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Optimal Transport and applications to the study of some geometrical partial
differential equations

by Thomas GALLOUËT

This document is about Optimal Transport and its application to partial differ-
ential equations such as gradient flows or Euler flows in the Wasserstein spaces.
We investigate theoretical as well as numerical questions. On the theoretical side
of optimal transport, we address questions such as Wasserstein splines, Wasserstein
extrapolation and some questions related to the smoothness of Unbalanced Opti-
mal Transport (Unbalanced Brenier polar projection, Unbalanced Monge-Ampère
equations, a special class of Cone convex functions). We then apply the Wasserstein
Gradient/Euler flow structure to the study of some PDEs.

On the one hand, the flow structure is used to prove theoretical results, notably
the existence of solutions to the system of incompressible immiscible multiphase
flows in porous media, and the definition of the notion of relaxed solution for the
Camassa-Holm equations, which happens to be the counter part for the Unbalanced
Optimal Transport of what Incompressible Euler is for the classical Optimal Trans-
port. One the other hand, the geometrical structure is also used to design, implement
and prove convergence for different numerical schemes. For instance we introduce
the notion of variational Finite Volume schemes for Wasserstein Gradient flows.
These schemes are finite volume schemes defined as the Euler-Lagrange equations
for a space discretization of a minimizing movement (JKO) scheme, a "first discretize
then optimize" approach. We also defined Lagrangian numerical schemes for a class
of Gradient and Euler flows. These schemes are ODEs preserving the underlying
geometrical structure with an approximated energy defined through semi discrete
Optimal Transport. Through a splitting procedure and using Unbalanced Optimal
Transport, all the effort undertaken for Wasserstein Gradient Flows can by extended
to encompass more general and non conservative reaction diffusion equations.
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Chapter 1

Research summary

1.1 Introduction

This manuscript starts with a summary of some of my research papers of the last
ten years. Then after a synthetic reminder of their main contributions, I present the
articles in their entirety. All these works are somehow related to Optimal Transport.
One of the main focus of my research was the study, from a theoretical and numerical
point of view, of PDEs which happen to have a geometric structure in Wasserstein-
like spaces, like Gradient flows or Euler Flows. This requires an in-depth under-
standing of tools that are specific to optimal transport, such as Wasserstein splines,
Wasserstein geodesics extrapolation or a better understanding of Unbalanced Opti-
mal Transport. We can organize these works in two parts.The first one is built around
Optimal Transport and the second one around Unbalanced Optimal Transport. Each
part being composed of three similar research directions. The first direction deals
with structural properties of balanced/unbalanced Optimal Transport. The second
axis details some numerical methods for the approximation of balanced/unbalanced
gradient flows or more general reaction diffusion equations. The last axis focuses on
Euler flows and numerical methods designed to approximate them.

This work was carried out with several collaborators I met in my life as a re-
searcher. At different times, I was their student, their colleague or their supervisor.
First, I give a summary of these collaborators and the contribution of research pa-
pers detailing each articles and the links between them. Then, I join the papers in
the structure presented above, adding at the beginning a quick reminder of the main
contributions and some research perspectives.

Collaborators

Co-authors

J.D. Benamou, C. Cancès, C. Chainais-Hillairet (Post-doc supervisor), R. Ghezzi, M.
Laborde, Q. Mérigot, G. Mijoule, L. Monsaingeon, A. Natale, Gabriele Todeschi, Y.
Swan (Post-doc supervisor), F.X. Vialard.

Post-doc students

• Andrea Natale, 2017-2020, co-supervision with F.X. Vialard and then Q. Mérigot.

• Guillaume Mijoule, 2018-2020.

PhD students

• Gabriele Todeschi, 2018- 2021, co-supervision with C. Cancès.
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• Erwan Stämpfli, 2021-. 2023, co-supervision with Y. Brenier.

Undergraduate students

• Médard Govoeyi, Master 2, Avril 2023- Sep. 2023, co-supervision with M.
Laborde.

• Erwan Stämpfli, Master 2, Avril 2021- Sep. 2021, co-supervision with Y. Brenier.

• Jean Jacques Godeme, Master 2, Avril 2020- Sep. 2020, co-supervision, with
Léonard Monsaingeon.

• Gabriele Todeschi, Master 2, Avril 2018- Sep. 2018, co-supervision with C. Can-
cès.

• Jean Paul Greveni, L3, 2017

• Cédric Oms, Master 1, 2016

Research papers

The manuscript is composed of the following research papers, listed in order of ap-
pearance in the manuscript:

1. Second order models for optimal transport and cubic splines on the Wasser-
stein space. Foundations of Computational Mathematics, Springer Verlag (2019)
https://hal.science/hal-01682107v2 J.D. Benamou, Gallouët T.O. et
Vialard F.X.

2. From geodesic extrapolation to a variational BDF2 scheme for Wasserstein
gradient flows. Under minor revision Mathematics of Computations (2022) Gal-
louët T.O., Natale A. et Todeschi. G https://hal.science/hal-03f790981v2

3. The gradient flow structure for incompressible immiscible two-phase flows
in porous media. C. R. Acad. Sci. Paris, Ser. I(353) :985– 989 (2015). https:
//hal.science/hal-01122770. Cancès C., Gallouët T.O., Monsaingeon L.

4. Incompressible immiscible multiphase flows in porous media: a variational
approach. Analysis and PDE Vol. 10 (2017), No. 8, 1845–1876 https://
arxiv.org/abs/1607.04009. Cancès C., Gallouët T.O., Monsaingeon L.

5. Simulation of multiphase porous media flows with minimizing movement
and finite volume schemes.) European Journal of Applied Mathematics, Cam-
bridge University Press (CUP), 30 (6), pp.1123-1152 (2019). https://arxiv.
org/abs/arXiv:1802.01321. Cancès C., Gallouët T.O., Laborde M., Mon-
saingeon L.

6. A Lagrangian scheme à la Brenier for the incompressible Euler equations.
Found Comput Math 18: 835 (2018). https://doi.org/10.1007/s10208-017-9355-y.
Gallouët T.O. and Mérigot Q.

7. Convergence of a Lagrangian discretization for barotropic fluids and porous
media flow. SIAM Journal on Mathematical Analysis (2021) https://hal.
science/hal-03234144. Gallouët T.O., Mérigot Q., Natale A.

https://hal.science/hal-01682107v2
https://hal.science/hal-03f790981v2
https://hal.science/hal-01122770
https://hal.science/hal-01122770
https://arxiv.org/abs/1607.04009
https://arxiv.org/abs/1607.04009
https://arxiv.org/abs/arXiv:1802.01321
https://arxiv.org/abs/arXiv:1802.01321
https://doi.org/10.1007/s10208-017-9355-y
https://hal.science/hal-03234144
https://hal.science/hal-03234144
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8. Regularity theory and geometry of unbalanced optimal transport. Submit-
ted 2023 Gallouët T.O., Ghezzi R. et Vialard F.X. https://hal.science/
hal-03498098v1.

9. A JKO splitting scheme for Kantorovich-Fisher-Rao gradient flows. SIAM
Journal on Mathematical Analysis, Vol. 49, Issue 2. (2017) https://arxiv.
org/abs/1602.04457. Gallouët T.O. et Monsaingeon L.

10. An unbalanced optimal transport splitting scheme for general advection-
reaction-diffusion problems. ESAIM: Control, Optimisation and Calculus of Vari-
ations (2018) https://hal.science/hal-01508911. Gallouët T.O., Laborde
M. and Monsaingeon L.

11. The Camassa-Holm equation as an incompressible Euler equation: a geo-
metric point of view. Journal of Differential Equations, Volume 264, Issue 7, Pages
4199-4234. (2018) https://arxiv.org/abs/1609.04006. Gallouët T.O.
and Vialard F.X.

12. Generalized compressible flows and solutions of the H(div) geodesic prob-
lem. Archive for Rational Mechanics and Analysis, Springer Verlag (2020) https:
//hal.science/hal-01815531v3. Gallouët T.O., Natale A. et Vialard F.X.

1.2 Optimal Transport

1.2.1 Optimal Transport, Wasserstein space

The following two papers deal with some notions in the Wasserstein space namely
Wasserstein splines and Wasserstein extrapolation. The first paper was realized with
two collaborators I got when I arrived at Inria Paris: J.D. Benamou (DR Inria Paris)
and F.X. Vialard (MCF Dauphine now Professeur at Paris Est). The second paper
was written with A. Natale (former post doc student, now CR at Inria Lille) and G.
Todeschi (former PhD student, currently Post-doc.)

Articles:

1. Second order models for optimal transport and cubic splines on the Wasser-
stein space. Foundations of Computational Mathematics, Springer Verlag (2019)
https://hal.science/hal-01682107v2 J.D. Benamou, Gallouët T.O. et
Vialard F.X.

2. From geodesic extrapolation to a variational BDF2 scheme for Wasserstein
gradient flows. Under minor revision Mathematics of Computations (2022) Gal-
louët T.O., Natale A. et Todeschi. G https://hal.science/hal-03f790981v2

Cubic Splines.

In this work realized in collaboration with J.D. Benamou and F.X. Vialard, we extend
the Wasserstein geodesics, defined on the space of probability densities, to the case
of higher-order interpolation such as cubic spline interpolation. Our motivation is
to answer the practical question of the extension of cubic splines to the Wasserstein
space and their numerical computation. First we present the natural extension of cu-
bic splines to the Wasserstein space when considered as a Riemannian manifold. We
then propose a simpler approach based on the relaxation of the variational problem

https://hal.science/hal-03498098v1
https://hal.science/hal-03498098v1
https://arxiv.org/abs/1602.04457
https://arxiv.org/abs/1602.04457
https://hal.science/hal-01508911
https://arxiv.org/abs/1609.04006
https://hal.science/hal-01815531v3
https://hal.science/hal-01815531v3
https://hal.science/hal-01682107v2
https://hal.science/hal-03f790981v2
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on the path space. This relaxation is defined on the space of densities using mul-
timarginal optimal transport and yields a convex minimization problem. In short,
the proposed method consists in minimizing, on the space of measures on the path
space, under marginal constraints, the squared norm of the acceleration. This relax-
ation is performed in the spirit of generalized geodesics for Euler equations intro-
duced by Brenier. In this setting, we show that two numerical approaches, classical
in optimal transportation can be applied. One is based on entropic regularization
and the Sinkhorn Algorithm, the other relies on the Semi-Discrete formulation of
Optimal Transportation and the computation of Laguerre cells, a classical problem
in computational geometry. We showcase our methodology on 1D and 2D data. To
the best of our knowledge, this question has not been yet addressed in the liter-
ature on optimal transport until very recently in two independent and simultane-
ous preprints : [4] and 1 (this paper). Both works share the same idea of relaxing
the cubic spline formulation in the space of measures using multi-marginal optimal
transport. Our paper however explores a larger hierarchy of models and several
numerical methods.

In our implementation the numerical methods we proposed shared the same
drawback, for a reasonable computational time, they are limited to low dimension
d ≤ 3. Moreover the semi-discrete method is limited to the quadratic cost and is not
convex in general. A smart initialization or optimization strategy is needed to obtain
the convergence towards global minima. Recent advances in Semi-Discrete Optimal
Transport Solvers open the door to an implementation in higher order dimension
whereas for the entropic regularization problems classical multi-scale approaches
can be used, bearing in mind that for the interpolation the dependence in the time-
step discretization is of a higher order than the one in the case of Sinkhorn algo-
rithm for classical optimal transport. This prevents us to decrease the regularized
parameter ε as efficiently as done for Sinkhorn algorithm for classical optimal trans-
port. At the end of the paper (Remark 6) we notice that this notion of interpolation
with relaxed multi-marginal optimal transport can be used to define a Wasserstein
extrapolation. This question of defining an interpolation was then pursued in the
work described below with different collaborators.

Wasserstein extrapolation.

The study of Wasserstein geodesic extrapolation is a part of 2. In this paper it is used
as a tool to define a 2nd order in time numerical scheme for Wasserstein gradient
flows. However it has is own interest. This operation is not uniquely defined in gen-
eral since after time 1 shocks can occur in the trajectory of particles associated to the
Wasserstein geodesic. With Andrea Natale (former post doc) and Gabriele Todeschi
(former PhD student) we proposed different definitions of Wasserstein extrapolation
in the case where the cost is given by the square of the euclidian distance. These def-
initions are given via different formulations of Optimal Transport and leads to the
definition of Free-flow, metric, viscosity extrapolations. Each of these corresponds to
a different way of handling shocks: either a shockless traverse, or different types of
dissipative collisions. We proved the well posedness of these notions as well as some
important properties that we define such as consistency or dissipation. The metric
formulation for instance is given by a convex optimization problem. This convexity
is not obvious and can be obtained thanks to a dual convex formulation in the spirit
of Toland duality [3]. We also proposed a numerical scheme and an implementation
to approximate the viscosity extrapolation. However the metric extrapolation seems
to us the more natural and richest definition. In a follow up work we study more



1.2. Optimal Transport 5

deeply the metric extrapolation and its dual formulation for more general costs. In
the quadratic case we aim at proposing a numerical scheme and an implementa-
tion for this metric extrapolation based on a non convex reformulation of the dual
problem and semi-discrete techniques.

1.2.2 Wasserstein Gradient flows

A large part of my research was focused on PDEs that can be recast as gradient flows
in the Wasserstein space i.e. equations or system of equations that can be recast
under the form

∂tρ− div

(
ρ∇δE

δρ
(ρ)

)
= 0,

with a zero flux boundary condition and for a given energy E defined on the set
of probability measures. We used this interpretation either to prove the existence
of solutions for a system of PDEs but also to build variational, energy-diminishing
schemes. The first three papers presented below deal with a particular system of
PDEs: incompressible immiscible multiphase flows. The next two papers aim at
building variational finite volume numerical scheme in order to compute numerical
approximations of general Wasserstein gradient flows.

Articles:

3. The gradient flow structure for incompressible immiscible two-phase flows
in porous media. C. R. Acad. Sci. Paris, Ser. I(353) :985– 989 (2015). https:
//hal.science/hal-01122770. Cancès C., Gallouët T.O., Monsaingeon L.

4. Incompressible immiscible multiphase flows in porous media: a variational
approach. Analysis and PDE Vol. 10 (2017), No. 8, 1845–1876 https://
arxiv.org/abs/1607.04009. Cancès C., Gallouët T.O., Monsaingeon L.

5. Simulation of multiphase porous media flows with minimizing movement
and finite volume schemes.) European Journal of Applied Mathematics, Cam-
bridge University Press (CUP), 30 (6), pp.1123-1152 (2019). https://arxiv.
org/abs/arXiv:1802.01321. Cancès C., Gallouët T.O., Laborde M., Mon-
saingeon L.

