ∗(λ
2ρ0)dx+

∫
M

(Xλλ
−1)2 ◦ ϕ−1ϕ∗(λ

2ρ0)dx

=

∫
M

g(Xϕ, Xϕ)λ2ρ0 dx+

∫
M

X2
λ ρ0 dx .

Therefore, the metric G is the L2(M, C(M)) metric with respect to the density ρ0. This metric is
a weak Riemannian metric in the sense of [19]. This is indeed a smooth Riemannian metric when
restricted to Diffs(M)nΨ Λs(M) the space of Sobolev maps of order s such that s > d/2 essentially
because these Sobolev spaces are Hilbert algebras. The same result holds for the Wasserstein-Fisher-
Rao metric, as shown in [12]. Moreover, in this particular situation, the horizontal lift (2.25) is well
defined.

Proposition 12 (Horizontal lift). Let ρ ∈ Denss(Ω) be a smooth density and Xρ ∈ Hs(Ω,R) be a
tangent vector at the density ρ. The horizontal lift at (Id, 1) of Xρ is given by ( 1

2∇Φ,Φ) where Φ is
the solution to the elliptic partial differential equation:

(2.26) − div(ρ∇Φ) + 2Φρ = Xρ .

By elliptic regularity, the unique solution Φ belongs to Hs+2(M).

Proposition 13. The WF metric is a weak Riemannian metric on Denss(M).

The proof is written in [12] but let us explain it briefly. Denote by L(ρ)−1 the inverse of the
elliptic operator defined in Formula (2.26). The WF Riemannian metric tensor is then given by
WF(ρ)(X,X) =

∫
M
L(ρ)−1(X)X dx. Therefore the smoothness of WF(ρ)(X,X) reduces to the

smoothness of L(ρ)−1 which again reduces to that of L(ρ) with respect to ρ. However, this metric
does not admit a Levi-Civita connection in the sense of [45, Section 2.4], which is due to the loss of
derivative of the map π. Indeed, since composition on Diffs+1(M) is continuous and Hs(M,R) is a
Hilbert algebra, we have

Proposition 14. Let s > d/2 + 1 and k ∈ N. The following map is Ck

π0 : Diffs+k+1(M) nΨ Λs+k1/2 (M) 7→ Denss(M)

π0(ϕ, λ) = ϕ∗(λ
2ρ0) .

Unfortunately, the map π0 for k = 0 is only continuous due to this loss of derivatives and
therefore it is not a proper Riemannian submersion in this context. To make it a proper Riemmanian
submersion, one could work with Fréchet spaces. Yet, the horizontal lift can be defined on C1 curves.

Proposition 15. Let c : [0, 1] → Denss(M) a C1 curve then any horizontal lift c̃ : [0, 1] →
Diffs+1(M) nΨ Λs1/2(M) is C1.

Proof. The horizontal lift is given by the curve on the group Diffs+1(M) nΨ Λs1/2(M) defined by

(2.27)

{
(ϕ, λ) = (ϕ0, λ0) ,

(ϕ̇, λ̇) = L(c(t))−1(ċ) ◦ (ϕ, λ) .

Since the operator L(ρ)−1(ċ) is smooth with respect to c, the result follows since composition is
continuous on Diffs+1(M) nΨ Λs1/2(M). �

Let us now detail the horizontal spaces and vertical spaces at (ϕ, λ) ∈ Diff(M)nΨ Λ1/2(M) such

that ϕ∗(λ
2ρ0) = ρ,

(2.28) Vert(ϕ,λ) = {(v, α) ◦ (ϕ, λ) ; (v, α) ∈ Vect(M)× C∞(M,R) s.t. div(ρv) = 2αρ} ,
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and the horizontal space is

(2.29) Hor(ϕ,λ) =

{(
1

2
∇p, p

)
◦ (ϕ, λ) ; p ∈ C∞(M,R)

}
.

A direct application of this Riemannian submersion viewpoint is the formal computation of the
sectional curvature of the Wasserstein-Fisher-Rao in this smooth setting by applying O’Neill’s for-
mula recalled in appendix, see [12]. To recall it hereafter, we need the Lie bracket of right-invariant
vector fields on Diff(M) nΨ Λ1/2(M).

Proposition 16. Let (v1, α1) and (v2, α2) be two tangent vectors at identity in Diff(M)nΨΛ1/2(M).
Then,

(2.30) [(v1, α1), (v2, α2)] = ([v1, v2],∇α1 · v2 −∇α2 · v1) ,

where [v1, v2] denotes the Lie bracket of vector fields.

Note that the application of this formula to horizontal vector fields gives [( 1
2∇Φ1,Φ1), ( 1

2∇Φ2,Φ2)] =

( 1
4 [∇Φ1,∇Φ2], 0).

Proposition 17. Let ρ be a smooth positive density on M and X1, X2 be two orthonormal tangent
vectors at ρ and ξΦ1 , ξΦ2 be their corresponding right-invariant horizontal lifts on the group. If
O’Neill’s formula can be applied, the sectional curvature of Dens(M) at point ρ is given by,

(2.31) K(ρ)(X1, X2) =

∫
Ω

k(x, 1)(ξ1(x), ξ2(x))w(ξ1(x), ξ2(x))ρ(x) dν(x) +
3

4

∥∥[ξ1, ξ2]V
∥∥2

where

w(ξ1(x), ξ2(x)) = gC(M)(x, 1)(ξ1(x), ξ1(x))gC(M)(x)(ξ2(x), ξ2(x))−
(
gC(M)(x, 1)(ξ1(x), ξ2(x))

)2
and [ξΦ1 , ξΦ2 ]V denotes the vertical projection of [ξΦ1 , ξΦ2 ] at identity, ‖·‖ denotes the norm at iden-
tity and k(x, 1) is the sectional curvature of the cone at point (x, 1) in the directions (ξ1(x), ξ2(x)).

This computation is only formal and we will not attempt here to give a rigorous meaning to this
formula similarly to what has been done in [40] for the L2 Wasserstein metric. Yet, it has interesting
consequences: the curvature of the space of densities endowed with the WF metric is always greater
or equal than the curvature of the cone C(M). In particular, it is non-negative if the curvature of
(M, g) is bigger than 1, as a consequence of Proposition 4.

3. The corresponding Monge and Kantorovich formulations and the associated
polar decomposition

By the geometric point of view developed above, it is possible to derive a Monge formulation
directly and also to derive a pre-formulation of the Monge-Ampère equation. We first derive formally
the equations for which a precise meaning will be given in the next sections.

3.1. The Monge formulation. The first important consequence of the L2 metric on the group
and the Riemannian submersion is that one can define a Monge formulation of the Wasserstein-
Fisher-Rao metric as follows:

(3.1) WF(ρ0, ρ1) = inf
(ϕ,λ)

{
‖(ϕ, λ)− (Id, 1)‖L2(ρ0) : ϕ∗(λ

2ρ0) = ρ1

}
.

It is then possible to derive a pre-formulation to the classical Monge-Ampère equation at least
formally: Under the assumption that there exists a smooth minimizer (ϕ, λ) of (3.1), there exists a
function p ∈ C∞(M,R) given by the Lagrange multiplier rule such that

(3.2) (ϕ(x), λ(x)) = exp
C(M)
(x,1)

(
−1

2
∇p(x),−p(x)

)
,

where exp(x,1) denotes the Riemannian exponential map on C(M). The ”pushforward” constraint
now reads

(3.3) (|1− p(x)|2 +
1

4
‖∇p(x)‖2)ρ0(x) = Jac(ϕ)(x) ρ1(ϕ(x))
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where

ϕ(x) = expMx

(
− arctan

(
‖∇p(x)‖

2(1 + p(x))

)
∇p(x)

‖∇p(x)‖

)
.

Under the change of variable z
def.
= − log(1− p), the previous equations become

(3.4) (1 +
1

4
‖∇z‖2)e−2zρ0 = det(Dϕ)ρ1 ◦ ϕ

and

ϕ(x) = expMx

(
− arctan

(
1

2
‖∇z‖

)
∇z(x)

‖∇z(x)‖

)
.

However, the function p (or z) is not completely characterized. Indeed, in standard optimal trans-
port, the optimal potential is convex. Convexity will be replaced by c-concavity for a particular cost.
Note that this result has been established in the Euclidean case in [38, Theorem 6.7] under mild
assumptions on the densities. Their result is based on a detailed study of the equivalent Kantorovich
formulation which is presented in 3.2. This equivalent formulation is only proven in [38] and [12] in
the Euclidean case and it is expected to be true [38, Section 8.5] in the Riemannian case.

In the next section, we present the Kantorovich formulation associated with the Monge formula-
tion and we prove the equality between the Kantorovich and the dynamic formulations of the WF
metric.

3.2. The Kantorovich Formulation. From a variational point of view, it is important to derive
a relaxation of the Monge formulation. It is of interest to understand first the simple situation
when the source and target measures are single Dirac masses and when M is a convex and compact
domain in the Euclidean space as studied in [13]. This also applies to the case of a Riemannian
manifold since it can be shown using the static formulation proven in this section.

Proposition 18. Let M be a convex and compact domain in Rd with the Euclidean metric. Let
m1δx1

and m2δx2
be two Dirac masses with x1, x2 ∈M and m1,m2 ∈ R∗+.

If d(x1, x2) < π/2, there exists a unique geodesic which is m(t)δx(t) where (x(t),m(t)) is the
geodesic in M × R∗+ with the cone metric between (x1,m1) and (x2,m2).

If d(x1, x2) > π/2, there exists a unique geodesic which is m1(t)δx1
+ m2(t)δx2

where m1(t) =
m1(1− t)2 and m2(t) = m2t

2 describe the geodesics between (xi,mi) and the cone point for i = 1, 2.
If d(x1, x2) = π/2, there exists an infinite number of geodesics which are convex combinations of

the two first types defined above.

The important point is that passing to the case of measures the angle of the cone has been
divided by 2. This is because the optimization problem is not formulated on the space of geodesics
on M ×R∗+, but on the space of measures on M . And, in particular, the cost between Dirac masses
has to be convex.

The generalization to any positive Radon measures of the Kantorovich relaxation requires the
definition of a convex functional which is one-homogeneous on the space of Radon measures described
below. The next theorem is proven in [12] and in another form in [38], both only in the Euclidean
case. We now extend it to in a Riemannian setting.

Theorem 19. For two given positive Radon measures ρ1, ρ2, we define, for M+(M2) the space of
positive Radon measures on M2,

Γ(ρ1, ρ2)
def.
=
{

(γ1, γ2) ∈
(
M+(M2)

)2
: p1
∗γ1 = ρ1, p

2
∗γ2 = ρ2

}
,(3.5)

where p1 and p2 denote the projection on the first and second factors of the product M2. The
variational problem associated with the Wasserstein-Fisher-Rao distance is

WF2(ρ1, ρ2) = min
(γ1,γ2)∈Γ(ρ1,ρ2)

∫
M2

d2
C(M)

(
(x,

dγ1

dγ
), (y,

dγ2

dγ
)

)
dγ(x, y) ,(3.6)

where d2
C(M) is the square of the cone distance given in definition 2 and γ is any measure that

dominates ρ1 and ρ2.
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Proof. The proof is given in Appendix B. �

Remark 3. The fact that S(γ1, γ2)
def.
=
∫
M2 d

2
C(M)

(
(x, dγ1

dγ ), (y, dγ2
dγ )

)
dγ(x, y) is well defined follows

from the application of [54, Theorem 5]. It does not depend on the choice of the measure γ since
the function d2 is one-homogeneous w.r.t. the mass variables. As a consequence of Rockafellar’s
theorem [54, Theorem 5], S is convex and lower-semicontinuous on the space of Radon measures as
the Legendre-Fenchel transform of a convex functional on the space of continuous functions.

We also state without proof the dual formulation which is given by the application of Fenchel-
Rockafellar duality theorem, see [13].

Proposition 20. It holds

(3.7) WF2(ρ0, ρ1) = sup
(φ,ψ)∈C(M)2

∫
M

φ(x) dρ0(x) +

∫
M

ψ(y) dρ1(y)

subject to ∀(x, y) ∈M2,

(3.8)

{
φ(x) ≤ 1 , ψ(y) ≤ 1 ,

(1− φ(x))(1− ψ(y)) ≥ cos2 (d(x, y) ∧ (π/2)) .

A reformulation of this linear optimization problem is

(3.9) WF2(ρ0, ρ1) = sup
(z0,z1)∈C(M)2

∫
M

1− e−z0(x) dρ0(x) +

∫
M

1− e−z1(y) dρ1(y)

subject to ∀(x, y) ∈M2,

(3.10) z0(x) + z1(y) ≤ − log
(
cos2 (d(x, y) ∧ (π/2))

)
.

Interestingly, the last formulation can be further reduced since the exponential r 7→ er is the
Fenchel-Legendre conjugate associated with the Kullback-Leibler divergence defined below. There-
fore, using duality again, it is proven in [38] that the static problem in Proposition 20 can be
rewritten as

(3.11) WF2(ρ0, ρ1) = inf
γ∈M+(M2)

KL(Proj1∗ γ, ρ0) + KL(Proj2∗ γ, ρ1)

−
∫
M2

log(cos2(d(x, y) ∧ (π/2))) dγ(x, y)

with

KL(µ, ν) =

∫
dµ

dν
log

(
dµ

dν

)
dν + |ν| − |µ| ,

the Kullback-Leibler divergence. Formulation (3.11) of unbalanced optimal transport and its ex-
tensions have been intensively developed in [38], where generalizations of this metric are studied
in spaces such as Hausdorff topological spaces endowed with a (pseudo) distance satisfying mild
conditions. More interestingly, in our situation where the underlying space M is a finite dimensional
Riemannian manifold, is the existence of solutions to the dual problem (3.9) - (3.12), which is proven
in [38]. In particular, we rely on the existence results given in [38, Section 6.2] in a larger class of
potentials than simply continuous. We also strongly rely on their characterization presented in [38,
Theorem 6.3].

3.3. Polar factorization on the automorphism group of half-densities and Monge-Ampère
equation. One can state a similar version to Brenier’s polar factorization theorem [5] in this con-
text. Actually, this can be understood as a constrained version of the polar factorization, since the
diffeomorphisms are restricted to be automorphisms. To the best of our knowledge, this is not a
direct consequence of [42] or [38]. However, adapting arguments from these two articles, under mild
conditions on the initial and final densities, we give a rigorous meaning to the equivalent of the
Monge-Ampère equation and we propose a polar factorization on the automorphism group of the
cone.
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We use define a c-concave function as in [42].

Definition 6. A function z: M → R∪{±∞} is said to be c-concave if there exists z̄: M → R∪{±∞}
such that

(3.12) z(x) = inf
y∈M

[c(x, y)− z̄(y)] , ∀x ∈M.

Definition 7 (Admissible measures). We say that a positive Radon measure ρ on M is admissible
(with respect to vol) if for any x ∈M , there exists y ∈ Supp(ρ) such that d(x, y) < π/2.

Note that when the diameter of M is less than π/2 then all but the null measure are admis-
sible. In general, when the null measure is considered, the geodesic is unique and is the geodesic
corresponding to the Hellinger distance. To shorten the notations, we denote by c the function
c(x, y) = − log

(
cos2 (d(x, y) ∧ (π/2))

)
which intervenes in the constraint (3.12) of the dual formula-

tion. We prove that a solution of WF, in the form (3.9) - (3.12) leads to a solution of the associated
Monge problem defined by (3.1).

Lemma 21 (sub-differentiability). Let y ∈M , the function g defined on M by g(x) = cos2 (d(x, y))
is sub-differentiable.

Proof. The function d2(·, y) is super-differentiable see [42, Proposition 6] for instance. Therefore
d2
π/2(·, y) = (d(x, y) ∧ (π/2)) is also super-differentiable and the function g is sub-differentiable as

the combinaison of a decreasing C1 function and the super-differentiable function d2
π/2(·, y), see [42,

Lemma 5]. �

Proposition 22 (Approximate differentiability and optimality). Let ρ0, ρ1 be two positive Radon
measures and (z0, z1) be the generalized optimal potentials for WF2(ρ0, ρ1). Suppose that ρ0 and ρ1

are admissible and ρ0 << vol, then z0 is ρ0 a.e. unique and approximate differentiable on Supp(ρ0).
The optimal plan γ in the formulation (3.11) is unique, with marginals γ0 = e−z0ρ0, γ1 = e−z1ρ1

and concentrated on the graph of

(3.13) x 7→ ϕ(x) = expMx

(
− arctan

(
‖∇̃z0(x̄)‖

2

)
∇̃z0(x̄)

‖∇̃z0(x̄)‖

)
,

that is ϕ∗γ0 = γ1 and γ = (Id×ϕ)∗γ0. Finally

(3.14) WF2(ρ0, ρ1) =

∫
M

1− e−z0(x) dρ0(x) +

∫
M

1− e−z1(y) dρ1(y) .

Note that (z0, z1) may not be admissible in (3.9) but (3.14) still holds true. The proof of this
proposition (being more technical) is given in Appendix B, we prefer to discuss the corresponding
formulation of the Monge-Ampère equation hereafter.

Following Brenier’s approach in the case of optimal transport, see [5, Section 1.4] and [57, Section
12], we expect the potential found in Proposition 22, denoted by z, to be a solution of a Monge-
Ampère equation. To formally derive the equation we suppose that z is smooth. Recall that

c(x, y) = − log(cos2(dπ/2(x, y))) and ϕ(x) = expMx

(
− arctan

(
1
2‖∇z(x)‖

) ∇z(x)
‖∇z(x)‖

)
, therefore

2
√

2 tan(dπ/2(x, y))

√
2

2dπ/2(x̄, ȳ)
∇
(

1

2
d2
π/2(x̄, ȳ)

)
= (∇xc)(x, ϕ(x))

and the sub-differentiable equality (B.14) reads

(3.15) ∇z(x)− (∇xc)(x, ϕ(x)) = 0 .

Differentiating (3.15) and taking the determinant yields

(3.16) det
[
−∇2z(x) + (∇2

xxc)(x, ϕ(x))
]

= |det [(∇x,yc)(x, ϕ(x))]| |det(∇ϕ)| .



FROM UNBALANCED OPTIMAL TRANSPORT TO THE CAMASSA-HOLM EQUATION 17

Notice that the c-convexity property of z implies that −∇2z + (∇2
xxc)(x, ϕ(x)) is a nonnegative

symmetric matrice. To obtain the equation on z, we observe that ϕ∗
(
(1 + 1

4‖∇z‖
2)e−2zρ0

)
= ρ1

(see the proof of Proposition 23 below for details) or equivalently

|det(∇ϕ)| = e−2z

(
1 +

1

4
‖∇z‖2

)
f

g ◦ ϕ
,

for smooth z and smooth positive measures ρ0 and ρ1 with densities f and g with respect to the
volume measure vol. Together with (3.16), we obtain the WF-Monge-Ampère equation defined by
(3.17)

det
[
−∇2z(x) + (∇2

xxc)(x, ϕ(x))
]

= |det [(∇x,yc)(x, ϕ(x))]| e−2z(x)

(
1 +

1

4
‖∇z(x)‖2

)
f(x)

g ◦ ϕ(x)
,

where ϕ is given by (3.18) and satisfies the second boundary value problem: ϕ maps the support
of ρ0 to the support of ρ1. Following Brenier [5, Section 1.4], Proposition 23 below can be taken
as a definition of weak solutions for the WF-Monge-Ampère equation with second boundary value
problem. The question of regularity for the potential z solution of a WF-Monge-Ampère equation will
be studied elsewhere. One would first need to compute the Ma-Trudinger-Wang tensor associated
to c see [18], [57, Section 12].

Remark 4. In optimal transport, the notation c-expx(v) = [(−∇xc)(x, ·)]−1
(v) is classical. Using

this notation one remarks that (3.15) implies

ϕ(x) = c-exp(−∇z(x)).

Proposition 23 (Brenier’s weak solution of WF-Monge-Ampère). Let ρ0, ρ1 be two admissible
measures such that ρ0 has density w.r.t. the volume measure on M . Then, there exists a ρ0 a.e.
unique c-convex function on M , z, approximatively differentiable ρ0-a.e., such that the associated
unbalanced transport couple (ϕ, λ) defined by

(3.18) ϕ(x) = expMx

(
− arctan

(
1

2
‖∇̃z(x)‖

)
∇̃z(x)

‖∇̃z(x)‖

)

and

(3.19) λ(x) = e−z(x)

√
1 +

1

4
‖∇̃z(x)‖2

satisfies

(3.20) π[(ϕ, λ), ρ0] = ϕ∗
(
λ2ρ0

)
= ϕ∗

(
(1 +

1

4
‖∇̃z‖2)e−2zρ0

)
= ρ1 .

Moreover, (ϕ, λ) is the unique ρ0 a.e. unbalanced transport couple associated to a c-convex poten-
tial,also unique, such that π[(ϕ, λ), ρ0] = ρ1. The potential z is a weak solution for the WF-Monge-
Ampère equation (3.17) with second boundary value problem and is characterized by

(3.21) WF2(ρ0, ρ1) =

∫
M

1− e−z(x) dρ0(x) +

∫
M

1− e−z
c(y) dρ1(y) .

Proof. Let (z0, z1) be the optimal potentials for WF2(ρ0, ρ1). From Proposition 22, we know that

x 7→ ϕ(x) = expMx

(
− arctan

(
‖∇̃z0(x)‖

2

)
∇̃z0(x)

‖∇̃z0(x)‖

)
is well defined ρ0 a.e. and ϕ∗(γ0) = γ1 where
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γi = σiρi = e−ziρi, i = 0, 1. Therefore

ρ1 = σ−1
1 γ1 = σ−1

1 ϕ∗(γ0) = σ−1
1 ϕ∗ (σ0ρ0)

= ϕ∗
(
e−z0σ−1

1 ◦ ϕρ0

)
= ϕ∗

(
e−z0ez1◦ϕρ0

)
= ϕ∗

(
e−z0ec(·,ϕ(·))e−z0ρ0

)
= ϕ∗

(
e−2z0

(
1 +

1

4
‖∇̃z0‖2

)
ρ0

)
= ϕ∗

(e−z0√1 +
1

4
‖∇̃z0‖2

)2

ρ0


= π

[(
ϕ, e−z0

√
1 +

1

4
‖∇̃z0‖2

)
, ρ0

]
.

We used that ρ0 a.e. z0(x) + z1(ϕ(x)) = c(x, ϕ(x)), 1 + tan2(x) = 1/ cos2(x) and thus 1 +
1
4‖∇̃z0(x)‖2 = ec(x,ϕ(x)) . Equation (3.14) is exactly (3.21).