6. A variational finite volume scheme for Wasserstein gradient flows. Nu-
merische Mathematik, Springer Verlag, 146 (3), pp 437 - 480 (2020). https://
hal.science/hal-02189050. C.Cancès, Gallouët T.O., Todeschi. G

7. From geodesic extrapolation to a variational BDF2 scheme for Wasserstein
gradient flows. Under minor revision for Mathematics of Computations (2023)
https://hal.science/hal-03790981 Gallouët T.O., Natale A. et Tode-
schi. G

Incompressible immiscible multiphase flows in porous media

This research was carried out in collaboration with C. Cancès and L. Monsaingeon.
We were joined by M. Laborde for the numerical paper 5. The models for multi-
phase porous media flows have been widely studied in the last decades since they
are of great interest in several fields of applications, like e.g. oil-engineering, carbon
dioxide sequestration, or nuclear waste repository management. However in the
case of more than three phases there were no existence results. The difficulty is that

https://hal.science/hal-01122770
https://hal.science/hal-01122770
https://arxiv.org/abs/1607.04009
https://arxiv.org/abs/1607.04009
https://arxiv.org/abs/arXiv:1802.01321
https://arxiv.org/abs/arXiv:1802.01321
https://hal.science/hal-02189050
https://hal.science/hal-02189050
https://hal.science/hal-03790981


6 Chapter 1. Research summary

the system of PDEs is not completely parabolic, making it difficult to obtain a priori
estimates. Moreover the possible presence of vacuum for some phases leads to a
series of technical difficulties. In 3 we highlight the Wasserstein gradient flow struc-
ture. Then in 4 we fully leverage this interpretation in order to prove the existence
of solutions to the incompressible immiscible mutliphase-phase flow in a possibly
heterogeneous porous medium. The proof is based on the convergence of a JKO
scheme. It uses, among other things, flow interchange and duality methods in or-
der to collect enough estimates for an Aubin-Lions convergence strategy to work.
Finally in 5 we propose, implement and compare two numerical methods which are
both designed to decrease the natural energy. One is based on a classical upstream
mobility finite volume scheme, which is a reference for such equations. The other,
ALG2-JKO, is a discretization of the JKO scheme. Both methods are well adapted
for gradient flows equations, and more precisely they verify the following key prop-
erties for the numerical solutions; namely:

• preservation of positivity,

• conservation of mass and saturation constraints,

• energy dissipation along solutions.

We found that the ALG2-JKO scheme produces very similar results: same qualitative
behaviour, conservation of the mass of each phase and preservation of the positivity
while being more robust and adaptative. But the finite volume approach is under
some conditions computationally more efficient. A natural question then arises: can
we build a numerical scheme that would share the best of the two approaches? This
is the object of the next section. Another direction of research is to understand what
happens when the internal energy of the multiphase flow vanishes. All that remains
are potential energies and constraints. In this vanishing internal-energy limit the
system becomes hyperbolic instead of almost parabolic. This is the object of the
ongoing thesis by Erwan Stampli’s PhD that I co-supervise with Y. Brenier. We have
two works in progress on this subject proving for instance the convergence of the
parabolic system towards the hyperbolic counterpart on a torus in dimension 1.

Variational finite volume scheme

As seen above, a natural question arises from the numerical comparison between
the ALG2-JKO scheme and the upstream mobility Finite Volume scheme presented
in 5. Is there a way to combine the best of both methods? In other words can we
build a Variational finite volume scheme that would exactly be the Euler-Lagrange
equation of a fully discretized JKO step? A first discretize then optimize approach that
would allow us to use a Newton method while keeping the variational structure.
This was the starting point of Gabriele Todeschi’s Phd done under the supervision
of C. Cancès and myself. The first paper 6 answers this question positively, while
in the second one 7 we propose to modify the variational structure in order to make
the scheme 2nd order in time. During his PhD G. Todeschi developed together with
A. Natale some methods to reach higher space orders within this class of schemes.

In 6, we then propose a variational finite volume scheme to approximate the
solutions to Wasserstein gradient flows. The time discretization is based on a JKO
formula and an implicit linearization of the Wasserstein distance expressed thanks
to the Benamou-Brenier formula, whereas the space discretization relies on an up-
stream mobility two-point flux approximation finite volume scheme. The scheme is
based on a first discretize then optimize approach in order to preserve the variational
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structure at the discrete level. It can be applied to a wide range of energies and
guarantees non-negativity of the discrete solutions as well as decay of the energy.
We show that the scheme admits a unique solution whatever the convex energy in-
volved in the continuous problem is, and we prove its convergence in the case of the
linear Fokker-Planck equation with positive initial density. Numerical illustrations
show that it is first order accurate in both time and space, and robust with respect to
both the energy and the initial profile.

Then G. Todeschi was able to build in is PhD thesis higher order space approx-
imations while keeping the variational structure. Later on in 7 we proposed a sec-
ond order in time variational finite volume scheme. To do this we introduce a time
discretization for Wasserstein gradient flows based on the classical Backward Dif-
ferentiation Formula of order two. The main building block of the scheme is the
notion of geodesic extrapolation in the Wasserstein space described in Section 1.2.1.
We prove the convergence of the resulting scheme to the solution of the limit PDE
in the case of the Fokker-Planck equation, and for a specific choice of extrapolation
we also prove a more general result, that is convergence towards EVI flows. Finally,
we propose a full discretization which numerically achieves second order accuracy
in both space and time. This paper is inspired from previous works that were done
in this direction but not completely satisfying to us from a numerical point of view
see [16, 15, 11] for instance. The key difference between these papers and our work
is a different interpretation of the BDF2 scheme. The method of proofs for the con-
vergence of the scheme are then largely inspired from [16, 15].

1.2.3 Euler flows

Another class of PDEs relates to the Wasserstein space: the Euler flows where, in-
stead of the speed, the acceleration is given by the Wasserstein gradient of an energy:

∂tρ+ div (ρv) = 0, ∂tv + v · ∇v = −∇δE
δρ

(ρ).

The incompressible Euler’s equations fall into this category as well as some com-
pressible Euler equations. Building Lagrangian numerical schemes for these equa-
tions was the object of the following works. As a by product of the second paper we
also build Lagrangian numerical schemes for Wasserstein gradient flows such as the
porous medium equation. One can interpret this flow as some high friction limit of
Euler flows.

Articles:

8. A Lagrangian scheme à la Brenier for the incompressible Euler equations.
Found Comput Math 18: 835 (2018). https://doi.org/10.1007/s10208-017-9355-y.
Gallouët T.O. and Mérigot Q.

9. Convergence of a Lagrangian discretization for barotropic fluids and porous
media flow. SIAM Journal on Mathematical Analysis (2021) https://hal.
science/hal-03234144. Gallouët T.O., Mérigot Q., Natale A.

The first paper is a collaboration with Q. Mérigot. It is based on the reinterpre-
tation of Y. Brenier’s old ideas and Q. Mérigot’s new method that allows to deal nu-
merically with semi-discrete Optimal Transport: a transport between sums of Dirac
masses and a smooth measure. It was done when I was a post-doc of Y. Brenier. The

https://doi.org/10.1007/s10208-017-9355-y
https://hal.science/hal-03234144
https://hal.science/hal-03234144
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second paper is a collaboration with Q. Mérigot and A. Natale. At the time A. Natale
was a post-doc under our supervision.

Incompressible Euler

In 8 we approximate the regular solutions of the incompressible Euler equations
by the solution of ODEs on finite-dimensional spaces. This approach combines
Arnold’s interpretation of the solution of the Euler equations for incompressible and
inviscid fluids as geodesics in the space of measure-preserving diffeomorphisms,
and an extrinsic approximation of the equations of geodesics due to Brenier. Indeed
the empirical measure of a system of particles cannot be uniform. In our scheme, the
incompressibility constraint is relaxed by imposing that the Wasserstein distance be-
tween the uniform measure and the empirical measure should be small relative to a
parameter ε. This is enforced in an Hamiltonian fashion, the Wasserstein distance
acting as a spring attached to the manifold of measure preserving maps. Using
recently developed semi-discrete optimal transport solvers, this approach yields a
numerical scheme which is able to handle problems of realistic size in 2D at the time
of the paper and by now much larger 3D systems composed of millions of particles.
We prove the convergence of this scheme towards regular solutions of the incom-
pressible Euler equations thanks to a relative entropy method. The key arguments
allowing to apply a (double) Grönwall argument are the use of optimality, orthogo-
nality properties and the degree of freedom in the pressure term: its mean. We also
provide numerical experiments on a few simple test cases in 2D. Many extension of
this work are possible. Two ongoing projects are the fluid-structure interactions and
incompressible Navier-Stokes equations as our Lagrangian scheme is particularly
adapted with the finite volume discretization of the Laplacian.

Barotropic fluids

When expressed in Lagrangian variables, the equations of motion for compressible
(barotropic) fluids have the structure of a classical Hamiltonian system in which the
potential energy is given by the internal energy of the fluid. The dissipative coun-
terpart of such a system coincides with the porous medium equation, which can be
cast in the form of a Wasserstein gradient flow for the same internal energy. Moti-
vated by these related variational structures, we propose a particle method for both
problems in which the internal energy is replaced by its Moreau-Yosida regulariza-
tion in the L2 sense, which can be efficiently computed as a semi-discrete optimal
transport problem in the spirit of what we have done for the incompressible Euler
equation. This last equation corresponds to the case where energy is the characteris-
tic function of measure preserving maps. Again using a modulated energy argument
which exploits the convexity of the problem in Eulerian variables, we prove quan-
titative convergence estimates towards smooth solutions. We verify such estimates
by means of several numerical tests.

The main strength of these Lagrangian methods is that they are based on the
physical energy and a nice geometrical structure for the PDE: either Gradient flows,
Euler/Hamiltonian Flows, or Conservative flows where the velocity is given by the
rotation of the Wasserstein gradient of the energy (v = −J∇ δE

δρ (ρ)), with J an anti-
symmetric matrix). In particular we have two extensions in mind: the Keller-Segel
model and semi-geostrophic equations, using some recent technics developed by D.
Bresch and co-authors and S. Serfaty and co-authors [7, 2] in order to deal with the
additional interaction term into the Grönwall arguments.
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1.3 Unbalanced Optimal transport, geometry and PDE

Optimal Transport is a powerful tool to compare probability distributions and inter-
pret PDEs with some geometrical structure. However in some applications or PDEs
it is natural to consider change of total mass or different mass between the measures.
This mass constraint can easily be alleviated with global renormalization but the ob-
tained model will not be able to account for possible local change of mass. Consid-
ering this shortcoming [8, 1], it was natural to enrich the model using local change
of mass as proposed by three research groups independently in [6, 5, 10, 12]. This
definition shares a lot with classical optimal transport with primal, dual, static for-
mulation and importantly a Riemannian submersion. Once again, the work I have
contributed to on this subject can be divided in three categories: properties of Unbal-
anced Optimal Transport, applications to gradient flows for this metric and finally
Euler flows and more specifically the counterpart of the Incompressible equation in
this framework which is the Camassa-Holm equation.

1.3.1 Unbalanced Optimal transport, geometry and PDE

Articles:

10. Regularity theory and geometry of unbalanced optimal transport. Gallouët
T.O., Ghezzi R. et Vialard F.X. https://hal.science/hal-03498098v1.

This work is done in collaboration with R.Ghezzi and F.X.Vialard. It is a preprint
that will be shortly submitted for publication. Using the dual formulation only, we
show that regularity of unbalanced optimal transport also called entropy-transport
inherits from the regularity of standard optimal transport. We then provide detailed
examples of Riemannian manifolds and costs for which unbalanced optimal trans-
port is regular. Among all entropy-transport formulations the Wasserstein-Fisher-
Rao metric, also called Hellinger-Kantorovich, stands out since it admits a dynamic
formulation, which extends the Benamou-Brenier formulation of optimal transport.
After demonstrating the equivalence between dynamic and static formulations on
a closed Riemannian manifold, we prove a polar factorization theorem, similar to
the one due to the Brenier-McCann one. As a byproduct, we formulate the Monge-
Ampère equation associated with Wasserstein-Fisher-Rao (WFR) metric, which also
holds for more general costs. This allows to give a sense to Brenier’s weak variational
solutions for this large class of PDEs composed of a "classical" Monge-Ampère op-
erator combined with lower order non linear terms. This includes for instance the
JKO scheme, moment maps, and is a key ingredient for the regularity of Unbalanced
Optimal Transport maps. Last, we give explicit links between c-convex functions/c-
segment for the cost induced by the WFR metric and c-convex functions/c-segment
for the associated cost on the cone space. One of the main corollaries is that weak
Ma-Trudinger-Wang condition on the cone implies it for the cost induced by WFR.

1.3.2 Unbalanced gradient flows and general reaction diffusion PDEs

Articles:

11. A JKO splitting scheme for Kantorovich-Fisher-Rao gradient flows. SIAM
Journal on Mathematical Analysis, Vol. 49, Issue 2. (2017) https://arxiv.
org/abs/1602.04457. Gallouët T.O. et Monsaingeon L.

https://hal.science/hal-03498098v1
https://arxiv.org/abs/1602.04457
https://arxiv.org/abs/1602.04457
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12. An unbalanced optimal transport splitting scheme for general advection-
reaction-diffusion problems. Journal of Differential Equations ESAIM: Control,
Optimisation and Calculus of Variations (2018) https://hal.science/hal-01508911.
Gallouët T.O., Laborde M. and Monsaingeon L.

The first article is written in collaboration with L. Monsaingeon. In this work we
set up a splitting variant of the Jordan-Kinderlehrer-Otto scheme in order to han-
dle gradient flows with respect to the Wasserstein-Fisher-Rao metric, defined on the
space of positive Radon measure with varying masses. We perform successively a
JKO time step for the quadratic Wasserstein/Monge-Kantorovich distance, and then
for the Hellinger/Fisher-Rao distance. Exploiting the inf-convolution structure of
the metric we show convergence of the whole process for the standard class of en-
ergy functionals under suitable compactness assumptions, and investigate in details
the case of internal energies. The interest is twofolds: on the one hand, we prove
existence of weak solutions for a certain class of reaction-advection-diffusion equa-
tions, and on the other hand this process is constructive and well adapted to avail-
able numerical solvers. From a technical point of view, this approach has the ad-
vantage of avoiding too detailed an examination of the geometry of the WFR space,
which is now well known. [13].

Later and with M. Laborde in addition, we extended this work and showed
that unbalanced optimal transport provides a convenient framework to handle more
general reaction and diffusion processes in a unified metric setting. Using the same
strategy of alternating minimizing movement schemes for the Wasserstein distance
and for the Fisher-Rao distance, but with a different energy for each step, we prove
existence of weak solutions for general scalar reaction-diffusion-advection equations
or systems of multiple interacting species like prey-predator systems. We also con-
sider an application to a very degenerate Hele-Shaw diffusion problem involving a
Gamma-limit. Moreover we provide some numerical simulations using an ALG2-
JKO strategy for the Wasserstein JKO step. This splitting strategy allows to transfer
all recent developments on the JKO scheme to the case of reaction-diffusion equa-
tions such as Unbalanced gradient flows.

1.3.3 Camassa-Holm

Optimal Transport and Unbalanced Optimal transport costs share the same struc-
ture, in particular the existence of a right invariant action leading to a formal Rie-
mannian submersion. In the optimal transport case the geodesic on the isotropy
group of this action and for the induced metric are exactly the Incompressible Eu-
ler’s equations. Y. Brenier used this remark to propose, among other things, the
notion of generalized solutions for the Incompressible Euler’s equation where the ini-
tial and final positions are given. The natural question we asked ourselves was:
"what is the counterpart to the incompressible Euler’s equations in the Unbalanced
Optimal Transport framework". This question led to the following two works to-
gether with F.X. Vialard and then with F.X. Vialard and our shared postdoc student
A. Natale. The counterpart of the Incompressible Euler’s equations is identified to
the Camassa-Holm equation when d = 1, and one of its possible multi-dimensional
generalizations when d > 1: the geodesic on the group of diffeomorphisms for the
H(div) metric.

Articles:

https://hal.science/hal-01508911
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13. The Camassa-Holm equation as an incompressible Euler equation: a geo-
metric point of view. Journal of Differential Equations, Volume 264, Issue 7, Pages
4199-4234. (2018) https://arxiv.org/abs/1609.04006. Gallouët T.O.
and Vialard F.X.

14. Generalized compressible flows and solutions of the H(div) geodesic prob-
lem. Archive for Rational Mechanics and Analysis, Springer Verlag (2020) https:
//hal.science/hal-01815531v3. Gallouët T.O., Natale A. et Vialard F.X.

The group of diffeomorphisms of a compact manifold endowed with the L2 met-
ric acting on the space of probability densities gives a unifying framework for the
incompressible Euler equation and the theory of optimal mass transport. In 13, we
show a similar relation between this unbalanced optimal transport problem and the
H(div) right-invariant metric on the group of diffeomorphisms, which corresponds
to the Camassa-Holm equation in one dimension. It leads us to study this geodesic
problem on the group of diffeomorphisms, equipped with the H(div) metric. Ge-
ometrically, we present an isometric embedding of the group of diffeomorphisms
endowed with this right-invariant metric in the automorphisms group of the fiber
bundle of half densities endowed with an L2 type of cone metric. This point of
view has three applications: (1) We interpret solutions to the Camassa-Holm equa-
tion and one of its generalization in higher dimension as particular solutions of the
incompressible Euler equation on the plane for a radial density which has a sin-
gularity within the origin. This correspondence can be introduced via a sort of
Madelung transform. More precisely on S1 it gives that solutions to the standard
Camassa-Holm thus give radially 1-homogeneous solutions of the incompressible
Euler equation on R2 which preserves a radial density that has a singularity at 0.
(2) We generalize a result of Khesin et al. in [9] by computing the curvature of the
group as a Riemannian submanifold. (3) Generalizing a result of Brenier to the case
of Riemannian manifolds, which states that solutions of the incompressible Euler
equations are length minimizing geodesics for sufficiently short times. We prove a
similar result for the Camassa-Holm equation: smooth solutions of the Euler-Arnold
equation for the H(div) right-invariant metric are length minimizing geodesics for
sufficiently short times.

We then pursue the analogy with Brenier’s work for the Incompressible Euler’s
equations in 14. In particular we propose a relaxation à la Brenier of this problem,
in which solutions are represented as probability measures on the space of continu-
ous paths on the cone over the domain. We call the minimizers of such a relaxation
generalized solutions. This approach allows us to obtain several results on the H(div)
geodesic problem. In particular, we show that: if the base space is convex, smooth
H(div) geodesics are globally length-minimizing for short times and in any dimen-
sion. This result generalizes the one in 13, which was only valid on the unit circle and
was local otherwise. On the torus S1×S1, we show that there exists h ∈ Diff(S1×S1)
such that the infimum of the action problem, that defined the generalized geodesics
of Camassa-Holm equation, cannot be attained by any smooth flow. This result is
within the spirit of Shnirelman’s work on Incompressible Euler’s equations [17]. On
the contrary, for the same h there exists a generalized solution that arises as the limit
of a minimizing sequence of smooth flows.There exists a unique pressure field in
the sense of distribution associated with generalized solutions. To the best of the au-
thors’ knowledge, the pressure field we consider is a variable that has not been stud-
ied before in the literature on the Camassa-Holm equation or the H(div) geodesic
problem. It appears however as a natural variable in the generalized setting and
deserves a closer look from a more conventional PDE perspective in order to obtain

https://arxiv.org/abs/1609.04006
https://hal.science/hal-01815531v3
https://hal.science/hal-01815531v3
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a priori estimates. Finally, we propose a numerical scheme to construct generalized
solutions on the cone and present some numerical results illustrating the relation
between the generalized Camassa-Holm and incompressible Euler solutions.
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Chapter 2

Optimal transport geometry and
PDE

2.1 Optimal Transport

Articles:

• Second order models for optimal transport and cubic splines on the Wasser-
stein space. Foundations of Computational Mathematics, Springer Verlag (2019)
https://hal.science/hal-01682107v2 J.D. Benamou, Gallouët T.O. et
Vialard F.X.

• From geodesic extrapolation to a variational BDF2 scheme for Wasser-
stein gradient flows. Under minor revision Mathematics of Computations
(2022) Gallouët T.O., Natale A. et Todeschi. G https://hal.science/
hal-03f790981v2

Collaborators: The first paper has been done with two collaborators I got when I
arrived at Inria Paris: J.D. Benamou (DR Inria Paris) and F.X. Vialard (MCF Dauphine
then Professeur Paris Est). The second paper is done with A. Natale (former post doc
student of mine now CR at Inria Lille) and G. Todeschi (former PhD student of mine
now Post-doc.)

Main contributions:

Cubic Splines:

• We propose a notion of relaxed cubic splines in the Wasserstein Space.

• We propose and implement three different numerical methods in order to com-
pute these cubic splines. Based on the one hand on entropic regularization and
on the other hand on Semi discrete Optimal Transport.

https://hal.science/hal-01682107v2
https://hal.science/hal-03f790981v2
https://hal.science/hal-03f790981v2
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Wasserstein extrapolation:

• We propose different notions of Wasserstein extrapolation for the quadratic
cost. We prove the well-posedness of these notions.

• We propose different numerical scheme in order to approximate these defini-
tions. We prove the convergence for a large class of scheme but not the one
used in the numerical section.

• We implement one of these scheme for which we give numerical evidence of
convergence.

Research directions: With A. Natale and G. Todeschi we are continuing our work
on the extrapolation of Wasserstein geodesics especially for the metric extrapolation
which seems to us to have the richest structure. We explore the different equivalent
definitions (primal, dual,..) and aim to fill the gap left in the previous paper on the
numerical implementation for this definition of Wasserstein extrapolation. On e ap-
plication would be to build another variational order two in time numerical scheme
for Wasserstein gradient flows see Section 2.2.2 for more details.



SECOND ORDER MODELS FOR OPTIMAL TRANSPORT AND CUBIC

SPLINES ON THE WASSERSTEIN SPACE

JEAN-DAVID BENAMOU, THOMAS O. GALLOUËT, AND FRANÇOIS-XAVIER VIALARD

Abstract. On the space of probability densities, we extend the Wasserstein geodesics to the

case of higher-order interpolation such as cubic spline interpolation. After presenting the natural
extension of cubic splines to the Wasserstein space, we propose a simpler approach based on

the relaxation of the variational problem on the path space. We explore two different numerical

approaches, one based on multi-marginal optimal transport and entropic regularization and the
other based on semi-discrete optimal transport.

1. Introduction

We propose a variational method to generalize cubic splines on the space of densities using
multimarginal optimal transport. In short, the proposed method consists in minimizing, on the space
of measures on the path space, under marginal constraints, the norm squared of the acceleration.
In this setting, we show that two numerical approaches, classical in optimal transportation can be
applied. One is based on entropic regularization and the Sinkhorn Algorithm, the other relies on
the Semi-Discrete formulation of Optimal Transportation and the computation of Laguerre cells, a
classical problem in computationnal geometry. We showcase our methodology on 1D and 2D data.

In the past few years, higher-order interpolations methods have been investigated for applications
in computer vision or medical imaging, for time-sequence interpolation or regression. The most usual
setting is when data are modeled as shapes, which can be understood as objects embedded in the
Euclidean space with no preferred parametrization: space of unparametrized curves or surfaces, or
images are some of the most important examples. These examples are infinite dimensional but the
finite dimensional case of a Riemannian manifold was interesting for camera motion interpolation
as first introduced in [22] and further developed in [6, 8]. Motivated by different applications, the
problem of interpolation between two shapes is usually treated via the use of a Riemannian metric on
the space of shapes and computing a geodesic between the two shapes. From a mathematical point of
view, shape spaces are often infinite dimensional and thus, non-trivial analytical questions arise such
as existence of minimizing geodesics or global well-posedness of the initial value problem associated
with geodesics. A finite dimensional approximation is still possible such as in [29], in which spline
interpolation is proposed for a diffeomorphic group action on a finite dimensional manifold. It has
been extended for invariant higher-order lagrangians in [11, 12] on a group, still finite dimensional.
A numerical implementation of the variational and shooting splines has been developed in [26] with
applications to medical imaging. The question of existence of an extremum is not addressed in these
publications. An attempt is given in [28] where the exact relaxation of the problem is computed
in the case of the group of diffeomorphisms of the unit interval. In a similar direction, in [13],
the authors discuss the convergence of the discretization of cubic splines in some particular infinite
dimensional Riemannian context on the space of shapes.

As a shape space, we are interested in this article in probability measures endowed with the
Wasserstein metric. Since the Wasserstein metric shares some similarities with a Riemannian metric
on this space of probability densities, it is natural to study further higher-order models in this
context. Our motivation is to answer the following practical question of the extension of cubic
splines to the Wasserstein space and their numerical computation.

We present in Section 2 the notion of cubic splines on a Riemannian manifold and detail its
variational formulation in Hamiltonian coordinates. We then discuss independently in Section 3 a

1
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geometric approach to the Wasserstein space that will be useful for the introduction of our proposed
method detailed in Section 4. Finally in Sections 5 we present the numerical entropic relaxation
method and an alternative numerical method based on semi-discrete optimal transport. The reader
not interested in geometric interpretation can skip directly to Section 4.

To the best of our knowledge, this question has not been yet addressed in the literature on optimal
transport until very recently in two independant and simultaneous preprints : [31] and [14] (this
paper). Both work share the same idea of relaxing the cubic spline formulation in the space of
measure using multi-marginal optimal transport. Our paper however explores a larger hierarchy of
models and several numerical methods.

2. Cubic splines on Riemannian manifolds

In this section, we present Riemannian cubics, which are the extension of variational splines to
a Riemannian manifold (M, g) where g is the Riemannian metric. Variational cubic splines on a
Riemannian manifold are the minimizers of the acceleration; that is, denoting D

Dt the covariant
derivative, minimization on the set of curves x : [0, T ]→M of the functional

(2.1) E(x) =

∫ 1

0

g(x)

(
D

Dt
ẋ,

D

Dt
ẋ

)
dt ,

subject to constraints on the path such as constraints on the tangent space, (x(ti), ẋ(ti)) are pre-
scribed for a collection of times ti ∈ [0, 1], or constraints on the positions such as x(ti) = xi.

Under mild conditions on the constraints, if M is complete, minimizers exist, for instance in the
case of constraints on the tangent space mentioned above. A pathological case where minimizers
might not exist is when the initial speed is not prescribed. Consider for instance the two dimensional
torus, where lines of irrational slopes are dense, it is possible to show that for any collection of points
which do not lie on a line, the infimum of E is 0 while it is never reached, see [13]. The Euler-Lagrange
equation associated to the functional E is

(2.2)
D3

Dt3
ẋ−R

(
ẋ,

D

Dt
ẋ

)
ẋ = 0 ,

where R is the curvature tensor of the Riemannian manifold M . Note that this equation is similar
to a Jacobi field equation.

We now formulate the variational problem in coordinates. In a coordinate chart around a point
x(t) ∈M , the geodesic equations are given by

(2.3)
D

Dt
ẋ = ẍ+ Γ(x)(ẋ, ẋ) = 0 ,

where Γ is a short notation for the Christoffel symbols associated with the Levi-Civita connection.
It is a second-order differential equation which is conveniently written as a first-order differential
equation, via the Hamiltonian formulation. Again in local coordinates on T ∗M the cotangent bundle
of M , the geodesic equation can be written as

(2.4)

{
ṗ+ ∂xH = 0

ẋ− ∂pH = 0 ,

where H(x, p) = 1
2g(x)−1(p, p). Note that, the ODE (2.3) can be obtained from the Hamiltonian

system using ẋ = g(x)−1p. From these two equivalent formulations (2.3) and (2.4), it can be shown
that g−1(x)(ṗ + ∂xH) = D

Dt ẋ. Therefore, it proves that the variational spline problem can be
rewritten in Hamiltonian coordinates as follows

inf
u

∫ 1

0

g(x)−1(a, a) dt ,

under the constraint {
ẋ− g(x)−1p = 0

ṗ+ ∂xH(x, p) = a ,
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with initial conditions x(0) = x0 and p(0) = p0. It is natural to ask whether such variational
problems carry over in infinite dimensional situations such as the Wasserstein space, which will be
discussed in the rest of the paper.

3. A formal application of spline interpolation to the Wasserstein space

It is well known that the Hamiltonian formulation of geodesics on the Wasserstein space, define
over a riemannian manifold M , are

(3.1)

{
ρ̇+∇ · (ρ∇φ) = 0

φ̇+ 1
2 |∇φ|2 = 0 ,

where ρ : M 7→ R≥0 and φ : M 7→ R implicitly time dependant are respectively a probability
density and a function. Note that these equations are valid when working with smooth densities.
The Hamiltonian is the following,

(3.2) H(ρ, φ) =
1

2

∫

M

|∇φ|2ρ dµ0 ,

where µ0 is a reference measure on M .

Remark 1. Taking the gradient of the equation governing φ, and denoting v = ∇φ, we get Burger’s
equation:

(3.3) v̇ + (v,∇)v = 0 ,

where in coordinates, the operator (v,∇) is defined as (v,∇)w
.
=
∑n
i=1 vi∇wi where v, w are vector

fields and n is the dimension of the M . In Lagrangian coordinates, this equation implies that

(3.4) ϕ̈ = 0 ,

where ϕ(t) : M 7→ M is the Lagrangian flow associated with v (ϕ̇ = v ◦ ϕ), which is well-defined
under sufficient regularity conditions.

Remark 2. For the Wasserstein case, the operator is given by g(ρ)−1φ = −∇ · [ρ∇φ] so that the
(formal) computation of the covariant derivative D

Dt ρ̇ on the Wasserstein space is:

(3.5)
D

Dt
ρ̇ = −∇ · [ρ (v + (v,∇)v)] ,

where v = ∇φ is the horizontal lift associated with ρ̇, that is ρ̇+∇· (ρ∇φ) = 0. This result is proven
rigorously in [18].