To prove uniqueness, consider z to be a c-convex function, such that (ϕ, λ) are well defined
through (3.18) and (3.20) and π[(ϕ, λ), ρ0] = ρ1. Then, we claim that γ = [Id×ϕ]∗(e

−zρ0) is an
optimal plan for WF2(ρ0, ρ1) in (3.11). Indeed, let us check that γ satisfies the optimality conditions
of [38, Theorem 6.3(b)].

• γ is concentrated on the set of equality for a pair (z, zc) of c-convex functions. By definition
of ϕ, it holds ρ0 a.e. and therefore γ0 = e−zρ0 a.e.

(3.22) z(x) + zc(ϕ(x)) = c(x, ϕ(x)) .

Thus, (z, zc) satisfies for all (x, y) ∈M ×M , z(x) + zc(y) ≤ c(x, y) with equality γ a.e.
• The marginals are absolutely continuos with respect to ρ0 and ρ1. It holds true for γ0 =
e−zρ0. Notice then that ρ0 a.e.

λ2(x) = e−2z(x)(1 +
1

4
‖∇̃z(x)‖2) = e−z(x)ez

c(ϕ(x)) .

It yields

ρ1 = ϕ∗(λ
2ρ0) = ϕ∗(e

zc(ϕ(x))e−z(x)ρ0) = ez
c

ϕ∗(γ0) = ez
c

γ1 ,

thus γ1 = e−z
c

ρ1 and γ is optimal for WF2(ρ0, ρ1).

The computation (B.15) yields (3.21) and the uniqueness of the generalized optimal potentials for
WF2(ρ0, ρ1) in Proposition (22) implies the uniqueness of (z, ϕ, λ).

�

Note that if z is smooth, it satisfies (3.17). It turns out that this factorization can be extended
to a larger class containing the automorphism group of the cone Aut(C(M)). In the following, we
state a polar factorization theorem for a class of maps from M to C(M). We start with definitions.

Definition 8. We define the generalized automorphism semigroup of C(M) as the set of mesurable
maps (ϕ, λ) from M to C(M)

(3.23) Aut(C(M)) =
{

(ϕ, λ) ∈Mes(M,M) nMes(M,R∗+)
}
,

endowed with the semigroup law

(ϕ1, λ1) · (ϕ2, λ2) = (ϕ1 ◦ ϕ2, (λ1 ◦ ϕ2)λ2) .

We also consider the stabilizer of the volume measure in the automorphisms of C(M). It is a
subsemigroup and is defined by

(3.24) Autvol(C(M)) =
{

(s, λ) ∈ Aut(C(M)) : π ((s, λ), vol) = vol
}
.

By abuse of notation, any (s, λ) ∈ Autvol(C(M)) will be denoted
(
s,
√

Jac(s)
)

meaning that for

every continuous function f ∈ C(M,R)

(3.25)

∫
M

f(s(x))
√

Jac(s)
2

d vol(x) =

∫
M

f(x) d vol(x) .
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Theorem 24 (Polar factorization). Let (φ, λ) ∈ Aut(C(M)) be an element of the generalized auto-
morphism group of the half-densities bundle such that ρ1 = π0 [(φ, λ), vol] is an absolute continuous
admissible measure. Then, there exists a unique minimizer, characterized by a c-convex function
z0, to the Monge formulation (3.1) between vol and ρ1 and there exists a unique measure preserving

generalized automorphism (s,
√

Jac(s)) ∈ Autvol(C(M)) such that vol a.e.

(3.26) (φ, λ) = expC(M)

(
−1

2
∇pz0 ,−pz0

)
◦ (s,

√
Jac(s))

or equivalently

(3.27) (φ, λ) =
(
ϕ, e−z0

√
1 + ‖∇z0‖2

)
· (s,

√
Jac(s)) ,

where pz0 = ez0 − 1 and

(3.28) ϕ(x) = expMx

(
− arctan

(
1

2
‖∇z0(x)‖

)
∇z0(x)

‖∇z0(x)‖

)
.

Moreover (s,
√

Jac(s)) is the unique L2(M, C(M)) projection of (φ, λ) onto Autvol(C(M)).

We also state a more intrinsic formulation of the theorem.

Corollary 25. Denote by Mes1(C(M)))R
∗
+ the space of mesurable and approximate differentiable

functions f : C(M) 7→ R that satisfy f(x, r) = r2f(x, 1) for any r ∈ R∗+. Under the hypothesis of

Theorem 23, there exists a unique couple
(

(s,
√

Jac(s)),Ψp

)
∈ Autvol×Mes1(C(M)))R

∗
+ such that

(3.29) (φ, λ) = expC(M)(−∇Ψp) ◦ (s,
√

Jac(s)) ,

where Ψp(x, r) = r2p(x).

Proof of Theorem 24. We denote ρ0 = vol and ρ1 = π0 [(φ, λ), ρ0]. Let (z0, z1) be a solution of
WF2(ρ0, ρ1) and γ be an optimal unbalanced transport plan. By symmetry, (z1, z0) is a solution of
WF2(ρ1, ρ0) and γt is an optimal unbalanced transport plan. Let finally (ϕ0, λ0) and (ϕ1, λ1) be
the two transport couples given by application of Proposition 22 to (ρ0, ρ1) and (ρ1, ρ0). We divide
the proof into four small steps. We also denote dom(f) the domain of definition of the function f .

Step 1: ϕ0 and ϕ1 are inverse maps. On U = ϕ−1
0 (dom ∇̃z1) ∩ dom(∇̃z0) which has full γ0

and therefore ρ0 measure (we use here the admissible condition to say that γ0 and ρ0 have the same
support), we have

z0(x) + z1(ϕ0(x)) = c(x, ϕ0(x))

and thus ϕ1(ϕ0(x)) = x. Similarly, it holds ϕ0(ϕ1(y)) = y on V = ϕ−1
1 (dom∇z0)∩dom(∇z1) which

has full ρ1 measure.

Step 2: (ϕ0, λ0) and (ϕ1, λ1) are inverse in Aut. From Step 1, ρ1 a.e. it holds ϕ0(ϕ1(y)) = y.
Thus, ρ1 a.e.

(ϕ0, λ0) · (ϕ1, λ1) = (ϕ0 ◦ ϕ1, λ0 ◦ ϕ1λ1) = (Id, (λ0 ◦ ϕ1)λ1) .

Moreover by (3.20) of Proposition 23 applied twice

π [(ϕ0, λ0) · (ϕ1, λ1), ρ1] = π [(ϕ0, λ0), π [(ϕ1, λ1), ρ1]] = π [(ϕ0, λ0), ρ0] = ρ1 .

It implies that
π [(Id, (λ0 ◦ ϕ1)λ1), ρ1] = π [(ϕ0, λ0) · (ϕ1, λ1), ρ1] = ρ1 .

In other words, we have ρ1 a.e. (λ0 ◦ ϕ1)λ1 = 1 and ρ1 a.e.

(ϕ0, λ0) · (ϕ1, λ1) = (Id, 1) .

Step 3: polar factorization. Let (s, λs) = (ϕ1, λ1) · (φ, λ) = (ϕ1 ◦φ, λ1 ◦φλ). By construction,
one has

π [(s, λs), ρ0] = π [(ϕ1, λ1) · (φ, λ), ρ0] = π [(ϕ1, λ1), π [(φ, λ), ρ0]] = π [(ϕ1, λ1), ρ1] = ρ0 .
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Therefore, (s, λs) belongs to Autvol and λs =
√

Jac(s) holds in the weak sense (3.25). Thus

(φ, λ) = (Id, 1) · (φ, λ) = (ϕ0, λ0) · (ϕ1, λ1) · (φ, λ) = (ϕ0, λ0) · (s,
√

Jac(s)) .

It proves the polar factorization.
Step 4: Uniqueness. The pair of c-convex potentials (z0, z1) is optimal for WF(ρ0, [(ϕ0, λ0), ρ0]) =

WF(ρ0, ρ1) and therefore by Proposition 23, zi are unique ρi a.e.. We deduce that the projec-

tion (s,
√

Jac(s)) = (ϕ1, λ1) · (φ, λ) is also unique ρ0 a.e.. Indeed the positivity of λ implies that
Supp(λ2ρ0) = Supp(ρ0), thus φ maps Supp(ρ0) onto Supp(ρ1) and the uniqueness of ϕ1 and λ1, ρ1

a.e., implies the uniqueness of s and
√

Jac(s), ρ0 a.e.. To prove that (s,
√

Jac(s)) is the L2(M, C(M))

projection of (φ, λ) onto Autvol(C(M)), we observe

inf
(σ,
√

Jac(σ))∈Autvol(C(M))

∥∥∥(φ, λ)− (σ,
√

Jac(σ))
∥∥∥2

L2(ρ0)
≥WF2(ρ0, ρ1)

= ‖(ϕ0, λ0)− (Id, 1)‖2L2(ρ0)

=
∥∥∥(ϕ0, λ0) · (s,

√
Jac(s))− (s,

√
Jac(s))

∥∥∥2

L2(ρ0)
=
∥∥∥(φ, λ)− (s,

√
Jac(s))

∥∥∥2

L2(ρ0)
,

which gives the result.
�

This polar factorization could probably be understood, under minor verifications, in the frame-
work of abstract polar factorization of Brenier [5]. As in the case of classical optimal transport,
Theorem 24 could be extended, for example, to any admissible ρ1 without the absolute continuity
assumption. In this case, one looses uniqueness of the measure preserving generalized automorphism
(s,
√

Jac(s)). An other direction is to project on the subset of Aut(C(M)):

Autρ0,µ0(C(M)) =
{

(s, λ) ∈ Aut(C(M))
∣∣π ((s, λ), ρ0) = µ0

}
,

in the spirit of [56, Theorem 3.15]. The proof is similar to the one given above. This polar factor-
ization also yields by linearization an Helmholtz decomposition of velocity vector fields. We will not
go further in these directions and leave it for future works.

4. The Euler-Arnold equation and the Hdiv right-invariant metric on the
diffeomorphism group

A prototypical example of the situation we are interested in is the case of the incompressible
Euler equation. As shown by Arnold [2], the incompressible Euler equation is the Euler-Lagrange
equation of geodesics on the group of volume preserving diffeomorphisms for the L2 right-invariant
metric. Let us motivate this section with the following simple proposition whose proof is omitted.

Proposition 26. Consider a Riemannian submersion constructed as in Proposition 10. Let H0 be
the isotropy subgroup of ρ0, then, considering H0 as a Riemannian submanifold of H and denoting
GH0

its induced metric, GH0
is a right-invariant metric on H0.

It is therefore interesting to start with this point of view, a right-invariant metric on a group
of diffeomorphisms and to write down the corresponding geodesic equations. The right-invariance
implies that the geodesic equation can be written on the Lie algebra or the tangent space at identity
(TIdG for a Lie group G). This is the case of the usual formulation incompressible Euler equation
as in Equation 4.11 and this is the point of view taken in [2]. Actually, it is a particular case
of Lagrangians that can be written by a change of variable only at the tangent space of identity

g
def.
= TIdG, the Lie algebra under the constraint of the flow equation. This class of Lagrangians

leads to the so-called Euler-Poincaré or Euler-Arnold equation when the Euler-Lagrange equation is
written on TIdG. We describe the derivation of this Euler-Lagrange equation in the next paragraph.
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4.1. The Euler-Arnold equation. A short proof of the derivation of this equation is given in
[49, Theorem 3.2] in the case of a kinetic energy but let us underline that the same equation holds
true for general Lagrangians that are right-invariant. We will need the definition of the adjoint and
co-adjoint operators:

Definition 9. Let G be a Lie group and h ∈ G, the adjoint operator Adh : G× g 7→ g is defined by

(4.1) Adh(v)
def.
= dLh · dRh−1(v) .