From a control viewpoint, we aim at minimizing 1
2

∫ 1

0
H(ρ, a) dt for the control system:

(3.6)

{
ρ̇+∇ · (ρ∇φ) = 0

φ̇+ 1
2 |∇φ|2 = a ,

where a is a time dependent function defined on M . Alternatively, in terms of the variables (ρ, φ),
this amounts to minimize

(3.7)

∫ 1

0

∫

M

|∇[φ̇+
1

2
|∇φ|2]|2ρ dµ0 dt ,

under the continuity equation constraint ρ̇+∇ · (ρ∇φ) = 0. It is a nonconvex optimization problem
in the couple (ρ, φ). The key issue here is that the variational problem itself is a priori not well-posed
since our formulation is valid in a smooth setting and to make it rigorous on the space of measures,
the tight relaxation of this problem is needed. However, we do not address this issue in our work and
in the next section we turn our attention to a simple relaxation of the problem which is probably
not tight.
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4. A hierarchy of relaxed models

4.1. Context. We recall the classical optimal transport setting. We have the following well known
equivalence [23, 30]

(4.1)

W 2
2 (ρ0, ρ1) = inf

ϕ

∫ 1

0

∫

M

|ϕ̇|2 dµ0 dt = inf
ρ,v

∫ 1

0

∫

M

|v|2 dρdt

= inf
ρ

∫ 1

0

inf
v

∫

M

|v|2 dρdt = inf
ρ,∇φ

∫ 1

0

∫

M

|∇φ|2 dρdt

Under constraints that

[ϕ(t)]∗µ0 = ρ(t) for t = 0, 1

([ϕ(t)]∗µ0 is the image measure of µ0 :
∫
M
f(y) d[ϕ(t)]∗µ0(y) =

∫
f(T (x)) dµ(x) for every measurable

function f : M → R )
and the continuity equation

ρ̇+∇ · (ρv) = ρ̇+∇ · (ρ∇φ) = 0

with fixed initial and final conditions

ρ(0) = ρ0 and ρ(1) = ρ1.

Moreover, geodesics in the space of densities for the Wasserstein metric are given by
[ϕ(t)]∗µ0 = ρ(t) and the associated displacement maps satisfy v ◦ ϕ = ϕ̇.

The last equality in (4.1) exactly says that the infimum infv(t)

∫
M
|v(t)|2 dρ(t) among all v(t)

satisfying the continuity equation at each time t is achieved when v(t) is a gradient. This property
is a consequence of a Riemannian submersion and ∇φ is called the horizontal lift of ρ̇. It is this last
formulation that formally gives a Riemannian structure on the space of probability measures. See
the remark 1 below for more details on the geometrical structure.

For higher-order variational problems, e.g. the minimization of the acceleration, the reduction in
the last inequality does not holds true in general, even if the Riemannian submersion structure is
present as shown in [12]. It means in the case of acceleration that, a priori, with the same constraint
as for (4.1) :

(4.2)

inf
ϕ

∫ 1

0

∫

M

|ϕ̈|2 dµ0 dt = inf
ρ,v

∫ 1

0

∫

M

|v̇ + (v,∇)v|2 dρdt

6= inf
ρ,∇φ

∫ 1

0

∫

M

|φ̇+ (∇φ,∇)∇φ|2 dρdt,

where we have used that ϕ̈ = v̇ ◦ ϕ+ (v ◦ ϕ,∇)v ◦ ϕ.

Remark 1. From a geometrical point of view, (4.1) says the Wasserstein space can be seen, at least
formally, as a homogeneous space as described in [15, Appendix 5] and originally in [23]. Consider
the group of (smooth) diffeomorphisms of M a closed manifold, Diff(M), and the space of (smooth)
probability densities Dens(M). The space of densities is endowed with a Diff(M) action defined by
the pushforward, that is to a given ϕ ∈ Diff(M) and ρ ∈ Dens(M), the pushforward of ρ by ϕ is
Jac(ϕ−1)ρ ◦ ϕ−1. By Moser’s lemma, this action is transitive, thus making the space of densities
as a homogeneous space. More importantly, there exists a compatible Riemannian structure between
Diff(M) and Dens(M). Once having chosen a reference density µ0, the L2(M,µ0) metric on the
diffeomorphism group descends to the Wasserstein L2 metric on the space of densities, or in other
words, the pushforward action ϕ 7→ ϕ∗µ0 is a Riemannian submersion. An important property of
Riemannian submersion is that geodesics on Dens(M) are in correspondence with geodesics on the
group, given by horizontal lift. This property is actually contained in Brenier’s polar factorization
theorem, which shows that the horizontal lift is the gradient of a convex function.
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4.2. The Monge formulation. In Section 3 we used the formal Riemannian structure on the set
of probability measure to define an intrinsic notion of splines, (3.7) is indeed the RHS of inequality
(4.2). In this section we propose a simpler alternative definition of Wasserstein splines based on the
LHS of inequality (4.2).

Definition 1 (Monge formulation). Let 0 = t0 < . . . < tn = 1, n ≥ 2 and ρ1, . . . , ρn be n probability
measures on M .

Minimize, among time dependent maps ϕ(t) : M 7→M ,

(4.3)

∫ 1

0

∫

M

|ϕ̈|2 dµ0 dt ,

under the marginal constraints ϕ(ti)∗µ0 = ρi. This minimizing problem is denoted by (MS).

It is a Monge formulation of the variational problem, similar to standard optimal transport. On
a Riemannian manifold M , the notation ϕ̈ stands for D

Dt ϕ̇. By the change of variable with the map
ϕ, the problem can be written in Eulerian coordinates, that is using the vector field associated with
the Lagrangian map ϕ, ∂tϕ = v ◦ ϕ, one aims at minimizing for (ρ, u)

(4.4)

∫ 1

0

∫

M

|u|2ρ dµ0 dt

under the constraints

(4.5)

{
ρ̇+ div(ρv) = 0

v̇ + (v,∇)v = u ,

with the marginals constraints ρ(ti) = ρi.

Remark 2. Remark that formally when v = ∇φ, this new model reduces to the formulation (3.7).
Therefore, it justifies the fact that Problem (4.3) is a relaxation of (3.7). However, as already
mentioned, this relaxation is probably not tight.

Another formal geometric argument in the direction of proving that the two formulations are
different is that the Wasserstein space has nonnegative curvature if the underlying space M has
nonnegative curvature, but the space of maps in the Euclidean space is flat. Therefore, the two
Euler-Lagrange equations (2.2) lead to a different evolution equations: for instance, if M is the
Euclidean space then the Euler-Lagrange equation for the second model is simply

....
ϕ = 0, which is a

priori different from the splines Euler-Lagrange equation in the Wasserstein case.

4.3. The Kantorovich relaxation. Since, as is well-known in standard optimal transport, the
Monge formulation is not well-posed for general given margins ρ1, . . . , ρn, we propose instead to
solve yet another relaxation of the problem on the space of curves which takes the form:

Definition 2 (Kantorovich relaxation). Let 0 = t1 < . . . < tn = 1, n ≥ 3 and ρ1, . . . , ρn be n
probability measures on M .

Minimize on the space of probability measures on the path space H2([0, 1],M) denoted by H in
short,

(4.6) min
µ

∫

H
|ẍ|2 dµ(x) ,

which is a linear functional of dµ. The curves of densities is given by its marginals in time

(4.7) t 7→ ρ(t)µ0 := [et]∗(µ) ,

et is the evaluation function at time t : if γ ∈ H2([0, 1],M) ⊂ C0([0, 1],M) then et(γ) = γ(t, .) ∈M .
The notation [et]∗µ is the image measure by the map et defined by duality :∫
M
f(y) d[et]∗µ(y) =

∫
H f(et(x)) dµ(x) for every measurable function f : M → R. Note that x is a

path on [0, 1]×M while y is a point on M .
With these notations, the marginal constraint at given time ti are

(4.8) [et]∗(µ) = ρi µ0 .
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By standard arguments, the Kantorovich relaxation admits minimizers under general hypothesis
on the manifold M , which we do not detail here. It is straightforward to check that existence of
minimizers holds when M = Rd.

As expected, the Kantorovich formulation is the relaxation of the Monge formulation in Definition
1.

Theorem 1. Let M = Rd, 0 = t1 < . . . < tn = 1, n ≥ 3 and ρ1, . . . , ρn ∈ be n probability measures
on Rd with compact support and ρ1 being atomless. Then, under the constraints (4.8), the infimums
of the variational problem (4.3) and (4.6) coincide, moreover, the infimum is attained for the latter.

Proof. See the proof of a more general result in Appendix A. �

First we remark that we can reformulate both the Monge and Kantorovich problems on the
set of cubic splines. It is the purpose of the following lemmas and corollaries, whose proofs are
straightforward.

Definition 3 (Cubic interpolant). Let (x1, . . . , xn) ∈ Rd be n given points and (t1 < . . . < tn) be
n timepoints. There exists a unique cubic spline minimizing the acceleration of the curve x(t) such
that x(ti) = xi. This unique curve is called cubic interpolant and is denoted by cx1,...,xn , depending
implicitly on the timepoints.

Lemma 2. When the supports of the measures ρi are compact on Rd, the support of every minimizing
µ in Definition 2 is included in the set the cubic interpolants cx1,...,xn for (x1, . . . , xn) ∈ Supp(ρ1)×
. . .× Supp(ρn).

Proof. The constraints are the marginal constraints [eti ]∗(µ) = ρi for i ≥ 3 which implies that set
of paths charged by an optimal measures satisfies x(ti) ∈ Supp(ρi). In particular, any path in this
set can be replaced by its minimal spline energy, the cubic interpolant cx1,...,xn . �

Corollary 3. As a consequence, the set of paths charged by an optimal plan are uniformly C2 and
for every smooth function η : Rd 7→ R with compact support, the map t 7→ 〈µ(t), η〉 is C2.

Proof. The set of cubic interpolants is compact since the map (x1, . . . , xn) 7→ cx1,...,xn is continuous
from Rdn to the space of C2 fonctions (solution of an invertible linear system) and Supp(ρi) are
compact. Therefore, the set of maps are uniformly C1. The last point follows directly. �

Corollary 4. The Kantorovich problem in Definition 2 on Rd reduces to a multimarginal optimal
transport problem, as follows, let c(x1, . . . , xn) be the continuous cost of the cubic interpolant at
times t1, . . . , tn, the minimization of (4.6) reduces to the minimization of

(4.9)

∫

Mn

c(x1, . . . , xn) dπ(x1, . . . , xn) (K)

on the space of probability measures π ∈ P(Mn) and under the marginal constraints (pi)∗(π) = ρi
where pi is the projection of the ith factor.

Proof. Direct consequence of Lemma 2. �

Similarly

Corollary 5. The Monge problem in Definition 1 on Rd reduces to a Monge multimarginal optimal
transport problem, as follows, let c(x1, . . . , xn) be the continuous cost of the cubic interpolant at
times t1, . . . , tn, the minimization of (4.3) reduces to the minimization of

(4.10)

∫

M

c (x, ϕ(t1, x), . . . , ϕ(tn, x)) dµ0(x),

on the space of path ϕ ∈ C2([0, 1],M) (or even cubic splines) and under the marginal constraints
(ϕ(ti))∗µ0 = ρi.

The dual formulation of the minimization problem (K) is also well known [16, Theorem 2.1]
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Definition 4 (Kantorovich dual problem (KP )). Let Q =
{
φi ∈ L1(ρi µ0) , i = 1..n

}
be the space

of integrable n-uplet. Maximize on Q

(4.11)

n∑

i=1

∫

M

φiρi µ0, under the constraint

n∑

i=1

φi(xi) ≤ c(x1, ..., xn).

And the following duality results holds true:

Proposition 6. There exists a n-uplet (φi)i=1..n ∈ Q optimal for (KP ). Moreover (K)=(KP ) and
for any π optimal in (4.9) there holds

∑n
1 φi(xi) = c(x1, ..., xn), π almost everywhere.

A natural question is whether the solution of the Kantorovich problem (K) is admissible in the
Monge formulation (MS) (Definition 1). With the formulation reduced above the spline, given
by (4.9) and (4.10), one can try to apply existing theory to answer to this question, see [16, 24]
and references therein for precise criterion. However our cost does not satisfy any of those known
criterion. In fact, we have the following result which proves that the relaxation to plans are necessary
even in the context of Theorem 1.

Proposition 7. (Counter Example) Given the three-marginals problems of minimizing the acceler-
ation, there exist data (ρ0, ρ1, ρ2) such that ρ0 is atomless and such that the solution of (K) is not
a (measurable) Monge map.

Proof. Consider ρ0(x) = 1[−1,1] and the Dirac masses a = δ1 and b = δ−1 and the maps Ta, Tb
that respectively pushforward ρ0 onto a and b. These maps are uniquely determined and affine.
Consider now ρ2 = 1

2 (Ta)∗ρ0 + 1
2 (Tb)∗ρ0 = a

2 + b
2 . Then, introducing (T 1/2) = 1

2 (Id +T ), we consider

ρ1 = 1
2 (T

1/2
a )∗ρ0 + 1

2 (T
1/2
b )∗ρ0, note that it is equal to ρ0 since the maps T

1/2
a,b are affine.

By construction, the minimization of the acceleration for (ρ0, ρ1, ρ2) is null since it is a mixture
of plans supported by straight lines. If there existed an optimal Monge solution it is necessarily
supported by only one map denoted by T and since the cost is null, the map at time 1/2 is necessarily
T 1/2 defined above. The preimage of 1 (resp. −1) by T is a measurable set A (resp. B). Then,
necessarily, ρ1 = (T 1/2)∗χA + (T 1/2)∗χB , and in fact, T|A = Ta and T|B = Tb (since the image of

the map is known). Therefore, we have ρ1 = 2χA ◦ (T
1/2
a )−1 + 2χB ◦ (T

1/2
b )−1 which is not equal to

the uniform Lebesgue measure on [−1, 1]. �

Remark 3. It is an open question to prove or disprove a similar result when the final density ρ2 is
atomless. The counterexample explained above strongly uses the fact that the final density is a sum
of Dirac masses and it might not be robust when replacing the final density by a uniform density on
a small interval.

4.4. The corresponding interpolation problem on the tangent space. The relaxed problem
on the space of curves can be used to define variational interpolation problem on the phase space, or
more precisely on the tangent space TM . Since the space H2([0, T ],M) is contained in C1([0, T ],M),
one can formulate the optimal transport problem on phase space (identified with the tangent space)
for the acceleration cost.

Definition 5 (Optimal transport on phase space). Let ρ̄0, ρ̄1 be two probability measures on TM .
Minimize on the space of probability measures on H,

(4.12) min
µ

∫

H
|ẍ|2 dµ(x) ,

which is a linear functional of µ under the marginal constraints

[j0]∗(µ) = ρ̄0 , and [j1]∗(µ) = ρ̄1 ,(4.13)

where jt : H2([0, T ],M)→ TM is defined by jt(x) = (x(t), ẋ(t)).
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time

R

•
−1

•1

•
t = 2

•
t = 1

•
t = 0

Figure 1. The inital density at time 0 is described with a mixture of two densities
colored in red and blue which are evolving indepently along straight lines in time.
The blue density is mapped onto −1 and the red density is mapped onto 1. The
acceleration cost is null and the proof of Proposition 7 shows that it is not possible
to reproduce the density at time 1/2 by a map.

Proposition 8 (Optimal interpolation on phase space). The support of every optimal solution is
contained in the set of cubic splines interpolating between (x, v) ∈ Supp(ρ̄0) and (y, w) ∈ Supp(ρ̄1).
Moreover if M = Rd and if ρ̄0 has density with respect to the Lebesgue measure, then the unique
solution to Problem (4.12) is characterized by a map ϕ : TM 7→ TM .

Remark that the optimal solution in the last part of Proposition 8 provides an interpolation on
the phase space using [jt]∗(µ).

Proof. The proof of the first part is similar to Lemma 2 and the second part follows by application of
Brenier’s theorem since the total cost of the cubic splines between (x, v) and (y, w) can be explicitly
computed as

(4.14) cph((x, v), (y, w)) = 12|x− y|2 + 4(|v|2 + |w|2 + 〈v, w〉+ 3〈v + w, x− y〉)
and satisfies the twisted condition, so [30, Theorem 10.28] applies. �

Note that this problem is very different from using the Wasserstein distance on P(TM) where
the tangent space TM is endowed with the direct product metric. Indeed, the cost cph does not
vanish on the diagonal (x, v) = (y, v) contrarily to the quadratic cost on TM .

Interestingly, let us remark that the multimarginal problem can be recast as the minimization
problem on Π ∈ P(TM × . . .× TM︸ ︷︷ ︸

n times

), denoting Πti,ti+1
the pushforward on TM × TM at times

(ti, ti+1),

(4.15) min
π

n−1∑

i=1

〈Πti,ti+1 , cph((xi, vi), (xi+1, vi+1))〉

under the constraints that [eti ]∗(Πi,i+1) = ρi. From the numerical point of view, this rewriting
might be useful since the cost used on the multimarginal problem is now separable in time. This
relaxation to the tangent space is used in the semidiscrete algorithm in Section 5.3.1. Obviously, up
to the minimization on the variables vi, we retrieve the minimization problem (K) since one has a
cost c which is defined on Mn

(4.16) c(x0, . . . , xn) = min
v0,...,vn

n−1∑

i=1

cph((xi, vi), (xi+1, vi+1))
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where the index i runs over the marginals.

5. Numerical Study

We have discussed several variational relaxation of the classical definition of splines, applied
to the Wasserstein space of densities. At least two different numerical techniques from Optimal
Transportation can be used in this setting. We apply the Entropic regularisation and Sinkhorn
(briefly recalled in appendix B first to a simple Hermite interpolation problem (section 5.1) and
then in section to the multimarginal problem (4.9). In section 5.3, we use the semi-discrete Optimal
Transportation approach in the spirit of [21] directly to problem (4.6) without the time discretisation
in (4.9).

5.1. Hermite interpolation. In this section, we are interested in the problem of interpolation on
the phase space described in the previous. The marginals [et]∗(µ) are densities defined on the tangent
space TM . If we only specify the marginals at time 0 and 1 as empirical measures: [e0]∗(µ) =∑k
i=1 αi δxiδvi and [e1]∗(µ) =

∑k
j=1 βj δyjδwj , as explained in Section 4.4, we can simplify the

Kantorovich using the exact L2 norm of the acceleration of the spline between (xv) and (y, w),
whose cost is given in Formula (4.14). Again, let us underline that this cost is not a Riemannian
cost on the tangent space of Rd since if v = w and x, y are close, the cost is dominated by the
term 4(|v|2 + |w|2 + 〈v, w〉) which need not be zero. Then, the Kantorovich problem reduces to the
minimization of

(5.1)

k,l∑

i,j=1

πi,jc((xi, vi), (yj , wj)) ,

under the constraints

(5.2)

{∑k
i=1 πi,j = βj∑l
j=1 πi,j = αi .

It is straightforward to apply entropic regularization/Sinkhorn in this case which amounts to add,
for a positive parameter ε, ε

∑
i,j πi,j log(πi,j) to the previous linear functional and to numerically

solve the corresponding variational problem with the Sinkhorn algorithm [27, 9] (See also appendix
B where Sinkhorn algorithm is detailed in the more general multimarginal case). It is interesting to
note that the choice of ε is more delicate than in the standard case of a quadratic distance cost.

In Figure 2, we present the convergence rate of this method with respect to two different values
of ε and the most likely deterministic plan given the optimal plan πε. Note that this entropic
regularization method scales with the number of points as N2 and is valid in every dimension.

5.2. MultiMarginal formulation. This is the direct discretization of (4.6) which avoids working
in phase space with the cost (4.16) thus enabling fast computations in 2D. In what follows, the time
cylinder [0, 1]×M is discretized in time as

⊗
i=0,N Mi, the product space of N + 1 copies of M at

each of the N + 1 time steps. We will use a regular time step discretization τi = i dτ where dτ = 1
N .

Using a classic finite difference approach, the time discretization of (4.6) is

(5.3) min
µdτ

∫
⊗
i=0,N Mi

cdτ (x1, ..., xN ) dµdτ (x1, .., xN ) ,

where µdτ now spans the space of probability measures on
⊗

i=0,N Mi representing the space of
piecewise linear curves passing through x0, x1, ..., xN at times τ0, ..., τN .

A straighforward computation gives

(5.4) cdτ (x1, ..., xN ) :=
∑

i=1,N−1

‖xi+1 + xi−1 − 2xi‖2
dτ3



10 JEAN-DAVID BENAMOU, THOMAS O. GALLOUËT, AND FRANÇOIS-XAVIER VIALARD

Figure 2. Convergence (left) and Hermite interpolation problem between Two
empirical measure in phase space (right). We represent the most likely splines in
the position space.

For all times, marginals (4.7) are computed as :

(5.5) τj 7→
∫
⊗
i6=jMi

dµdτ (x1, ..xN )

In order to simplify the presentation we will assume that the marginal constraints (4.8) are set
at times t1, ..tn which coincide with times steps of the discretization (of course n < N , meaning the
number of constraint is not the same as the number of time steps).

In short, there exist (j1, ..jn) ∈ [0, N ] such that

(t1, .., tn) = (τj1 , ..., τjn).

The constraint (4.8) becomes for all k = 1, ..n

(5.6)

∫
⊗
i6=jk

Mi

dµdτ (x1, ..xN ) = ρjk(xjk)

where ρjk is the prescribed density to interpolate at time τjk = tk.

The time discretized problem is the multimarginal problem (5.3 -5.6).

The simplest space discretization strategy is to use a regular cartesian grid. In dimension 2 and
for M = [0, 1]2 and at time ti, the grid will be denoted xαi,βi = (αi h, βih) for (αi, βi) ∈ [0, Nx] and
h = 1

Nx
, a = {αi} and b = {βi} will be the vectors of indices.

The time and space discretization of the problem then becomes

(5.7) min
T

∑

a,b

Ca,b Ta,b

Where T is the N ×Nx ×Nx tensor of grid values µdτ (xα1,β1 , .., xαN ,βN ) and

(5.8) Ca,b = cdτ (xα1,β1
, .., xαN ,βN )

The marginals (5.5) at all times τj are given by

(5.9)
∑

a\{αj}, b\{βj}
Ta,b
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The constraints (5.6) therfore becomes for all k

(5.10)
∑

a\{αjk}, b\{βjk}
Ta,b = ρjk(xαjk ,βjk )

a \ {αjk} denotes the set of indices a minus αjk .

The Entropic regularized problem is

(5.11) min
T ε

∑

a,b

{Ca,b T εa,b + ε T εa,b log(T εa,b)}

and easier to solve. See Appendix B for a description of Sinkhorn algorithm.

Numerical Simulations.
1D case: We present, figures 3 and 4, a 1D test case to highlight some of the qualitative properties
of the cubic splines interpolation on the space of densities.

We consider four interpolation time points and the corresponding data are mixture of Gaussians
of different standard deviations. We use a discretization of 140 points on the interval [0, 1] with
16 time steps. The doted line represent the reconstructed density curve in time. This experiment
shows that the mass can concentrate or diffuse in some situation.

Another important point here is that the entropic regularization parameter has an important
impact on this concentration/diffusion effects: we show the simulations for ε = 0.002 and ε = 8.10−5.
In the simulation with a large ε, the concentration effect is not present and it is due to the diffusion
on the path space.
2D case: We present a 2D test case which computes a Wasserstein spline in the sense of (5.7) inter-
polating four Gaussian identical densities at time 1, 5, 13, and 17, see figure 5. We use a time step
dτ = 1 and 17 N = 17 time steps. The space discretization is Nx = 50. The entropic regularization
parameter is ε = 0.002, note that the stability of the method depends on this parameter. It also
generates artificial diffusion as it becomes more costly top concentrate the available mass on fewer
Euclidean splines between the points of the support of the four Gaussians. We can compute the
interpolating densities at intermediate times using (5.9) but is more interesting to represent in figure
6 the contour line of the third quartile, i.e. the highest values of the densities representing 1/4 of the
total mass. Comparing with figure 7, it seems clear that the Entropy diffusion spreading pollutes
the solution of the original problem (without entropic regularization).

We compare this solution with the classical Quadratic cost Optimal Transport interpolation, i.e.
with the speed instead of the acceleration in the cost. More precisely taking :

(5.12) cdτ (x1, ..., xN ) :=
∑

i=0,N−1

‖xi+1 − xi‖2
dτ

As expected the mass follows respectively the linear interpolation or the Euclidean spline inter-
polation of the center of the Gaussians which are represented as thick red lines in figure 5.

Finally we show the convergence of the Sinkhorn iterate for both simulations in figure 6. The
convergence is much slower for the speed case but we did not optimize the implementation which
does not need tensors and instead just used a degraded version of the acceleration code. This may
be the reason for this strange difference.

5.3. Semi-Discrete approach. We propose another numerical scheme based on the semi-discrete
approach introduced by Mérigot in [19] in dimension 2 and developed by Levy [17] in dimension 3.
Here we approximate the optimal plan π in the formulation (4.9) by a sum of N tensor product of

diracs masses. That is πN =
∑N
j=1

(⊗n
i=1

1
N δXij

)
=
∑N
j=1

1
N δ(X1

j ,...,X
n
j ).
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Initial time data and targets

Figure 3. Four interpolation timepoints, 1, 6, 11, 16 and representation of the four
density configurations, as well as 6 intermediate times. The doted line represent
the reconstructed density curve in time. This experiment underlines that the spline
curve has more smoothness in time and can present some concentration or diffusion
effects depending on the data which would not be present for the usual Wassertein
geodesic. The entropic regularization parameter is ε = 8.10−5.

Remark 4. Since there is a unique corresponds between n points
(
X1
j , . . . , X

n
j

)
and the spline

cX1
j ,...,X

n
j

passing through these points at time (t1, . . . .tn) the measure πN can also be seen as N

direct masses defined over the set of splines: πN =
∑N
j=1

1
N δcX1

j
,...,Xn

j

.

We then have to relax the constraint (pi)∗(π) = ρi since (pi)∗(πN ) =
∑N
j=1

1
N δXij cannot be

absolutely continuous. It leads to the following variational problem.

Definition 6 (Semi-discrete variational problem). Let ε > 0, 0 = t1 < . . . < tn = 1, n ≥ 3 and
(ρi)i=1...n be n absolutely continuous measures. Recall that c(Y1, . . . , Yn) is the cost of the cubic
spline passing through the points (Y1, . . . , Yn) at time (t1, . . . .tn). Let

QN =





N∑

j=1

1

N
δ(X1

j ,...,X
n
j )

∣∣∣∣∣∣
(Xj)j=1,...,N ∈Mn



 .
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Figure 4. The same experiment with a larger entropic regularization parameter
ε = 0.002. As expected, we observe less concentration of mass.

Figure 5. Spline interpolation of Four Gaussians with 17 times steps. Left : the
data and the linear and classic cubic spline interpolation of the of Gaussian center
point. Right : the level curve of the third quartile of the density every 2 time
steps, in solid line for our Spline Wasserstein interpolation and in dashed line for
the classic quadratic cost (speed) interpolation.

Then the semi-discrete variational problem, (SDV), is given by

(5.13) (SDV ) = min
QN

1

N

N∑

j=1

c(X1
j , . . . , X

n
j ) +

n∑

i=1

1

2ε2
W 2

2




N∑

j=1

1

N
δXij , ρi


 ,
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Figure 6. Convergence, i.e. Infinity norm of the difference of the Dual unknown
between to Sinkhorn iteration. This is computed every 10 iterations. Left :for the
acceleration cost, right : for the speed cost .

where W2 is the classical Wasserstein distance given by the quadratic cost.

The main drawback of this method is that, as illustrated in the numerical simulations below, the
problem (SDV ) is not convex.

5.3.1. Implementation. In order to solve numerically the minimization problem (SDV ) we use the
reformulation of the spline cost in the phase space, that is in Rd, with ti+1 − ti = δi:

(5.14) c (Y1, . . . , Yn) = min
(V1,..Vn)∈(Rd)n

n−1∑

i=1

1

δ3
i

cph [(Yi, δiVi) , (Yi+1, δiVi+1)]

where

(5.15) cph[(x, v), (y, w)] = 12|x− y|2 + 4(|v|2 + |w|2 + 〈v, w〉+ 3〈v + w, x− y〉).
The advantage of the formulation (5.14) is that the cost is separable in the phase space and the
gradient with respect to speeds and positions is easy to compute.

We thus implement a gradient descent in the phase space using the lbfgs function in python.
We compute the gradient by automatic differentiation. The Wasserstein terms in the minimization
problem (5.13) depends only on the positions and are computed thanks to Mérigot Library [1] in
dimension 2. To do simulations in dimension 3 one has to use Lévy Library [2]. The density
constraints ρi are given trough linear functions on a triangulation.

Remark 5. Other problems can be addressed using similar optimization problem as in Definition 6.
For instance the quadratic cost in (5.13) leads to Wasserstein interpolation. We can also interpolate
with curves as smooth as we want, using for instance the L2 norm of the derivative of order m of
the curve or even other classical interpolating curves.

5.3.2. Numerical simulations. We propose three numerical simulations, one to compare the qualita-
tive results with respect to the multi marginal approach and especially Figure 5. A second one in
order to illustrate the non-convexity issue and a third one for applications in images.
The rotation case: Figure 7. In this case we compute Wasserstein splines passing through four
gaussians with variance 15 and center of masses respectively (0, 2), (10, 0), (10, 6), (0, 4) with con-
straint parameter ε = 10−3. The number of points is 2000. In this case the result is a global
minimizer and is not sensible to initialization. The lack of convexity is not an issue. Compare to



SECOND ORDER MODELS FOR OPTIMAL TRANSPORT 15

Figure 7. Spline interpolation for gaussians with 2000 Dirac masses for each mea-
sure, ε = 1O−3. Left: sample of each density constraints ρi, i=1,2,3,4. Right:
Some trajectory of diracs masses randomly chosen, marginals at the constrained
time 0, 1, 2, 3 and marginals at time 0.5, 1.2, 1.5, 1.7, 2.5. Second Line : the same
configuration as in figure 5.