Then, Ad∗h is the adjoint of Adh defined by duality on g.
Their corresponding differential map at Id are respectively denoted by ad and ad∗.

Let G be a Lie group, and L : TG 7→ R be a Lagrangian which satisfies the following property,

(4.2) L(g, ġ) = L(Id, dRg−1(ġ)) .

The reduced Lagrangian is ` : g 7→ R defined by `(v) = L(Id, v) for v ∈ g.
Thus, the variational problem for a reduced Lagrangian reads

(4.3) inf

∫ 1

0

`(v) dt subject to

{
ġ = dRg(v)

g(0) = g0 ∈ G and g(1) = g1 ∈ G .

In order to compute the Euler-Lagrange equation for (4.3), one needs to compute the variation
of v in terms of the variation of g. It is given by ẇ− adv w for any path w(t) ∈ TIdG, therefore, the
Euler-Lagrange equation reads

(4.4) (∂t + ad∗v)
∂`

∂v
= 0 .

4.2. The particular case of Hdiv and the Camassa-Holm equation. When the Lagrangian
is a kinetic energy, `(v) = 1

2 〈v, Lv〉, which will be also denoted by 1
2‖v‖

2
g, where L : g 7→ g is

a quadratic form and 〈·, ·〉 denotes the dual pairing, one has δ`
δv = Lv and Lv is the so-called

momentum. Then, the critical curves are determined by their initial conditions (g(0), ġ(0)) and the
Euler-Poincaré equation (4.4). In the context of infinite dimensional Riemannian manifolds enjoying
a group structure, this equation is called the Euler-Arnold equation. Let us compute more explicitely
the Euler-Arnold equation and detail the expression of the adjoint Ad∗h which acts on 1-forms. Let
m be a 1-form density, then Ad∗ϕ(m) = DϕT (m ◦ϕ) Jac(ϕ) and therefore the differentiation w.r.t. ϕ
gives

(4.5) ad∗u(m) = div(u)m +DuT ·m +Dm · u .

Thus, the Euler-Arnold equation reads

(4.6)

{
∂tmt + div(ut)mt +DuTt ·mt +Dmt · ut = 0

Lut = mt ,

where L is the differential operator defining the metric. A more geometrical way of writing this
equation is the following,

(4.7) ∂tmt + Lut
mt + div(ut)mt = 0 ,

or alternatively

(4.8) (∂t + Lut) (mt ⊗ vol) = 0 ,

together with the relation Lut = mt.
Some important examples in fluid dynamics of the Euler-Arnold equation are given hereafter.

For the L2 metric in one dimension, Lu = u, one has

(4.9) ∂tu+ 3∂xuu = 0 ,
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which is the inviscid Burgers equation.
For the Hdiv metric in one dimension, Lu = u−∂xxu, one has the Camassa-Holm equation (actually
when a = b = 1)

(4.10) a2∂tu− b2∂txxu+ 3a2∂xuu− 2b2∂xxu ∂xu− b2∂xxxuu = 0 .

The Korteweg-de Vries equation can also be understood in this setting on a central extension of the
group Diff(S1). In the case where G = SDiff(M) is the group of volume preserving diffeomorphisms,
the Euler-Arnold equation is the incompressible Euler equation

(4.11) ∂tu+∇uu = −∇p , div(u) = 0 .

Let us detail the case of the Hdiv(Td) where Td def.
= Rd/Zd metric which is detailed in [31, Theorem

A.1]. The differential operator takes the form Lu = a2u+ b2∇div(u) which gives

(4.12) ∂tLu+ a2

(
div(u)u+

1

2
∇〈u, u〉+Du · u

)
+

b2
(

div(u)∇div(u) +DuT · ∇ div(u) +D[∇ div(u)] · u
)

= 0 .

On a Riemannian manifold (M, g), this equation can be written as

(4.13) ∂tLu+ a2
(

div(u)u[ + d〈u, u〉+ ιu du[
)

+ b2
(

div(u) dδu[ + dιu dδu[
)

= 0 .

where the notation [ corresponds to lowering the indices. More precisely, if u ∈ χ(M) then u[ is the
1-form defined by v 7→ g(u, v). The notation δ is the formal adjoint to the exterior derivative d and
ι is the insertion of vector fields which applies to forms.

In Section 6, we rewrite the Camassa-Holm equation (4.10) as an incompressible Euler equation
formulated as (4.11).

4.3. Smoothness of the flow and metric properties. For the sake of completeness, we recall in
this section some previous works concerning the Camassa-Holm equation as a geodesic equation on
the group of diffeomorphisms for the Hdiv right-invariant metric. For instance, the reader can refer
to [48] or [35] where much more results are proven. Using the Ebin and Marsden approach in [19],
the geodesic equation can be interpreted as an ODE on a Hilbert space. For that purpose, one needs
to consider the geodesic equation on a sufficiently regular Sobolev space Hs, for s > d/2 + 2. The
key point consists in switching from Eulerian to Lagrangian coordinates which enables to prove the
smoothness of the metric. This is enough if the metric is strong, for instance the right-invariant Hs

metric, since one can apply general results from Riemannian geometry in infinite dimensions [36].
However, since the Hdiv metric is of H1 type, a direct proof that the geodesic spray is smooth is
needed. Indeed, in this case, the topology defined by the metric is weaker than that of the space in
which the geodesic are studied (see [19] for the definition).

Theorem 27 (Ebin and Marsden). Let M be a compact manifold without boundary. On Diffs(M)
for s > d/2+1, the Hdiv right-invariant metric is a smooth and weak Riemannian metric. Moreover,
if s > d/2 + 2, the exponential map is smooth and locally defined on T Diffs(M).

Although this theorem is not stated in this particular form in [19], this result can be seen as a
byproduct of their results as explained in [49, Theorem 4.1].

Remark 5. Although this theorem is stated in a smooth Sobolev setting, at least Hs for s > d/2+1,
the result is not trivial since the composition Diffs(M)×Diffs(M) 7→ Diffs(M) defined by (ϕ,ψ) 7→
ϕ ◦ ψ is smooth w.r.t. ϕ (because linear) but it is not smooth w.r.t. ψ. Therefore the fact that the
metric defined below in (4.14) is smooth on Diffs(M) is not directly given by working in a smooth
enough Sobolev setting.

Proof of the smoothness of the metric. First recall that Hs(M) is embedded in C1(M) for s > d/2+
1 and it is a Hilbert algebra if s > d/2 which means that the product of two functions is a bounded
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bilinear operation. The idea consists in writing the Hdiv metric in Lagrangian coordinates. Consider
Xϕ ∈ Hs(M) a tangent vector at ϕ ∈ Diffs(M), the metric reads

(4.14) Gϕ(Xϕ, Xϕ) =

∫
M

a2|Xϕ ◦ ϕ−1|2 + b2 div(Xϕ ◦ ϕ−1)2 dvol .

Note that the differentiation of the composition can be written as

(4.15) D(Xϕ ◦ ϕ−1) = (DXϕ · [Dϕ]−1) ◦ ϕ−1 ,

where the symbol · denotes matrix multiplication. By the change of variable by ϕ, one has

(4.16) Gϕ(Xϕ, Xϕ) =

∫
M

a2|Xϕ|2 Jac(ϕ) + b2
(
Tr(DXϕ · [Dϕ]−1)

)2
Jac(ϕ) dvol .

Therefore, the metric only involves scalar multiplication, matrix inversion, matrix multiplications
with values in Hs−1(M) wich are smooth operations since Hs−1(M) is a Hilbert algebra for s >
d/2 + 1. Thus, the metric is smooth.

We refer to [49, Theorem 4.1] for a proof of the fact that the exponential map is smooth when
s > d/2 + 2. �

Consequently, the geodesic equation can be interpreted as an ODE in Hs(M,M) which proves lo-
cal well-posedness of the geodesic equation. However, geodesic completeness (global well-posedness)
does not hold since there exists smooth initial conditions for the Camassa-Holm equation such that
the solutions blow up in finite time. As a consequence, metric completeness does not hold either
(since it would imply geodesic completeness). The Gauss lemma is valid in this strong Hs topology
which ensures in particular that geodesics are length minimizing among all curves that stay in a Hs

neighborhood. However, this is not enough to prove that the associated geodesic distance is non
degenerate since an almost minimizing geodesic can escape this neighborhood for arbitrarily small
energy. This is what happens for the right-invariant metric H1/2 on the circle S1 where the metric
is degenerate although there exists a smooth exponential map similarly to our case, see [20].

In [47], Michor and Mumford proved that the right-invariant metric L2 on the group of diffeo-
morphisms leads to a degenerate distance, i.e. between any two diffeomorphisms, the infimum of
the path lengths joining them is zero. This is not the case for the Hdiv right-invariant metric, the
following theorem was also proven in their article.

Theorem 28 (Michor and Mumford). The distance on Diff(M) induced by the Hdiv right-invariant
metric is non-degenerate. Namely, between two distinct diffeomorphisms the infimum of the lengths
of the paths joining them is strictly positive.

5. A Riemannian submanifold point of view on the Hdiv right-invariant metric

The Riemannian submersion π0 : Aut(C(M)) 7→ Dens(M) defined in Proposition 11 enables to
study the equivalent problem to the incompressible Euler equation. The fiber of the Riemannian
submersion at vol is π−1

0 ({vol}) and it will be denoted as in Section 3.2 by Autvol(C(M)). More
explicitely, we have

(5.1) π−1
0 ({vol}) = {(ϕ, λ) ∈ Aut(C(M)) : ϕ∗(λ

2 vol) = vol} .

The constraint ϕ∗(λ
2 vol) = vol can be made explicit as follows

(5.2) Autvol(C(M)) = {(ϕ,
√

Jac(ϕ)) ∈ Aut(C(M)) : ϕ ∈ Diff(M)} .

Note that this isotropy subgroup can be identified with the group of diffeomorphims of M since the
map ϕ 7→ (ϕ,

√
Jac(ϕ)) is also a section of the short exact sequence (2.15). This shows that there

is a natural identification between Diff(M) and Autvol(C(M)). Now, the vertical space at point

(ϕ,
√

Jac(ϕ)) ∈ Autvol(C(M)) is

(5.3) Ker
(
dπ0(ϕ,

√
Jac(ϕ))

)
= {(v, α) · (ϕ,

√
Jac(ϕ)) : div v = 2α } ,
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and equivalently

(5.4) Ker
(
dπ0(ϕ,

√
Jac(ϕ))

)
=

{(
v,

1

2
div v

)
· (ϕ,

√
Jac(ϕ)) : v ∈ Vect(M)

}
.

The metric L2(M, C(M)) on Aut(C(M)) restricted to Diff(M) ' Autvol(C(M)) reads

(5.5) Gϕ(Xϕ, Xϕ) =

∫
M

|v|2 dvol +
1

4

∫
M

|div v|2 dvol ,

where v = Xϕ ◦ϕ−1. Therefore, on Diff(M) ' Autvol(C(M)), the induced metric is a right-invariant
Hdiv metric. In other words, we have

Theorem 29. By its identification with Autvol(C(M)), the diffeomorphism group endowed with the
Hdiv right-invariant metric (2.2) is isometrically embedded in L2(M, C(M)).

As a straightforward application, we retrieve theorem 28.

Corollary 30. The distance on Diff(M) with the right-invariant metric Hdiv is non degenerate.

Proof. Let ϕ0, ϕ1 ∈ Diff(M) be two diffeomorphisms and c be a path joining them. The length of
the path c for the right-invariant metric Hdiv is equal to the length of the lifted path c̃ in Aut(C(M)).
Since L2(M, C(M)) is a Hilbert manifold, the length of the path c̃ is bounded below by the length
of the geodesic joining the natural lifts of ϕ0 and ϕ1 in L2(M, C(M)). Therefore, it leads to

(5.6) dHdiv(ϕ0, ϕ1) ≥ dL2(M,C(M))

(
(ϕ0,

√
Jac(ϕ0)), (ϕ1,

√
Jac(ϕ1))

)
.

If dHdiv(ϕ0, ϕ1) = 0 then dL2(M,C(M))

(
(ϕ0,

√
Jac(ϕ0)), (ϕ1,

√
Jac(ϕ1))

)
= 0 which implies ϕ0 =

ϕ1. �

Remark 6 (The Fisher-Rao metric). In [31], it is shown that the Ḣ1 right-invariant metric descends
to the Fisher-Rao metric on the space of densities. Let us explain why this situation differs from
our: It is well known that a left action of a group endowed with a right-invariant metric induces on
the orbit a Riemannian metric for which the action is a Riemannian submersion. However, Khesin
et al. do not consider a left action, but a right action on the space of densities: More precisely, if a
reference density ρ is chosen, the map they considered is

Diff(M)→ Dens(M)

ϕ 7→ ϕ∗ρ .

Obviously, this situation is equivalent to a left action of a group of diffeomorphisms endowed with
a left invariant metric. In such a situation, the descending metric property has to be checked [31,
Proposition 2.3].

Their result can be read from our point of view: The Ḣ1 metric is 1
4

∫
M
|div v|2 dµ and it corre-

sponds to the case where a = 0. It thus leads to a degenerate metric on the group. Viewed in the
ambient space L2(M, C(M)), the projection on the bundle component is a (pseudo-) isometry from
L2(M, C(M)) (endowed with this pseudo-metric) to the space of densities since a = 0. Moreover, on
the space of densities which lie in the image of the projection, that is, the set of probability densities,
the projected metric is the Fisher-Rao metric.

We now use the identification between Diff(M) endowed with the right-invariant Hdiv metric and
Autvol(C(M)) as a submanifold of Aut(C(M)) and write the geodesic equations in this setting. As
is standard for the incompressible Euler equation, the constraint is written in Eulerian coordinates
and the corresponding geodesic are written hereafter.

Theorem 31. The geodesic equations on the fiber Autvol(C(M)) as a Riemannian submanifold of
Aut(C(M)) endowed with the metric L2(M, C(M)) can be written in Lagrangian coordinates

(5.7)

{
D
Dt ϕ̇+ 2 λ̇λ ϕ̇ = −∇gP ◦ ϕ
λ̈− λg(ϕ̇, ϕ̇) = −2λP ◦ ϕ ,



FROM UNBALANCED OPTIMAL TRANSPORT TO THE CAMASSA-HOLM EQUATION 25

with a function P : M → R.
In Eulerian coordinates, the geodesic equations read

(5.8)

{
v̇ +∇gvv + 2vα = −∇gP
α̇+ 〈∇α, v〉+ α2 − g(v, v) = −2P ,

where α = λ̇
λ ◦ ϕ

−1 and v = ∂tϕ ◦ ϕ−1.

This submanifold point of view leads to a generalization of [30, Theorem A.2] on the sectional
curvature of Diff(M) which has been computed and studied in [30]. The authors show that the
curvature of Diff(S1) can be written using the Gauss-Codazzi formula and they show the explicit
embedding in a semi-direct product of groups similar to our situation.

As mentioned above, we consider Diff(M) as a submanifold of L2(M, C(M)). The second funda-
mental form can be computed as in the case of the incompressible Euler equation.

Proposition 32. Let U, V be two smooth right-invariant vector fields on Aut(C(M)) that can be
written as U(ϕ, λ) = (u, α) ◦ (ϕ, λ) and V (ϕ, λ) = (v, β) ◦ (ϕ, λ). The second fundamental form for
the isometric embedding Diff(M) ↪→ L2(M, C(M)) is

(5.9) II(U, V ) = (∇P ◦ ϕ, 2λP ◦ ϕ) ,

where P = (2 Id−∆)−1A(∇(u,α)(v, β)) is the unique solution of the elliptic PDE (2.26)

(5.10) (2 Id−∆)(P ) = A(∇(u,α)(v, β)) ,

where A(w, γ)
def.
= −div(w) + γ. Using the explicit expression of ∇(u,α)(v, β) the elliptic PDE reads

(5.11) (2 Id−∆)(P ) = −div(∇uv + βu+ αv) + 2〈∇β, u〉 − 2g(u, v) + 2αβ .

Proof. By right-invariance of the metric, it suffices to treat the case (ϕ, λ) = Id. The orthogonal
projection is the horizontal lift defined in Proposition 12. Therefore, we compute the infinitesimal
action of ∇(u,α)(v, β) on the volume form which is given by the linear operator A and we consider
its horizontal lift (∇P, 2P ) given by Proposition 12. Then, the orthogonal part of ∇(u,α)(v, β) to the
tangent space of Diff(M) at Id is given by (∇P, 2λP ). By right-invariance, the orthogonal projection
at (ϕ, λ) is given by (∇P ◦ ϕ, 2λP ◦ ϕ).

From Proposition 4, one has

(5.12) ∇(u,α)(v, β) = (∇uv + βu+ αv, 〈∇β, u〉 − g(u, v) + αβ) ,

and Formula (5.11) follows. �

We can then state the Gauss-Codazzi formula applied to our context.

Proposition 33. Let U, V be two smooth right-invariant vector fields on Autvol(C(M)) written as
U(ϕ, λ) = (u, α) ◦ (ϕ, λ) and V (ϕ, λ) = (v, β) ◦ (ϕ, λ). The sectional curvature of Diff(M) endowed
with the right-invariant Hdiv metric is

(5.13) 〈RDiff(M)(U, V )V,U〉 = 〈RL2(M,C(M))(U, V )V,U〉+ 〈II(U,U), II(V, V )〉−〈II(U, V ), II(U, V )〉 .
where II is the second fundamental form (5.9) and

(5.14) 〈RL2(M,C(M))(U, V )V,U〉 =

∫
M

〈RC(M)(u, v)v, u〉 ◦ (ϕ, λ) dµ ,

where (ϕ, λ) ∈ Aut(C(M)).

Proof. The only remaining point is the computation of the sectional curvature of L2(M, C(M)) which
is done in Freed and Groisser’s article [22]. �

Note that the the sectional curvature of L2(M, C(M)) vanishes if M = Sn since C(M) = Rn+1,
which is the case for the one-dimensional Camassa-Holm equation. However, for M = Tn, n ≥ 2,
the flat torus, the sectional curvature of C(M) is non-positive and bounded below by −1 and thus
the sectional curvature of L2(Tn, C(Tn)) is non-positive.
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6. Applications

The point of view developed above provides an example of an isometric embedding of the group of
diffeomorphisms endowed with the right-invariant Hdiv metric in an L2 space such as L2(M,N), here
with N = C(M). This may bring additional informations to the understanding of the corresponding
fluid dynamic equation. Let us detail the one-dimensional situation, that is when M = S1(r), the
circle of radius r (we denote simply denote it S1 if r = 1). In such a case, C(S1(r)) is locally flat and
all the (singular) curvature concentrates at the cone point. Note that, when r < 1 (or equivalently,
its Riemannian diameter less than π), the cone is a usual cone embedded in R3. Last, C(S1) is
isometric to R2 \{0}, actually one can add the cone point which turns the isometry into an isometry
between metric spaces. We use such an isometry to define, following Theorem 29,

M : Diff(S1)→ Aut(C(S1)) ⊂ L2(S1,R2)(6.1)

ϕ 7→ (ϕ,
√
ϕ′) =

√
ϕ′eiϕ .(6.2)

Then, the solutions of the Camassa-Holm are geodesics on the isotropy subgroup explicitly written
in (5.2). Note that the map M is very similar to a Madelung transform which maps solutions of
the Schrödinger equation to solutions of a compressible Euler type of hydrodynamical equation.
In our case, we show that M maps solutions of the Camassa-Holm equation to solutions of the
incompressible Euler equation on the plane R2 \ {0} for a density which has a singularity at 0. Note
that this discussion generalizes directly to the case M = Sn since C(M) is isometric to Rn+1. In the
general case, we are left with the geometry of the cone, and therefore, the mapM maps solutions of
the geodesic equation on the diffeomorphisms group for the right-invariant Hdiv metric to solutions
of the incompressible Euler equation on the C(M) for a density which has a singularity at the cone
point.

In this section, we present this result in a general setting and we apply this Riemannian subman-
ifold point of view to derive a similar result to Brenier, namely that smooth geodesics are length
minimizing for short times.

6.1. The Camassa-Holm equation as an Euler equation on the cone. Formula (6.4) is close
to the incompressible Euler equation in Lagrangian coordinates. However, the geodesic equation
(6.4) is apparently written on the space of maps M 7→ C(M). Since Aut(C(M)) ⊂ Diff(C(M)), this
geodesic equation can be expected to be a geodesic equation on the group of diffeomorphism of the
cone. This is indeed the case, the second equation in (5.7) being linear in λ and the first equation
being 0 homogeneous in λ, the geodesic equation can be rewritten as

(6.3)

{
D
Dt ϕ̇+ 2 λ̇λ ϕ̇ = −∇gP ◦ ϕ
λ̈r − λrg(ϕ̇, ϕ̇) = −2λrP ◦ ϕ .

However, the diffeomorphisms (ϕ, λ) ∈ Diff(C(M)) do not preserve the Riemannian volume measure
on C(M) but another density which has a singularity at the cone point. This amounts to rewriting
the left action defined by π in (2.3) as a pushforward of a density on the cone.

Theorem 34. On the group of diffeomorphisms of the cone, the geodesic equation can be written

(6.4)
D

Dt
(ϕ̇, λ̇r) = −∇ΨP ◦ (ϕ, λr) ,

where ΨP (x, r)
def.
= r2P (x). Moreover, the diffeomorphisms of C(M) (ϕ, λ) preserve the measure

ν̃
def.
= r−3 dr dvol.

In other words, a solution (ϕ, λ) of (6.4) is a solution of the incompressible Euler equation for the
density r−3−d dvolC(M) where dvolC(M) is the volume form on the cone C(M) and d is the dimension
of M .