Figure 5, this approach gives a better a approximation of the intermediate densities especially with
less diffusion.
The crossing case: Figure 8, 9. Here we compute Wasserstein splines starting from a mixture
of two gaussians with centrer (0,−1), (0, 1) and variance 15 then passing through a gaussian with
center (0, 0) and variance 15 and finishing at a translation of the initial mixture. The number of
points is 2000, ε will value 1 or 1000.

We expect the global minimizer to be straight lines crossing around the middle constraint and
with a low cost. Numerically depending on the initial conditions, we can recover different local
minimizers, the local minimum which is reached is extremely correlated with the initial coupling.
In Figure 8 we observe that changing ε but keeping a similar initial coupling, all points are given
by a quantization of the middle density with a random enumeration and 0 initial speed, yields to a
similar local minimum.

Finding a good initial coupling is the hard part in order reach the global maximum. One solution
is to initialize with points close to each other and a very large ε. Then one as to add some noise
in the gradient and decreases slowly ε. Unfortunately we didn’t find a systematic approach for this
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Figure 8. Spline interpolation for a mixture of gaussians with 2000 Dirac masses.
Same initial coupling for both figure. Left: ε = 1. Right: ε = 1000.

random multi-scale method and one as to fit the parameters case by case. In Figure 9 the global
minimizer is achieved by first computing the spline with a relaxed constraint, i.e. large ε, only for
the final time ( in pratice ε = [1000, 1000, 1]. Then we use this result, which has the good initial
coupling, as and initial condition and set ε = 1000 for all the constraints. We also compare this
results with the interpolation with a different initial condition and the Wasserstein geodesics. In
all these simulations we clearly observe that particles can cross along the dynamic appart from the
optimal transport inthis situation.

Note that this spline approach is related to the problem of finding minimal geodesics along
volume preserving maps done by Mérigot and Mirebeau [20] : in their work the constraints ρi are
the Lebesgue measure, the cost is changed by the quadratic cost between two points and they have
a coupling constraint. Therefore their minimization problem is also non convex but the coupling is
given as a constraint so the non convexity issue didn’t rise as clearly as in this spline problem.
Image interpolation: pour l’instant c’est pas presentable, ca passe vraiment au milieu. Je vais
relancer dans la semaine mais je propose de faire une version sans.

Remark 6 (Extrapolation). The minimization of the acceleration can be used to provide time
extrapolation of Wasserstein geodesic in a natural way: particles follow straight lines. This can
be implemented in a 3-marginal problem with the acceleration cost c(x1, x2, x3) = 1

λ2 |x3 − 2x2 +

x1|2 + 1
λ |x2 − x1|2 under marginal constraints at time 1 and 2. Note that, in the spline model, the

formulation we proposed does not prevent particles from crossing each other. They are completely
independent. Therefore, the particles following simply geodesic lines and after a shock, the evolution
is not geodesic in the Wasserstein sense (since shocks do not occur but at initial and final times).
The implementation of time extrapolation using entropic regularization is straightforward. Figures 10
and 11 show some experiments on [0, 1] discretized with 100 points and ε = 0.015. The translation
experiment recovers what is expected however the effect of the diffusion can be seen with a twice
larger ε. We also show two other simulations, one is a splitting simulation and the last one is a
merging of two ”bumps” into a single one. The extrapolation shows an other bimodal distribution
which is explained by particle crossings. Note that this extrapolation scheme may proven useful in
the development of higher-order schemes for the JKO algorithm.

6. Perspectives

In this paper, we presented natural approaches to define cubic splines on the space of probability
measures. We have presented a Monge formulation and its Kantorovich relaxation on the path space
as well as their corresponding reduction on minimal cubic spline interpolation. We leave for future
work theoretical questions such as the study of conditions under which the existence of a Monge
map as a minimizer occurs, as well as the relaxation of cubic spline in the Wasserstein metric. Our
main contributions focus on the numerical feasibility of the minimization of the acceleration on the
path space with marginal constraints. We have developed the entropic regularization scheme for the
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Figure 9. Spline interpolation for a mixture of gaussians with 2000 Dirac masses
for each measure. ε = 1000. Top Left: Initialization with a good coupling, total
cost = 302. Top Right: Initialization with a quantization of the middle density
and no speed, total cost = 804 (local minima). Bottom: Interpolation with the
Wasserstein geodesic. ε = 1000, cost = 930.

Figure 10. Extrapolation of a translation with two different ε = 0.015 and ε = 0.03

acceleration and shown simulations in 1D and 2D. Future work will address the 3D case which is
out of reach with the methods presented in the first sections of this paper but possibly tackled with
the semi-discrete method presented en Section 5.3. In a similar direction, the application of this



18 JEAN-DAVID BENAMOU, THOMAS O. GALLOUËT, AND FRANÇOIS-XAVIER VIALARD

Figure 11. On the left, a splitting experiment and on the right, a merging experiment.

approach to the unbalanced case in the spirit of [7] seems challenging due to the this dimensionality
constraint and could be achieved within the semi-discrete setting.

In the Lagrangian setting, i.e. semi-discrete method, the extrapolation of a Wasserstein geodesic
between ρ0 and ρ1 is obtained using three positions with the following formulation : let

QN =





N∑

j=1

1

N
δ(X1

j ,X
2
j ,X

3
j )

∣∣∣∣∣∣
(Xj)j=1,...,N ∈Mn



 ,

then

(6.1) (SDextra) = min
QN

1

N

N∑

j=1

d2

2
(X1

j , X
2
j ) +

1

N

N∑

j=1

c(X1
j , X

2
j , X

3
j ) +

2∑

i=1

1

2ε2
W 2

2




N∑

j=1

1

N
δXij , ρi


 ,

where d is the distance on M and c(X1
j , X

2
j , X

3
j ) the cost of the cubic spline. In particular this

formulation forces the curve to be a Wasserstein geodesic between ρ1 and ρ2, using the quadratic
cost, and let free the final marginal. The implementation is completely similar as in Section 5.3 and
the trajectory of each dirac masses is a straight line.

Appendix A. Proof of Theorem 1

The proof is a rewriting of the proof of [25, Theorem 1.33] when the initial and final spaces do not
have the same dimension. In particular we prove that transport plans concentrated on a graph of a
map T : Rd → Rp are dense into transport plans in Rd×Rp and deduce, taking p = (n−1)d, that for
any continuous cost the multimarginal Kantorovich problem is the relaxation of the multimarginal
Monge problem.

Theorem 9. Let M = Rd and c : Mn → R be a continuous cost fonction. Let (ρi)i∈1,...,n be n
probability measures on M . We define the Monge Problem (Mc) as

(Mc) = inf

∫

M

c (x, T2(x), . . . , Tn(x)) ρ1 ,

over the set of map ΠT =
{
T : M →Mn−1, x 7→ (Ti(x))i=2,...,n

∣∣∣(Ti)∗ (ρ1) = ρi, , i = 2, . . . , n
}

. The

Kantorovich problem (Kc) is defined by

(Kc) = inf

∫

Mn

c (x1, . . . , xn)π (x1, . . . , xn) ,
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over the set of plan Π = {π ∈ P(Mn)|(pi)∗(π) = ρi, i = 1, . . . , n}, where pi is the projection of the
ith factor. Then, if all (ρi)i∈1,...,n have compact support and ρ1 is atomless there holds (Mc) = (Kc).

In order to prove Theorem 9 we first remark that [25, Corrollary 1.29 and Theorem 1.32 ] have
their multimarginal counterpart.

Lemma 10. Let µ ∈ P(Rd) be atomless measure and ν ∈ P(Rp), then there exists a transport map
T : Rd → Rp such that T∗µ = ν.

Proof of Lemma 10. Let σd : Rd → R (resp σp : Rp → R) be an injective Borel map with Borel
inverse (see [25, Lemma 1.28] for instance for a very simple proof of existence in this case). Since
µ is atomless (σd)∗µ is also atomless. Let t : R → R be the optimal transport map from (σd)∗µ to
(σp)∗ν for the quadratic cost. t∗ ((σd)∗µ) = (σp)∗ ν. Thus T = σ−1

p ◦ t◦σd is a map pushing forward
µ to ν. �

Theorem 11. With the notation of Theorem 9, if the support of all ρi are included in a compact
domain then the set of plans ΠT induced by a transport is dense, for the weak topology, in the set of
plans Π whenever ρ1 is atomless.

Remark 7. Theorem 11 is in fact very general, one can consider M N be only Polish spaces for
instance. Then there exists invertible Borel maps from M (resp N) to [0, 1]. This is enough to obtain
Lemma 10. Then one just need to consider a uniformly small partition of Ω to prove the density
Theorem 11.

Proof of Theorem 11. Again the proof is based on [25, Theorem 1.32]. In particular the strategy
of the proof is to approach a transport plan by transport maps defined on small sets on which the
measure is preserved.

We consider a compact domain Ω = Ωd × Ωp ∈ (Rd × Rp) and π ∈ P(Ωd × Ωp) such that
(pRd)∗(π) = µ is atomless. For any m set a partition of Ωp (resp Ωq) into (disjoint) sets Ki,m (resp
Lj,m) with diameter smaller than 1/2m. Then Ci,j,m = Ki,m×Lj,m is a partition of Ω into sets with
diameter smaller than 1/m. Let πi,m be the restriction of π on Ki,m × Ωp and µi,m = (pRd)∗(πi,m)
and νi,m = (pRd)∗(πi,m). Since µ is atomless µi,m = µ|Ki,m is also atomless and thanks to Lemma
10 there exists ti,m such that (ti,m)∗µi,m = νi,m. By definition
(A.1)
π[Ci,j,m] = πi,m[Ci,j,m] = µi,m[Ki,j ]νi,m[Lj,m] = (Id, ti,m)∗(µi,m)([Ci,j,m]) = (Id, tm)∗(µ)[Ci,j,m],

where tm is define on Ω by t|Ki,m = ti,m. In particular (tm)∗(µ) = ν. Equation (A.1) and the
definition of the partition sets Ci,j,m implies that (Id, tm)∗(µ) weakly converges toward π as m+∞
(they give same masses to any set of the partition). See [Theorem 1.31]santambrogio2015optimal
for instance. To finish the proof let us remark that we can set p = d(n− 1) then µ = ρ1 is atomless
and tm : Rd → Rd(n−1) defines (t2,n, ..., tn,m). �

Proof of Theorem 9 . The continuity of the cost c and the density Theorem 11 implies that (Kc) ≤
(Mc). Since the converse is always true we have (Mc) = (Kc). �

Remark 8. Theorem 1 is a consequence of Theorem A since both the Monge and the Kantorovich
(Definition 1 and 2) problems reduces on Mn with the spline cost which is continuous (see Corollary
4 and 5.

Appendix B. Entropic Regularisation and Sinkhorn

B.1. Entropic regularization and Sinkhorn algorithm. The linear programming problems
(5.7-5.10) is extremely costly to solve numerically and a natural strategy, which has received a
lot of attention recently following the pionneering works of [10] and [9] is to approximate these
problems by strictly convex ones by adding an entropic penalization. It has been used with good
results on a number of multi-marginal optimal transport problems [3] [4] [5]. Here is a rapid and
simplified description, see the references above for more details.
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The regularized problem is

(B.1) min
T ε

∑

a,b

{Ca,b T εa,b + ε T εa,b log(T εa,b)}

It is strictly convex. Denoting ukαjk ,βjk
the Lagrange multipliers of the k constraints (5.10), we

obtain the optimality conditions:

(B.2) T εa,b = Ka,b ΠN
k=1U

k
jk

where

Ukjk = e
1
εu
k
αjk

,βjk Ka,b = e−
1
εCa,b

Equation (B.2) caracterize the optimal tensor as a scaling of the Kernel K depending on the dual
unknown Uk. Inserting this factorization into the constrains (5.10) the dual problem takes the form
of the set of equations ( ∀k ∈ [1, n])

(B.3) Ukjk = ρjk(xαjk ,βjk )(
∑

a\{αjk}, b\{βjk}
Ka,b Πk′∈{1,..n}\k U

k′
jk′

)−1

Sinkhorn algorithm simply amounts to perform a Gauss-Seidel type iterative resolution of the
system (B.3) and therefore consists in computing the sums on the right-hand side and then perform
the (grid) point wise division.

B.2. Implementation. In dimension 2, each unknown Uk has dimension N2
x , the cost of one full

Gauss Seidel cycle, i.e. on Sinkhorn iteration on all unknowns, will therefore be n×N2
x× the cost to

compute the tensor matrix products in the denominator of (B.3). Remember that n is the number
of time steps with constraints and N the total number of time steps. The given tensor Kernel
Ka,b is a priori a large N × Nx × Nx tensor with indices a, b = α1, ..αN , β1, .., βN . It can however
advantageously be tensorized both along dimensions and also margins. First, using (5.4-5.8) we see
that the Kernel is the product of smaller tensors

Ka,b = Πi=1,N−1K
0
i−1,i,i+1, with K0

i−1,i,i+1 := e−
1

ε dτ3
‖xαi+1,βi+1

+xαi−1,βi−1
−2 xαi,βi‖

2

.

Moreover as we chose to work on a cartesian grid at all time steps, K0 tensorize again into

K0
i−1,i,i+1 = Kα

i−1,i,i+1K
β
i−1,i,i+1 with Kα

i−1,i,i+1 := e−
h2

ε dτ3
‖αi+1+αi−1−2αi‖2

Finally our large kernel Ka,b can be represented a the product of 2 (N − 2) identical tensors of size
Nx ×Nx ×Nx. Assuming a cubic cost n3 for the multiplication of two (n × n) matrix, we see oru
algorithm is of order O(N N4

x) in dimension 2.
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FROM GEODESIC EXTRAPOLATION TO A VARIATIONAL BDF2

SCHEME FOR WASSERSTEIN GRADIENT FLOWS

THOMAS O. GALLOUËT, ANDREA NATALE, AND GABRIELE TODESCHI

Abstract. We introduce a time discretization for Wasserstein gradient flows based on the
classical Backward Differentiation Formula of order two. The main building block of the
scheme is the notion of geodesic extrapolation in the Wasserstein space, which in general is
not uniquely defined. We propose several possible definitions for such an operation, and we
prove convergence of the resulting scheme to the limit PDE, in the case of the Fokker-Planck
equation. For a specific choice of extrapolation we also prove a more general result, that is
convergence towards EVI flows. Finally, we propose a variational finite volume discretization
of the scheme which numerically achieves second order accuracy in both space and time.

Keywords: Optimal transport, Wasserstein extrapolation, Wasserstein gradient flows, BDF2

MSC(2020): 49Q22, 35A15, 65M08

1. Introduction

In this paper we are concerned with the construction of second-order in time discretizations
for the following system of PDEs, describing the time evolution of a density ϱ : [0, T ]×Ω → R+

on a convex compact domain Ω and over the time interval [0, T ]:

(1.1) ∂tϱ− div

(
ϱ∇δE

δρ
(ϱ)

)
= 0 on (0, T ) × Ω ,

with initial and boundary conditions:

(1.2) ϱ(0, ·) = ρ0 , ϱ∇δE
δρ

(ϱ) · n∂Ω = 0 on (0, T ) × ∂Ω ,

for a given initial density ρ0, and where n∂Ω denotes the outward pointing normal to ∂Ω. In
equation (1.1), E : L1(Ω;R+) → R is a functional of the density and describes the energy of the
system. Different choices for E yield different equations modeling a wide range of phenomena.
Typical examples are the Fokker-Planck equation [22], the porous medium equation [32] or
the Keller-Segel equation [6], but also more complex cases such as multiphase flows [10, 24, 11]
or crowd motion models [36] can be considered.

Since the density satisfies the continuity equation with zero boundary flux, its total mass
is conserved. Moreover, the energy decreases along the evolution:

d

dt
E(ϱ(t, ·)) ≤ 0 .

This behaviour is a consequence of the fact that system (1.1), under suitable assumptions
on the energy, can be interpreted as a gradient flow in the space of probability measures
P(Ω) equipped with the Wasserstein distance W2. This interpretation is well-known since
the pioneering work of Jordan, Kinderlehrer and Otto [22], who showed that one recovers the

Date: October 18, 2023.

1
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Fokker-Planck equation when following the steepest descent curve of an entropy functional
with respect to the Wasserstein metric. Such result is best explained in the time-discrete
setting: given a uniform decomposition 0 = t0 < t1 < . . . < tN = T of the interval [0, T ] with
time step τ := tn+1 − tn, consider the sequence (ρn)n defined for 1 ≤ n ≤ N by

(1.3) ρn = argmin
ρ∈P(Ω)

W 2
2 (ρ, ρn−1)

2τ
+ E(ρ) ,

where the energy is given by

(1.4) E(ρ) =

∫

Ω
V ρ+ ρ log ρ ,

with V : Ω → R being a Lipschitz function, if ρ is absolutely continuous with respect to the
Lebesgue measure and +∞ otherwise. Then, one can show that the discrete curve t 7→ ϱ̃(t),
defined by ϱ̃(t, ·) = ρn−1 for t ∈ (tn−1, tn] and 1 ≤ n ≤ N , converges uniformly in the W2

distance to the unique solution of the Fokker-Planck equation

(1.5) ∂tϱ− div(ϱ∇V ) − ∆ϱ = 0 on (0, T ) × Ω ,

satisfying (1.2).
The numerical scheme defined in equation (1.3) is known as JKO scheme and it allows

one to interpret many different models as Wasserstein gradient flows. It also provides a
convenient framework both for the analysis of such models (e.g., to prove existence of solutions
or exponential convergence towards steady states) [2, 35], and for the design of numerical
discretizations [5, 15, 12, 26, 14]. In fact, reproducing the JKO scheme at the discrete level
generally implies energy stability even in very degenerate settings. Moreover in the case of
convex energies one can use robust convex optimization tools that, e.g., can easily take into
account the positivity constraint on the density or even other type of strong constraints (as
in the case of incompressible immiscible multiphase flows in porous media, see Section 7.3).

Since the JKO scheme is a variational version of the implicit Euler scheme, it is an order one
method. Recently, several higher-order alternatives to the JKO scheme have been proposed,
but it is not trivial to translate them into a fully-discrete setting (see [29, 27], and Section 1.2
below for a detailed description of such approaches). In fact, to the best of our knowledge,
there exists no viable fully-discrete approach able to compute with second order accuracy
general Wasserstein gradient flows while preserving (to some extent) the underlying variational
structure.

In this paper we contribute to this quest by reformulating the classical multi-step scheme
based on the Backward Differentiation Formula of order two (BDF2) as the composition of
two inner steps: a geodesic extrapolation step, and a standard JKO step. We refer to the
resulting scheme as Extrapolated Variational BDF2 (EVBDF2) scheme. As the extrapolation
step is not uniquely defined (since Wasserstein geodesics may not be globally defined in
time), we provide several natural notions of extrapolation and for some of these we provide
convergence guarantees for the resulting scheme. For a particular choice of extrapolation,
which unfortunately is not covered by our theory, we also propose a simple and efficient
(space-time) discretization. Importantly, we find numerically that this does indeed produce
second-order accurate solutions both in space and time.

1.1. Description of the BDF2 approach and main results. In the Euclidean setting,
the gradient flow associated to a smooth real-valued convex function F : Rd → R and a
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(1 − β)τβττ

tn−2 tn−1 tn

ατ

Figure 1. A graphical representation of the time intervals involved in the
definition of the EVBDF2 scheme.

starting point x0 ∈ Rd, is the unique solution to the Cauchy problem

(1.6)

{
x′(t) = −∇F (x(t)) , ∀ t > 0 ,
x(0) = x0 .

The BDF2 scheme applied to such a system, with time step τ > 0, can be written as follows:
given x0, x1 ∈ Rd, for n ≥ 2 find xn ∈ Rd satisfying

(1.7)
3

2τ

(
xn −

4

3
xn−1 +

1

3
xn−2

)
= −∇F (xn) .

This can be interpreted as an implicit Euler step, with starting point

xαn−1 := xn−2 + α(xn−1 − xn−2) = xn−1 + β(xn−1 − xn−2) ,

where α = 4/3 and β = α − 1 = 1/3, and with time step (1 − β)τ = 2τ/3. In turn, xαn−1

coincides with the Euclidean extrapolation at time α, from xn−2 (at time 0) to xn−1 (at time
1), with respect to a fictitious time variable (see Figure 1 for a graphical representation of the
time intervals involved in the scheme).

In order to define a counterpart to the BDF2 scheme (1.7) for Wasserstein gradient flows,
one needs to replace the Euclidean extrapolation at time α > 1 by an analogous operation
in the space of probability measures equipped with the W2 metric. In this paper, we will
represent such an operation by a map Eα : P2(Rd) × P2(Rd) → P2(Rd) (where P2(Rd) is the
set of probability measures on Rd with finite second moments), which we will refer to as an
α-extrapolation operator. Given such a map, we define the EVBDF2 scheme as follows: given
ρ0, ρ1 ∈ P(Ω), for n ≥ 2 find ρn ∈ P(Ω) satisfying

(1.8) ρn ∈ argmin
ρ∈P(Ω)

W 2
2 (ρ, ραn−1)

2(1 − β)τ
+ E(ρ) , ραn−1 = Eα(ρn−2, ρn−1) ,

where here E : P(Ω) → R is defined on the whole space P(Ω).
The extrapolation operator Eα plays a crucial role in the scheme, but it is not trivial to

propose an appropriate definition for it due to the structure of W2 geodesics on P2(Rd). To
clarify this, recall that a (globally length-minimizing) geodesic with respect to the W2 metric
is a curve ω : [t0, t1] → P2(Rd) such that

(1.9) W2(ω(s0), ω(s1)) =
|s1 − s0|
|t1 − t0|

W2(ω(t0), ω(t1)) ,

for all s0, s1 ∈ (t0, t1). Given two measures µ0, µ1 ∈ P2(Rd) there always exists a geodesic
connecting the two. Furthermore, due to Brenier’s theorem, supposing that µ0 is absolutely
continuous with respect to the Lebesgue measure, there exists a unique geodesic ω : [0, 1] →
P2(Rd) such that ω(0) = µ0 and ω(1) = µ1, and this has a very simple expression:

(1.10) ω(t) = ((1 − t)Id + t∇u)#µ0 ,
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where Id is the identity map on Rd and u : Rd → R is a convex function. This means that
particles travel on straight lines along the interpolation, without colliding into each other.
However, for a given α > 1, there may exist no geodesic defined on [0, α] that coincide on [0, 1]
with ω. This is because following their straight trajectories particles may collide immediately
after time t = 1, even if both µ0 and µ1 have smooth and strictly positive densities. This
means that one cannot use such geodesic extensions to define the extrapolation operator Eα
in a unique way. Therefore, instead of focusing on a particular definition, we only require a
uniform stability bound on the extrapolation which we will need to prove the convergence of
the scheme. In particular, we will focus on extrapolation operators that are dissipative in the
following sense:

Definition 1.1 (Dissipative extrapolations). An extrapolation operator Eα is θ-dissipative if
it satisfies

(1.11) W2(µ1,Eα(µ0, µ1)) ≤ θW2(µ0, µ1) ,

for any µ0, µ1 ∈ P2(Rd) and for a constant θ ≥ 0.

Note that by equation (1.9), if the extrapolation is consistent with the geodesic extension
when this exists, then we must have θ ≥ α − 1 =: β. Upon adding a further consistency
assumption on the extrapolation given in equation (1.12) below (see Remark 3.6 for more
comments on the role of our main assumptions), we can establish the following convergence
result:

Theorem 1.2. Let ρ0 ∈ P(Ω) and E given by (1.4). For any given N ≥ 1, let (ρn)Nn=0 be the
discrete solution defined by the scheme (1.8) for given ρ1 ∈ P(Ω) (dependent on N), with time
step τ = T/N , and with Eα being a θ-dissipative extrapolation operator with 0 ≤ β = α−1 < 1
and θ < 1/2, and such that for all µ0, µ1 ∈ P(Ω) and φ ∈ C∞

c (Rd) verifying ∇φ · n∂Ω = 0 on
∂Ω,

(1.12)

∣∣∣∣
∫

Rd

φ (Eα(µ0, µ1) − αµ1 + βµ0)

∣∣∣∣ ≤ CφW
2
2 (µ0, µ1) ,

where Cφ > 0 only depends on α, φ and Ω. Suppose that W 2
2 (ρ0, ρ1) ≤ Cτ , for a constant

C > 0 independent of τ , and that E(ρ1) ≤ E(ρ0). Then, the curve t 7→ ρ̃τ (t) defined by
ρ̃τ (t) := ρn−1 for all t ∈ (tn−1, tn] and 1 ≤ n ≤ N , converges as N → ∞, uniformly in the W2

distance, to a distributional solution to the Fokker-Planck equation on [0, T ] × Ω and initial
conditions given by ρ0.

Of course, in order to achieve second order accuracy, we must set α = 4/3 and require
in addition that, if there exists a geodesic ω : [0, α] → P(Ω) such that ω|[0,1] is a geodesic
from µ0 to µ1, then Eα(µ0, µ1) must coincide with ω(α). Importantly, we will show that there
exist several different ways to define such an operator, providing therefore different convergent
approaches. We highlight that there is no inconsistency between the scheme (1.8), defined
on P(Ω), and an extrapolation operator Eα valued in P2(Rd). In fact, both for theoretical or
numerical reasons, one may be led to define an extrapolation operator on the whole space to
avoid issues with the boundary of Ω. Nevertheless, scheme (1.8) is well-defined and, as long
as the consistency assumption (1.12) is satisfied, the convergence result of Theorem 1.2 holds.

One approach for producing an operator Eα, which enjoys a particularly rich structure,
consists in reproducing the variational characterization of the linear extrapolation in the
metric setting. Given two points x0, x1 ∈ Rd, the Euclidean extrapolation at time α from x0
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to x1 is the point xα = αx1−βx0 with β = α−1. This can be obtained as the unique solution
to

(1.13) xα = argmin
x∈Rd

α|x− x1|2 − β|x− x0|2 .

Similarly, we define the metric extrapolation in the Wasserstein space as follows:

(1.14) Eα(µ0, µ1) := argmin
ρ∈P2(Rd)

αW 2
2 (ρ, µ1) − βW 2

2 (ρ, µ0) .

Problem (1.14) is not a convex optimization problem in the classical sense. To see this,
consider the following simple counterexample. In dimension d = 1, take

µ0 = (δ−1 + δ1)/2, µ1 = δ0, ν0 = δ−1, ν1 = δ1.

Along the interpolation ν(t) = (1 − t)ν0 + tν1, the first term of the functional in (1.14) is
constant whereas the second one is concave. Nonetheless, we will show that problem (1.14)
always admits a unique solution (see Proposition 4.10) and it also satisfies the assumptions
in Theorem 1.2. Furthermore, exploiting the variational formulation of the metric extrapola-
tion (1.14), we can prove a more general convergence result using the Evolution Variational
Inequality (EVI) characterization of gradient flows in metric spaces. More precisely, we prove
the following result:

Theorem 1.3. Let ρ0 ∈ P(Ω) and E : P(Ω) → R being a λ-convex energy in the generalized
geodesic sense, for λ ∈ R+. For any given N ≥ 1, let (ρn)Nn=0 be the discrete solution defined
by the scheme (1.8) for given ρ1 ∈ P(Ω) (dependent on N), with time step τ = T/N , and with
Eα being the metric extrapolation (1.14) with β = α− 1. Suppose that W 2

2 (ρ0, ρ1) ≤ Cτ , for a
constant C > 0 independent of τ , and that E(ρ1) ≤ E(ρ0). Then, the curve t 7→ ρ̃τ (t) defined
by ρ̃τ (t) := ρn−1 for t ∈ (tn−1, tn] and 1 ≤ n ≤ N , converges as N → ∞, uniformly in the W2

distance, to the unique absolutely continuous curve ϱ : [0, T ] → P(Ω) satisfying ϱ(0) = ρ0 and
such that for any ν ∈ P(Ω) it holds

d

dt

1

2
W 2

2 (ϱ(t), ν) ≤ E(ν) − E(ϱ(t)) − λ

2
W 2

2 (ϱ(t), ν), ∀t ∈ (0, T ) .

Remarkably, problem (1.14) admits a convex dual formulation, see Remark 4.14.

1.2. Relation with previous works and numerical implementation issues. Going
back to the discretization of system (1.6), each step of the BDF2 scheme (1.7) can also be
obtained as the optimality conditions of the following problem:

(1.15) xn = argmin
x∈Rd

α
|x− xn−1|2
2(1 − β)τ

− β
|x− xn−2|2
2(1 − β)τ

+ F (x) .

This suggests defining a similar formulation in Wasserstein space as follows

(1.16) ρn ∈ argmin
ρ∈P(Ω)

α
W 2

2 (ρ, ρn−1)

2(1 − β)τ
− β

W 2
2 (ρ, ρn−2)

2(1 − β)τ
+ E(ρ) .