Proof. The geodesic equations (6.3) can be rewritten in the form (6.4) since a direct computation
gives ∇ΨP = (∇gP, 2rP ).
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The only remaining point is that (ϕ, λ) preserves the measure r−3 dν dr on C(M), if the relation

λ =
√

Jac(ϕ) holds. Indeed, the volume form rα dν dr is preserved by (ϕ, λ) if and only if the
following equality is satisfied (λr)αλ Jac(ϕ) = rα, equivalently λα+3 = 1. It is the case if and only
if α = −3. �

In particular, this theorem underlines that Autvol(C(M)) = Aut(C(M)) ∩ SDiff ν̃(C(M)). In
remark 2, we mentioned that Aut(C(M)) is a totally geodesic subspace of Diff(C(M)), which explains
the fact that the geodesic equation on Autvol(C(M)) is actually a geodesic equation on SDiff ν̃(C(M)).
We illustrate this situation in Figure 1.

Let us be interested in the particular case when M = S1. The Camassa-Holm equation is

(6.5) a2∂tu− b2∂txxu+ 3a2∂xuu− 2b2∂xxu ∂xu− b2∂xxxuu = 0 .

We consider the case a = 1 and b = 1
2 since it gives back the standard metric on C(S1). In this case,

one has

(6.6)

{
∂tu− 1

4∂txxu+ 3∂xuu− 1
2∂xxu ∂xu−

1
4∂xxxuu = 0

∂tϕ(t, x) = u(t, ϕ(t, x)) .

Corollary 35. The solutions of the Camassa-Holm equation (6.6) are mapped by

(6.7) M(ϕ) =
[
(r, θ) 7→ r

√
ϕ′(θ)eiϕ(θ)

]
to solutions of the incompressible Euler equation for the measure ν̃

def.
= (1/r4) Leb on R2 \ {0}.

More precisely, M(ϕ) is a solution to equation (1.10) and M(ϕ) lies in the group of ν̃-preserving
diffeomorphisms, denoted by Diff ν̃(R2 \ {0}).

The diffeomorphism M(ϕ) can be extended continuously to R2, it has to fix the cone point 0.
However, in general, it is not a diffeomorphism any longer and only a homeomorphism.

6.2. Length minimizing geodesics on Hdiv. We now show that every smooth geodesics are length
minimizing on a sufficiently short time interval. This is actually a straightforward generalization
of Brenier’s proof in the case of Euler equation to a Riemannian setting. Note that the Ebin and
Marsden’s point of view does not give such precise results since it requires a strong ambient topology
for the Gauss lemma to apply; for the Hdiv right-invariant metric, geodesics are length minimizing
among paths that lie in an Hs neighborhood for s > d/2 + 2. In the worst case of our theorem, we
require only an L∞ bound on the Jacobian and on the diffeomorphism.

Theorem 36. Let (ϕ(t), r(t)) be a smooth solution to the geodesic equations (6.4) on the time
interval [t0, t1]. If (t1 − t0)2〈w,∇2ΨP (t)(x, r)w〉 < π2‖w‖2 holds for all t ∈ [t0, t1] and (x, r) ∈
C(M) and w ∈ T(x,r)C(M), then for every smooth curve (ϕ0(t), r0(t)) ∈ Autvol(C(M)) satisfying
(ϕ0(ti), r0(ti)) = (ϕ(ti), r(ti)) for i = 0, 1 and the condition (∗), one has

(6.8)

∫ t1

t0

‖(ϕ̇, ṙ)‖2 dt ≤
∫ t1

t0

‖(ϕ̇0, ṙ0)‖2 dt ,

with equality if and only if the two paths coincide on [t0, t1].

Define δ0
def.
= min{r(x, t) : injectivity radius at (ϕ(t, x), r(t, x))}, then the condition (∗) is:

(1) If the sectional curvature of C(M) can assume both signs or if diam(M) ≥ π, there exists δ
satisfying 0 < δ < δ0 such that the curve (ϕ0(t), r0(t)) has to belong to a δ-neighborhood of
(ϕ(t), r(t)), namely

dC(M) ((ϕ0(t, x), r0(t, x)), (ϕ(t, x), r(t, x)))) ≤ δ

for all (x, t) ∈M × [t0, t1] where dC(M) is the distance on the cone.
(2) If C(M) has non positive sectional curvature, then, for every δ < δ0, there exists a short

enough time interval on which the geodesic will be length minimizing.
(3) If M = Sd(1), the result is valid for every path (ϕ̇0, ṙ0).
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Autvol(C(M))

(Dens(M),WFR) vol

Aut(C(M))

L2(M, C(M))

π(ϕ, λ) = ϕ∗(λ2 vol)

Aut(C(M))

Diff(C(M))

L2(C(M))

(Dens(C(M)),W2) ν̃ = r−3 dvol dr

Diff ν̃(C(M))

Autvol(C(M))

π̃(ψ) = ψ∗(ν̃)

Figure 1. On the left, the picture represents the Riemannian submersion between
Aut(C(M)) and the space of positive densities on M and the fiber above the vol-
ume form is Autvol(C(M)). On the right, the picture represents the automorphism
group Aut(C(M)) isometrically embedded in Diff(C(M)) and the intersection of
Diff ν̃(C(M)) and Aut(C(M)) is equal to Autvol(C(M)).

Importantly, the condition on the Hessian is not empty, i.e. it is fulfilled in our case of interest:
Indeed, when P is a C2 function on M , the Hessian of ΨP (x, r) = r2P (x) is, in the orthonormal
basis ∂r,

1
r e1, . . . ,

1
r ed where e1, . . . , ed is an orthornormal basis of TxM

(6.9) ∇2ΨP (x, r) =

(
∇2P (x) 2∇P (x)

2∇PT (x) 2P (x)

)
,

where ∇P is the gradient of P in the orthornormal basis e1, . . . , ed. Since P is smooth and M is
compact, the Hessian of P is bounded uniformly on C(M).

Proof. To alleviate notations, we denote gt = (ϕ(t), r(t)) and ht = (ϕ0(t), r0(t)). Since gt =

(ϕ(t),
√

Jac(ϕ(t))), by direct integration, for every t ∈ [t0, t1]

(6.10)

∫
M

ΨP (gt(s)) ds = 0 ,

and the same equality holds for ht.
Let s ∈ [0, 1] 7→ c(t, s, x) be a two parameters (t ∈ [t0, t1] and x ∈M) family of geodesics on C(M)

such that c(t, 0, x) = gt(x) and c(t, 1, x) = ht(x) for every t ∈ [t0, t1] and x ∈ M . This family of
geodesics is uniquely defined if one considers balls which do not intersect the cut locus. Uniformity of
the radius of the balls can be obtained since [t0, t1]×M is compact, which defines δ0. Consequently,
the family of curves c(t, s, x) is a smooth family of geodesics, at least as smooth as gt(x) and ht(x)
are with respect to the parameters t, x. Since ∂tc(t, s, x) is a variation of geodesics, it is a Jacobi
field as a function of s. Thus, we will use the notation J(t, s, x) = ∂tc(t, s, x). Consequently, we
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have

(6.11) J(t, 0, x) = ∂tgt(x) and J(t, 1, x) = ∂tht(x) .

Now, the result we want to prove can be reformulated as,

(6.12)

∫ t1

t0

∫
M

‖J(t, 0, x)‖2 dtdx ≤
∫ t1

t0

∫
M

‖J(t, 1, x)‖2 dtdx

with equality if and only if for almost every x, it holds gt(x) = ht(x) for all t ∈ [t1, t2]. We now
use a second-order Taylor expansion of ΨP (c(t, s, x)) with respect to s at s = 0. Denoting by

M
def.
= supt∈[t0,t1] supx∈M |∇2ΨPt(x)|, we have, writing c(s) for c(t, s, x),

ΨP (ht(x))−ΨP (gt(x))− 〈∇ΨP (c(0)), ∂sc(0)〉 ≤ M

2

∫ 1

0

‖∂sc(s)‖2 ds .

Now, one has that ∂sc(t, s, x) vanishes at t = 0 and t = 1. We can therefore apply Poincaré inequality
to ‖∂sc(s)‖ to obtain

(6.13)

∫ t1

t0

‖∂sc(s)‖2 ds ≤ M(t1 − t0)2

2π2

∫ t1

t0

|∂t‖∂sc(s)‖|2 ds .

Since ∂t‖∂sc(s)‖ = 1
‖∂sc‖ 〈∇t∂sc, ∂sc〉, we have the inequality |∂t‖∂sc(s)‖| ≤ ‖∇t∂sc‖ and we get,

exchanging derivatives,

(6.14)

∫ t1

t0

‖∂sc(s)‖2 ds ≤ M(t1 − t0)2

2π2

∫ t1

t0

‖J̇(s)‖2 ds ,

where J̇ is the covariant derivative of J with respect to s. We thus have∫ t1

t0

ΨP (c(t, 1, x))−ΨP (c(t, 0, x))− 〈∇ΨP (c(t, 0, x)), ∂sc(0)〉 ≤ M(t1 − t0)2

2π2

∫ t1

t0

‖J̇(s)‖2 ds .

However, gt(x) = c(t, 0, x) is a solution of ∇t∂tc(t, 0, x) = −∇ΨP (t, 0, x), therefore, an integration
by part w.r.t. t leads to∫ t1

t0

ΨP (c(t, 1, x))−ΨP (c(t, 0, x))− 〈∂tc(t, 0, x),∇t∂sc(0)〉dt ≤ M(t1 − t0)2

2π2

∫ t1

t0

‖J̇(s)‖2 ds .

Last, integrating over M and exchanging once again covariant derivatives gives∫ t1

t0

∫
M

−〈J(t, 0, x), J̇(t, 0, x)〉dxdt ≤ M(t1 − t0)2

2π2

∫ t1

t0

∫
M

∫ 1

0

‖J̇(t, s, x)‖2 dsdxdt .

Writing f(s) =
∫ t1
t0

∫
M
‖J(t, s, x)‖2 dt, we want to prove f(1) ≥ f(0) and we have

−f ′(0) ≤ M(t1 − t0)2

2π2

∫ t1

t0

∫
M

∫ 1

0

‖J̇(t, s, x)‖2 dsdx dt .

Therefore, the result is proven if we can show

(6.15) f(1)− f(0)− f ′(0) ≥ ε
∫ t1

t0

∫
M

∫ 1

0

‖J̇(t, s, x)‖2 dsdxdt .

The left hand side can be reformulated using f(1)− f(0)− f ′(0) =
∫ 1

0
(1− s)f ′′(s) ds as

(6.16)

∫ t1

t0

∫
M

∫ 1

0

(1− s)(‖J̇‖2 − 〈R(∂sc, J)J, ∂sc〉) dsdxdt ≥ ε
∫ t1

t0

∫
M

∫ 1

0

‖J̇‖2 dsdxdt ,

with ε = M(t1−t0)2

2π2 .

We now need to distinguish between two cases, the first one being when
∫ t1
t0

∫
M

∫ 1

0
‖J̇‖2 dsdxdt ≥

1. In this case, we use the inequality

(6.17) ‖J(t)‖2 ≤ 2‖J(0)‖2 + 2

∫ 1

0

‖J̇(s)‖2 ds ,
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in order to get
(6.18)

−
∫ t1

t0

∫
M

∫ 1

0

(1− s)〈R(∂sc, J)J, ∂sc〉dsdxdt ≤ δ2

∫ t1

t0

∫
M

∫ 1

0

Ksup(2‖J(0)‖2 + 2‖J̇(s)‖2) dsdxdt ,

where δ = sup(x,t)∈M×[t0,t1] ‖∂sc(t, 0, x)‖ and Ksup is a bound on max(K(y), 0) with K(y) is the

maximum of the sectional curvatures at y ∈ C(M) for y in a bounded neighborhood of
⋃

t∈[t0,t1]

gt(M)

which is compact. Then, there exists δ sufficiently small such that for every (x, t) ∈M × [t0, t1],

(6.19)

∫ t1

t0

∫
M

∫ 1

0

(1− s)〈R(∂sc, J)J, ∂sc〉dsdxdt ≤ 1 ≤
∫ t1

t0

∫
M

∫ 1

0

‖J̇‖2 dsdxdt .

Now we study the second case, that is when
∫ t1
t0

∫
M

∫ 1

0
‖J̇‖2 dsdx dt ≤ 1. Applying once again

inequality (6.14), we obtain, using the Cauchy-Schwarz inequality,

(6.20)

∫ t1

t0

∫
M

∫ 1

0

(1− s)〈R(∂sc, J)J, ∂sc〉dsdx dt ≤ εKsup

∫ t1

t0

∫
M

∫ 1

0

‖J̇‖2‖J‖2 dsdx dt

≤ εKsup

(∫ t1

t0

∫
M

∫ 1

0

‖J̇‖4 dsdxdt

)1/2(∫ t1

t0

∫
M

∫ 1

0

‖J‖4 dsdxdt

)1/2

.

We now remark that for each t, x, the space of Jacobi fields is finite dimensional and consequently,
norms are equivalent so that there exists a positive constant m that depends on t, x such that

(6.21)

(∫ 1

0

‖J̇‖4 ds

)1/2

≤ m
∫ 1

0

‖J̇‖2 ds

and

(6.22)

(∫ 1

0

‖J‖4 ds

)1/2

≤ m
∫ 1

0

‖J‖2 ds .

By compactness of M × [t0, t1], the constant m can be chosen independently of t, x and therefore,
there exists a constant m′ such that

(6.23)

∫ t1

t0

∫
M

∫ 1

0

(1− s)〈R(∂sc, J)J, ∂sc〉dsdx dt ≤

εKsupm
′
(∫ t1

t0

∫
M

∫ 1

0

‖J̇‖2 dsdxdt

)(∫ t1

t0

∫
M

∫ 1

0

‖J‖2 dsdxdt

)
.

Then, inequality (6.17) leads to

(6.24)

∫ t1

t0

∫
M

∫ 1

0

(1 − s)〈R(∂sc, J)J, ∂sc〉dsdxdt ≤ εKsupMm′
(∫ t1

t0

∫
M

∫ 1

0

‖J̇‖2 dsdxdt

)
,

with M =
(∫ t1

t0

∫
M

2‖J(0)‖2 + 2
∫ 1

0
‖J̇(s)‖2 dsdx dt

)
.

Let us recall that our goal is to prove the existence of ε > 0 such that

(6.25)

∫ t1

t0

∫
M

∫ 1

0

(1− s)‖J̇‖2 dsdxdt ≥ ε
∫ t1

t0

∫
M

∫ 1

0

‖J̇‖2 + (1− s)〈R(∂sc, J)J, ∂sc〉dsdxdt ,

which, in the first case, reads

(6.26)

∫ t1

t0

∫
M

∫ 1

0

(1− s)‖J̇‖2 dsdxdt ≥ 2ε

∫ t1

t0

∫
M

∫ 1

0

‖J̇‖2 dsdxdt ,

and in the second case

(6.27)

∫ t1

t0

∫
M

∫ 1

0

(1− s)‖J̇‖2 dsdx dt ≥ ε(1 +KsupMm′)

∫ t1

t0

∫
M

∫ 1

0

‖J̇‖2 dsdxdt .
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The existence of ε follows from the fact that the space of Jacobi fields is finite dimensional and the
fact M × [t0, t1] is compact. It thus proves the result in the general case.

When the cone C(M) has non-positive sectional curvature, Ksup = 0 therefore, we only have to
prove the existence of ε such that

(6.28)

∫ t1

t0

∫
M

∫ 1

0

(1− s)‖J̇‖2 dsdxdt ≥ ε
∫ t1

t0

∫
M

∫ 1

0

‖J̇‖2 dsdxdt ,

which does not require an a priori bound on the neighborhood.
When M = Sd(1), C(M) is flat and δ0 = ∞ and Jacobi fields are constant and the constant ε

does not depend on the neighborhood and is equal to 1/2 as in Brenier’s proof. �

This generalization of Brenier’s proof is not completely satisfactory in positive curvature or, in
the case of negative curvature, because of the injectivity radius bound. In the former case, the
constructed interpolating paths have to pass through the cone point and therefore these paths
c(t, s, x) are not smooth any longer w.r.t. s and thus Jacobi fields are smooth a priori. These two
limitations could probably be overcome using a different strategy than a geodesic homotopy between
the two diffeomorphisms. Let us insist on the flat case, that contains the Camassa-Holm equation
on S1:

Corollary 37. Let M = Sn(1) and 0 < a. Smooth solutions to the Camassa-Holm equation (4.13)
with parameters a, b = a/2 are length minimizing for short times.

When M is the d ≥ 2 dimensional flat torus, the cone C(M) has non-positive curvature and
depending on its diameter, the first or second condition in (∗) apply. In general, to the best of our
knowledge, the proof presented above is the first generalization to Riemannian manifolds of Brenier’s
proof and it might be possible to improve on this result, especially to get rid of the boundedness
assumption. We actually conjecture that the result holds true without the boundedness assumption.

7. Future directions

In this article, we have presented the link between the Camassa-Holm equation and the new L2

Wasserstein optimal transport metric between positive Radon measures. On one side, we contributed
to the extension of this optimal transport metric to the case of Riemannian manifolds and we
derived a corresponding polar factorization theorem. On the other side, we presented an isometric
embedding of the group of diffeomorphism group endowed with the right-invariant Hdiv metric in the
space L2(M, C(M)). This isometric embedding enables to rewrite the Camassa-Holm equation, via a
Madelung transform, as an incompressible Euler equation on the cone. In other words, the Camassa-
Holm equation is a geodesic flow on Autvol(C(M)) for the L2 metric. As an application, this has also
led to a result on the minimizing property of geodesics. Very few papers have been interested with
the actual variational problem of minimizing geodesics for the Hdiv metric in the sense of Brenier
[6, 7] which can be addressed from the point of view developed in our article. Following Brenier,
we will investigate elsewhere the uniqueness of the pressure as in [4]. This isometric embedding and
the polar factorization theorem opens the way to design new numerical simulations of variational
solutions of the Camassa-Holm equation, in the direction of [25, 44].

Following the point of view developed in this article, we plan to rewrite other fluid dynamic
equations as geodesic equations on a submanifold of a space of maps endowed with an L2 norm.
The result may have, as shown for the Camassa-Holm equation, interesting analytical consequences.

Appendix A. Group action and Riemannian submersions

A.1. Riemannian submersion. Let (M, gM ) and (N, gN ) be two Riemannian manifolds and f :
M 7→ N a differentiable mapping.

Definition 10. The map f is a Riemannian submersion if f is a submersion and for any x ∈ M ,
the map dfx : Ker(dfx)⊥ 7→ Tf(x)N is an isometry.
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In such a case, Vertx
def.
= Ker(df(x)) is called the vertical space and Horx

def.
= Ker(df(x))⊥ is called

the horizontal space. The horizontal spaces can be used to lift a vector field Y on N onto a vector
field Ỹ on M which is horizontal. More precisely, Ỹ is the unique horizontal vector field such that
dfx(Ỹ (x)) = Y (f(x)). The first immediate property is that Riemannian submersions are length
decreasing.

Proposition 38. Let f be a Riemannian submersion as defined above and c0 : [0, 1] 7→ M be a

smooth curve. It then defines a smooth curve on N by c1
def.
= f ◦ c0. Then,

(A.1) gN (ċ1, ċ1) = gM (pHor(ċ0), pHor(ċ0)) ≤ gM (ċ0, ċ0) ,

where pHor is the orthogonal projection on the horizontal space.

Another property of Riemannian submersions is the following:

Proposition 39. Let f be a Riemannian submersion as defined above. Every geodesic γ(t) on M
which is horizontal at a given time t, i.e. γ′(t) ∈ Horγ(t), is horizontal for all time and the length of
γ is equal to the length of f(γ).

An important property is the computation of the curvature tensor of N that can be done via
O’Neill’s formula detailed below (see [24]).

Theorem 40 (O’Neill’s formula). Let f be a Riemannian submersion as defined above and X,Y be

two orthonormal vector fields on M with horizontal lifts X̃ and Ỹ , then

(A.2) KN (X,Y ) = KM (X̃, Ỹ ) +
3

4
‖ vert([X̃, Ỹ ])‖2M ,

where K denotes the sectional curvature and vert the orthogonal projection on the vertical space.

Appendix B. Other proofs

Below is the proof of Theorem 19 which is an adaptation to the Riemannian case of the proof in
[12]. In particular, not all the details of the proof are given since they can be found in [12]. Note
also that this proof, under minor adaptations, applies to the standard Wasserstein L2 metric on
Riemannian manifolds, see for instance the comments in [56, Remarks 8.3]. A proof of the standard
Wasserstein case is given in [1] which uses the Nash isometric embedding theorem. The proof below
does not use it and develop a simple regularization argument which is intrinsic on Riemannian
manifolds.

Proof of Theorem 19. The fact that the minimum for S is attained follows by application of the
direct method of calculus of variations. The set Γ is weakly closed and the functional is weakly
continuous and S is lower semicontinuous. In the following, we denote by S2(ρ1, ρ2) the minimization
of the r.h.s. of (3.6).

Since d is a distance on the cone, one can prove that S is a distance on the space of nonnegative
Radon measures which is continuous w.r.t. the weak-* topology, as done in [12, Theorems 2,3].

On the set of measures that are finite sum of Dirac masses, the minimization problem (3.6) can
be reduced to a linear optimization problem in finite dimension. Indeed, the optimal semi-couplings
can be proven to have support on the product of the support of ρ1 and ρ2. Denoting ρ1 =

∑
i aiδxi

and ρ2 =
∑
j bjδyj for xi, yj a finite number of points in M , optimal semi-couplings can be written

as γk =
∑
i,jm

k
i,jδxi,xj

for k = 1, 2. Then, one has

S2(ρ1, ρ2) =
∑
i,j

d2
(
(xi,m

1
i,j), (yj ,m

2
i,j)
)

≥
∑
i,j

WF2(m1
i,jδxi ,m

2
i,jδyj ) ≥WF2(ρ1, ρ2) ,

where the first inequality comes the fact that the distance on the cone (with mass coordinates) for a
geodesic (x(t),m(t)) is given by the evaluation of WF on the path m(t)δx(t). The second inequality
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is given by subadditivity of WF2. By density of this set of measures and weak-* continuity of WF
and S, one has S ≥WF.

The reverse inequality follows using the convexity of WF2. By subadditivity of WF2, one has, for
any positive Radon measure ρ3

(B.1) WF2(ρ1 + ρ3, ρ2 + ρ3) ≤WF2(ρ1, ρ2) .

Using the triangular inequality and the fact that the WF metric is bounded above (up to a multi-
plicative constant) by the Hellinger distance, we also have, for ε1 > 0

(B.2) WF(ρ0, ρ1) ≤WF(ρ0 + ε1 vol, ρ1 + ε1 vol) + 2 cst
√
ε1 .

Let us be more precise on the previous inequality: Consider now a path ρ,m, µ which is a solution to
the continuity equation (2.4), then so is the path ρ+ ε1 vol,m, µ satisfying the boundary conditions
ρ(0) = ρ0, ρ(1) = ρ1. Note that ε1 vol is constant in time and space. In addition, it is obvious that

J (ρ+ ε1 vol,m, µ) ≤ J (ρ,m, µ) .

To prove the final result, it suffices to prove that S(ρ0 + ε1 vol, ρ1 + ε1 vol) ≤ J (ρ+ ε vol,m, µ) + ε0

for any ε0 > 0. This will be done via a smoothing argument which is standard in the Euclidean case
using convolution but has never been adapted, to the best of our knowledge, to work on Riemannian
manifolds (see [56, Remarks 8.3]).

Our goal is to prove that there exists a path of smooth quantities (ρε,mε, µε) for which J (ρε,mε, µε)
is close to J (ρ,m, µ) and ρε is strictly positive and the time endpoints of the path are close in the
weak-* topology. The conclusion can then be obtained by integrating the flow defined by the vector
field (mε/ρε, µε/ρε). It gives that S(ρε(0), ρε(1)) ≤ J (ρε,mε, µε) and the conclusion is similar to
the Euclidean case [12, Theorem 5].

By compactness of M , it is sufficient to locally smooth the path on M by iteration of this
smoothing. Therefore, we will work on a chart U around a point x0 ∈ M . By Moser’s lemma, it is
possible to choose the chart such that the volume form is the Lebesgue measure.

Averaging over perturbations of identity: We construct perturbations (of compact support)
of the identity which will be local translations around x0 and which will play the role of the trans-
lations in the standard convolution formula. We consider a ball B(x0, r0) and a function u whose
support is contained in B(x0, r0) and is constant equal to 1 on B(x0, r1) for 0 < r1 < r0. For a
given vector v ∈ Rd, we consider the map Φv(x) = x+u(x)v which is a smooth diffeomorphism. We
extend Φ to the whole manifold M by defining it as identity outside of U .

Let k : Rd+1 → R+ be a smooth symmetric function whose support is contained in the unit
ball and such that

∫
k(y) dy = 1 and define for ε > 0, kε(x) = k(x/ε)/εd+1 whose support is thus

contained in the ball of radius ε. We define the mollifier kε ? acting on f ∈ C([0, 1]× U,R) by

(B.3) (kε ? f)(s, x) =

∫
R

∫
U

kε(s, v)f(t+ s,Φ−1
v (x)) dv ds ,

which is well defined for ε small enough, extending the function outside the time interval [0, 1]
as a constant. Moreover, for ε sufficiently small, it coincides with the usual convolution on a
neighborhood of x0. By duality, it is well defined on Radon measures and extends trivially to vector
valued measures as follows:

(kε ? ρ)(s, x) =

∫
R

∫
U

kε(s, v)(Φv)∗(ρ(t+ s)) dv ds ,(B.4)

(kε ? m)(s, x) =

∫
R

∫
U

kε(s, v) Ad∗
Φ−1

v
(m(t+ s)) dv ds .(B.5)

We consider the path (Φv)∗(ρ) which satisfies the continuity equation for the triple of measures(
(Φv)∗(ρ),Ad∗

Φ−1
v

(m), (Φv)∗(µ)
)

and average over v to consider

(B.6) (ρε,mε, µε) = (kε ? ρ, kε ?m, kε ? µ) .

As a convex combination, this path satisfies the continuity equation and the boundary conditions
are close in the weak-* topology when ε tends to 0. An important remark is that, for ε small
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enough, kε ? Ad∗
Φ−1

v
(m) reduces to the standard convolution on m in a small neighborhood of x0

since DΦv = Id in a neighborhood of x0 since u ≡ 1 on B(x0, r1).
Use of convexity of J : For notation convenience, we denote by f the integrand of J and

we make the abuse of notation to use ρ,m, µ instead of their corresponding densities w.r.t. ν a
dominating measure.

Under the change of variables y = Φ−1
v (x) (we use one homogeneity hereafter) leads to

(B.7) J (ρε,mε, µε) =

∫
[0,1]×M

f (x, (ρε,mε, µε)) dν(x) ≤∫
R

∫
U

∫
[0,1]×M

kε(s, v)f(Φv(y), (ρ(t+ s), DΦv(t, y)m(t+ s), µ(t+ s))) dν(t, y) dtdsdv .

Moreover, since the metric g on M is smooth and in particular uniformly continuous on M and
since ‖DΦv − Id ‖ ≤ cst‖v‖ for a constant that only depends on u, we thus have, for any ε2 > 0, the
existence of δ > 0 such that if ‖v‖ ≤ δ then,

(B.8) |g(x)(w,w)− g(Φv(x))(DΦv(x)w,DΦv(x)w)| ≤ ε2 g(x)(w,w) ,

for every w ∈ TxM . Therefore, a direct estimation leads to

(B.9)∣∣∣∣∣
∫
R×M

kε(s, v)f(Φv(x), (ρ(t+ s),m(t+ s), µ(t+ s))) dν(t, x)−
∫

[0,1]×M
f(x, (ρ(t),m(t), µ(t))) dν(t, x)

∣∣∣∣∣
≤ ε2J (ρ,m, µ) ,

and as a consequence the desired result,

(B.10) J (ρε,mε, µε) ≤ J (ρ,m, µ) + ε2J (ρ,m, µ) .

Since this averaging reduces to standard convolution in the coordinate chart U in a small neigh-
borhood of x0, it implies that (ρε,mε, µε) is smooth in a neighborhood of x0 and ρε ≥ ε1 vol. By
compactness of M , iterating a finite number of times this argument gives the desired path. �

Proof of Proposition 22 (Approximate differentiability). The proof is an adaptation of [38, Theorem
6.7] using arguments in [42, 57]. In particular we use the notation of [38]. Let (z0, z1) be a generalized
optimal potential pair for WF2(ρ0, ρ1) and γ an optimal coupling [38, Theorem 6.3]. We define the
associated densities σi = e−zi , i = 0, 1. Since ρ0 and ρ1 are admissible [38, Theorem 6.3,b] implies
Supp

(
p1
∗(γ) = γ0

)
= Supp(ρ0) and Supp

(
p2
∗(γ) = γ1

)
= Supp(ρ1). Therefore, there exist Borel sets

Ai ⊂ Supp(ρi) with ρi(M \Ai) = 0 such that

σ0(x)σ1(y) ≥ cos2(dπ/2(x, y)) inA0 ×A1 ,(B.11)

σ0(x)σ1(y) = cos2(dπ/2(x, y)) γ − a. e. inA0 ×A1 .(B.12)

To construct the set of approximate differentiability let

A1,n = {y ∈M ; σ1(y) ≥ 1/n}

and consider, the function

s0,n = sup
y∈A1,n

cos2(dπ/2(x, y))

σ1(y)
.

By construction, s0,n is bounded, Lipschitz and thus differentiable vol a.e. Still by definition, we
have σ0 ≥ s0,n and thus the sets A0,n = {x ∈M ; σ0(x) = s0,n(x)} are increasing. Since (B.12) is
valid γ a.e. the set

⋂∞
n=1(X \A0,n) is ρ0 negligible. Let

A′0,n =

{
x ∈ A0,n ; lim

r→0

vol(B(x, r) ∩A0,n)

vol(B(x, r))
= 1 and s0,nis differentiable at x

}
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be the set of points of A0,n with vol density 1. Remark that
⋂∞
n=1(X \ A′0,n) is also ρ0 negligible.

Let (x̄, ȳ) ∈ A′0,n ×A1,n be such that

s0,n(x̄)σ1(ȳ) = cos2(dπ/2(x̄, ȳ)) = σ0(x̄)σ1(ȳ) .

Using (B.11), it holds, for all x ∈ A1

σ1(y) ≥ cos2(dπ/2(x, ȳ))/s0,n(x) .

In particular, cos2(dπ/2(x, ȳ))/s0,n(x) achieves its maximum at x̄, implying 0 ∈ ∇+
x̄ (cos2(dπ/2(·, ȳ))/s0,n(·)).

Since s0,n is differentiable at x̄, it yields that d2(·, y) is super-differentiable. By Lemma 21, it is also
sub-differentiable and thus differentiable at x̄. It holds

0 = ∇ cos2

(
√

2

√
1

2
d2
π/2(x̄, ȳ))

)
/s0,n(x̄)− cos2(dπ/2(x̄, ȳ))∇s0,n(x̄)/s2

0,n(x̄)(B.13)

= −2
√

2 tan(dπ/2(x̄, ȳ))

√
2

2dπ/2(x̄, ȳ)
∇
(

1

2
d2
π/2(x̄, ȳ)

)
−∇ ln s0,n(x̄) .(B.14)

Let −∇
(

1
2d

2
π/2(x̄, ȳ)

)
= vx̄→ȳ ∈ Tx̄M be the unique vector such that ȳ = expMx̄ (vx̄→ȳ), the last

equality reads

∇̃z0(x̄) = −∇̃ lnσ0(x̄) = −∇ ln s0,n(x̄) = −2 tan(‖vx̄→ȳ‖)
vx̄→ȳ
‖vx̄→ȳ‖

.

Therefore, ȳ is unique ρ1 a.e. and given by

ȳ = expMx̄ (vx̄→ȳ) = expMx̄

(
− arctan

(
‖∇̃z0(x̄)‖

2

)
∇̃z0(x̄)

‖∇̃z0(x̄)‖

)
= ϕ(x̄) .

It implies that γ is concentrated on the graph of ϕ in particular γ = (Id, ϕ)∗ γ0 and ϕ∗γ0 = γ1. The
strict convexity of KL implies that the marginals γ0 and γ1 are unique [38, Theorem 6.7] thus

z0 = − log(σ0) = − log(
dγ0

dρ0
)

is unique ρ0 a.e. and γ is also unique. Note that we used the admissible condition to say that σ0 is
ρ0 a.e. positive. In order to prove (3.14), we start from (3.11) and a direct computation yields

WF2(ρ0, ρ1) = KL(γ0, ρ0) + KL(γ1, ρ1) +

∫
M2

c(x, y) dγ(x, y)

(B.15)

=

∫
M

log
(
e−z0

)
e−z0 dρ0 +

∫
M

(1− e−z0) dρ0 +

∫
M

log
(
e−z1

)
e−z1 dρ1 +

∫
M

(1− e−z1) dρ1

+

∫
M2

c(x, ϕ(x)) dγ(x)

=

∫
M

(1− e−z0) dρ0 +

∫
M

(1− e−z1) dρ1 +

∫
M

[c(x, ϕ(x))− z0(x)− z1(ϕ(x))] dγ0(x)

=

∫
M

(1− e−z0) dρ0 +

∫
M

(1− e−z1) dρ1.
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[23] S. Gallot. Équations différentielles caractéristiques de la sphère. Annales scientifiques de l’Ecole Normale Su-

perieure, 12(2):235–267, 1979.
[24] S. Gallot, D. Hulin, and J. Lafontaine. Riemannian Geometry. Universitext. Springer, 2004.
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[55] A. Trouvé and L. Younes. Metamorphoses through lie group action. Foundations of Computational Mathematics,
5(2):173–198, 2005.

[56] C. Villani. Topics in optimal transportation. Number 58. American Mathematical Soc., 2003.

[57] C. Villani. Optimal transport: old and new, volume 338. Springer Science &amp; Business Media, 2008.
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