This approach has been proposed by Matthes and Plazotta [29, 33], who proved equivalent
versions of Theorem 1.2 and 1.3. Even if in the Euclidean setting the analogue problems
to (1.16) and (1.8) yield the same solutions, one can check that this is not the case in the
Wasserstein space (see, e.g., the example in Figure 2). However, just as for the metric extrap-
olation problem (1.14), (1.16) is not a convex optimization problem in the classical sense. For
this reason, it is not easy to provide a numerical implementation of (1.16) when d ≥ 2. The
same is true for the EVBDF2 scheme (1.8) when using the metric extrapolation. Nonetheless,
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ρn−2

ρn−1
x

y

ραn−1

Figure 2. An example for which the schemes (1.8) and (1.16) provide differ-
ent results, e.g., for the energy given by the convex indicator function of the
set {µ : µ(Rd \ {x = 0}) = 0}. In the figure ρn−2, ρn−1 and ραn−1 are uniformly
distributed on the segments (t,−t), (t, (1 − β)t/α) and (t, t) for t ∈ [−1, 1],
respectively (in this case the geodesic from ρn−2 to ρn−1 on the time interval
[0, 1] can be extendend up to time α, yielding ραn−1). For the scheme (1.8)
the measure ρn is uniformly distributed on the segment (0, t) for t ∈ [−1, 1],
whereas for the scheme (1.16) the measure ρn can be obtained as the extrapo-
lation of the projections of ρn−2 and ρn−1 on the axis y, and can be shown to
have a strictly smaller support.

the advantage of using the EVBDF2 scheme is that one has some freedom in choosing the
extrapolation operator, which makes it more amenable to computations.

Another second-order variation of the JKO scheme was proposed by Legendre and Turinici
[27], and it is based on the implicit midpoint rule, which applied to system (1.6) leads to the
scheme: for n ≥ 1 find xn ∈ Rd satisfying

1

τ
(xn − xn−1) = −∇F

(xn + xn−1

2

)
,

which can be obtained as the optimality conditions of the problem

(1.17) xn = argmin
x∈Rd

|x− xn−1|2
2τ

+ 2F
(x+ xn−1

2

)
.

Translating such a scheme to the Wasserstein setting yields the Variational Implicit Midpoint
(VIM) scheme proposed in [27]: for n ≥ 1 find ρn ∈ P(Ω) satisfying

(1.18) ρn ∈ argmin
ρ∈P(Ω)

W 2
2 (ρ, ρn−1)

2τ
+ 2E(ρn−1/2) ,

where ρn−1/2 is the midpoint of the (not necessarily unique) geodesic between ρ and ρn−1.
Also in this case, it is not evident how to implement such a scheme, as it requires an explicit
formula for the midpoint given the initial and final measures. This may also lead to convexity
issues. Notice however that in the same spirit of our formulation of the BDF2 scheme, the
implicit midpoint scheme can be formulated in the following alternative way: for n ≥ 1 find
ρn ∈ P(Ω) satisfying

(1.19) ρn = E2(ρn−1, ρn−1/2) , ρn−1/2 ∈ argmin
ρ∈P(Ω)

W 2
2 (ρ, ρn−1)

τ
+ E(ρ) ,

where E2(ρn−1, ρn−1/2) denotes the extrapolation at time α = 2 of a geodesic from ρn−1 (at
time 0) to ρn−1/2 (at time 1). In general, this leads to a different discrete solution than the
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one obtained with (1.18), although the two schemes coincide if there exists a unique geodesic
extension from ρn−1 to ρn−1/2 which stays globally length-minimizing up to time 2 for all n.
Nevertheless, the behavior of scheme (1.19) is radically different from that of the EVBDF2
(1.8), due to the different way JKO steps and extrapolations are performed. Namely, the order
of the operations as well as the length of the steps play a crucial role. We will investigate this
phenomenon numerically by considering a fully-discrete version of the VIM scheme and show
that in general this approach may lead to persistent oscillations in the solution (Section 7.1).

Providing a fully discrete version of problem (1.1), via the EVBDF2 scheme (1.8), comes
with an additional challenge since the chosen space discretization should also be second-order
accurate in space, in order to exploit the increased accuracy of the time discretization. We
propose a discretization in the Eulerian framework of finite volumes. Specifically, we imple-
ment Two Point Flux Approximation (TPFA) finite volumes, which have been extensively
analyzed lately for the discretization of optimal transport and Wasserstein gradient flows
[21, 17, 31, 12, 30]. Following these last two works in particular, we propose a scheme in
which the Wasserstein distance is locally linearized, at each step of the scheme, in order to
decrease the computational complexity of the approach, without dropping the second-order
accuracy in time. In addition, we propose one possible discrete version of the extrapolation
in this setting, which can be implemented in a robust way, and we verify numerically the
second-order accuracy of the resulting approach.

We stress that the space discretization of the EVBDF2 scheme that we propose, even
if maintaining its variational structure, relies on substantial simplifications of the original
problem. As a consequence, our theoretical results do not apply directly, and further work is
required for a fully discrete convergence proof. Given this, the numerical results presented in
Section 7 are only preliminary and they are mainly meant to demonstrate the feasibility of
the approach.

2. Preliminaries and notation

Let P2(Rd) be the space of probability measures with finite second moments. Given µ0, µ1 ∈
P2(Rd), we denote by W2(µ0, µ1) the L2-Wasserstein distance between µ0 and µ1 (see, e.g.,
Chapter 5 in [34]). This can be defined via the following minimization problem:

(2.1) W 2
2 (µ0, µ1) := min

γ∈Π(µ0,µ1)

∫
|x− y|2 dγ(x, y) ,

where Π(µ0, µ1) is the set of probability measures on Rd×Rd with marginals µ0 and µ1. This
problem always admits a solution γ∗, although it is not necessarily unique, which we refer to
as an optimal transport plan from µ0 to µ1. By linearity of the constraint and of the function
minimized in (2.1), one can easily check that the function W 2

2 is jointly convex with respect
to its arguments (with respect to the linear structure of P2(Rd)). We will refer to the space
of probability measures P2(Rd) equipped with the metric W2 as the Wasserstein space.

Problem (2.1) admits an alternative dynamical formulation, which was introduced by Be-
namou and Brenier in [4], and which reads as follows:

(2.2) W 2
2 (µ0, µ1) = (t1 − t0) min

(ω,v)∈C

∫ t1

t0

dt

∫
ω(t)|v(t, ·)|2

where C is the set of curves (ω, v) with finite total kinetic energy, with ω : [t0, t1] → P2(Rd)
and v : [t0, t1] → L2(ω(t);Rd), satisfying weakly the continuity equation

(2.3) ∂tω + div(ωv) = 0
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with zero flux boundary conditions (i.e. ω v ·n∂Ω = 0), and initial and final conditions ω(t0) =
µ0, ω(t1) = µ1. The minimum in (2.2) is always achieved although there might be multiple
minimizers. In particular, one can use formula (2.2) to deduce that the Wasserstein space is
a geodesic space and the minimizers ω are geodesics.

By the optimality conditions of problem (2.2), a curve ω is a geodesic if and only if there
exists a potential ϕ : [t0, t1] × Rd → R that verifies:

(1) ϕ(t0, ·) is a continuous (−(t1 − t0)−1)-convex function, i.e. such that the so-called
Brenier potential

(2.4) x 7→ u(x) := (t1 − t0)ϕ(t0, x) +
|x|2
2

is convex ;

(2) the potential ϕ is the unique viscosity solution of the Hamilton-Jacobi equation

(2.5) ∂tϕ+
|∇ϕ|2

2
= 0 ,

or equivalently, it verifies the Hopf-Lax representation formula,

(2.6) ϕ(t, x) = inf
y∈Rd

|x− y|2
2(t− t0)

+ ϕ(t0, y) ;

(3) ∇ϕ(t, ·) ∈ L2(ω(t);Rd) for a.e. t ∈ [t0, t1] and (ω,∇ϕ) ∈ C.

We say that a function ϕ verifying these condition is an optimal potential from µ0 to µ1 on
the time interval [t0, t1]. Furthermore, for any optimal potential ϕ, it holds:

(2.7)
W 2

2 (µ0, µ1)

2(t1 − t0)
=

∫
ϕ(t1, ·)µ1 −

∫
ϕ(t0, ·)µ0 .

Because of the semi-convexity of ϕ(t0, ·), the maps X(t, ·), defined a.e. by

(2.8) X(t, ·) := Id + (t− t0)∇ϕ(t0, ·)
are injective for all t ∈ [t0, t1) (as the gradient of a strongly convex function), and the resulting
curve of maps X : [t0, t1]×Rd → Rd is the Lagrangian flow of the time-dependent vector field
∇ϕ(t, ·), i.e., for a.e. x ∈ Rd, X(·, x) solves the flow equation

d

dt
X(t, x) = ∇ϕ(t,X(t, x)), X(t0, x) = x .

If µ0 is absolutely continuous, given an optimal potential ϕ and the associated Lagrangian
flow X defined by (2.8), one can easily verify that the curve

(2.9) ω(t) = X(t, ·)#µ0

solves the continuity equation with velocity ∇ϕ and boundary conditions ω(0) = µ0 and
ω(1) = µ1 (in distributional sense), and therefore it is a geodesic. Moreover, using the
absolute continuity of µ0, one can also show that the initial potential ϕ(t0, ·) is uniquely
defined µ0-a.e., and no other geodesic curve exists connecting µ0 and µ1. Note also that from
(2.9), one can recover Brenier’s result (1.10) with the Brenier potential u as in (2.4), and also
verify the equivalence with formulation (2.1). As a matter of fact, in this case the optimal
transport plan is also unique and is given by γ∗ = (Id,∇u)#µ0, where the map ∇u is the
so-called optimal transport map from µ0 to µ1. On the other hand, for any convex function
u, setting ϕ(0, ·) via (2.4), the curve ω defined in (2.9) is a geodesic between µ0 and (∇u)#µ0

(and the unique one, if µ0 is absolutely continuous).
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3. Analysis of the EVBDF2 scheme

In this section we collect the main properties of the EVBDF2 discretization (1.8), and
in particular we prove Theorem 1.2, which establishes the convergence of the discrete flow
generated by the scheme to the linear Fokker-Planck equation. Throughout the section, (ρn)n
denotes a sequence of measures generated by the EVBDF2 scheme (1.8), where Eα is a θ-
dissipative extrapolation, with θ < 1/2.

3.1. Well-posedness and classical estimate. We start by stating some a priori bounds,
which are valid for a general class of energies. In particular, in this paragraph, we only assume
that E is lower semi-continuous with respect to the weak-* topology. Since P(Ω) is compact
for this topology (we recall that we assume Ω compact) this also implies that E is bounded
from below. Problem (1.8) therefore admits a minimizer at each step n.

Lemma 3.1. At each step n, the solution ρn satisfies the following inequality

(3.1) (1 − θ)
W 2

2 (ρn, ρn−1)

2(1 − β)τ
+ E(ρn) ≤ θ

W 2
2 (ρn−1, ρn−2)

2(1 − β)τ
+ E(ρn−1) .

Proof. Due to the optimality of ρn and using (1.11), we can write

W 2
2 (ρn, ρ

α
n−1)

2(1 − β)τ
+ E(ρn) ≤ W 2

2 (ρn−1, ρ
α
n−1)

2(1 − β)τ
+ E(ρn−1)

≤ θ2

2(1 − β)τ
W 2

2 (ρn−1, ρn−2) + E(ρn−1) .

If θ = 0 this coincides with (3.1). If θ > 0, observe that by the triangular and Young’s
inequalities, for any c > 0,

W 2
2 (ρn, ρn−1) ≤

(
1 +

1

c

)
W 2

2 (ρn, ρ
α
n−1) + (1 + c)W 2

2 (ρn−1, ρ
α
n−1) .

Setting c = θ−1−1 in this last inequality and using again (1.11), we can estimate the left-hand
side from below using

W 2
2 (ρn, ρ

α
n−1)

2(1 − β)τ
≥ 1

2(1 − β)τ

(
c

c+ 1
W 2

2 (ρn, ρn−1) − cW 2
2 (ρn−1, ρ

α
n−1)

)

≥ 1 − θ

2(1 − β)τ
W 2

2 (ρn, ρn−1) − (1 − θ)θ

2(1 − β)τ
W 2

2 (ρn−1, ρn−2) .

Rearranging, we obtain (3.1). □
Note that if we take β = 0, i.e. we remove the extrapolation step, we can take θ = 0 in

(3.1) and recover the standard dissipation estimate for the JKO scheme.

Lemma 3.2. Let C1 > 0 be a constant such that W 2
2 (ρ1, ρ0) ≤ C1τ and E(ρ1) ≤ E(ρ0). Then,

it holds:

(3.2)
1

τ

Nτ∑

n=0

W 2
2 (ρn, ρn−1) ≤ C

for a constant C > 0 depending only on C1, β, θ, E and ρ0.

Proof. Summing over n the inequality (3.1) we obtain

(3.3)
1 − 2θ

2(1 − β)τ

N∑

n=0

W 2
2 (ρn, ρn−1) ≤ E(ρ1) − E(ρn) +

θ

(1 − β)τ
W 2

2 (ρ1, ρ0) ,
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Then, since θ < 1/2 and thanks to the lower bound on the energy and the assumption
E(ρ1) ≤ E(ρ0), we have

1

τ

N∑

n=0

W 2
2 (ρn, ρn−1) ≤ 2(1 − β)

1 − 2θ

(
E(ρ0) − inf E

)
+

2θ

1 − 2θ
C1 .

□

Remark 3.3. For a given ρ0, one can always choose ρ1 so that the constant C1 above is
independent of τ and E(ρ1) ≤ E(ρ0), which are also the assumptions in the statements of
Theorems 1.2 and 1.3. For example, it is sufficient to take ρ1 as the solution obtained after
a finite number N0 ∈ N of JKO steps with time step τ/N0 and initial condition given by ρ0,
with E(ρ0) <∞. In fact, in this case, by the same proof as for Lemma 3.2 (with β = θ = 0),
one can take C1 = 2(E(ρ0) − inf E).

3.2. Convergence towards the Fokker-Planck equation. Given a Lipschitz continuous
exterior potential V ∈W 1,∞(Ω), the Fokker-Planck equation is given by

(3.4) ∂tϱ = ∆ϱ+ div(ϱ∇V ) in (0, T ) × Ω ,

complemented with no-flux boundary conditions (∇ϱ+ ϱ∇V ) · n∂Ω = 0 on ∂Ω and an initial
condition ϱ(0, ·) = ρ0 ∈ P(Ω). Equation (3.4) can be interpreted as a Wasserstein gradient
flow with respect to the energy functional E : P(Ω) → R given by

(3.5) E(ρ) = U(ρ) +

∫

Ω
ρV ,

where the internal energy U : P(Ω) → R (the entropy) is defined by

(3.6) U(ρ) :=





∫

Ω
log

(
dρ

dx

)
dρ if ρ≪ dx Ω ,

+∞ otherwise ,

where dx Ω denotes the restriction of the Lebesgue measure to the domain Ω. Since the
function x 7→ x log x is strictly convex and superlinear, the energy E is also strictly convex
on its domain (with respect to the linear structure of P(Ω)) and lower semi-continuous (with
respect to the weak-* topology: see, e.g., Proposition 7.7 in [34]). Since W 2

2 is continuous and
convex in its arguments, there exists a unique solution ρn to problem (1.8) at each step n, and
this is furthermore absolutely continuous with respect to dx Ω. Moreover, both Lemmas 3.1
and 3.2 apply.

As in the previous paragraph, we assume that Eα is a θ-dissipative extrapolation with
θ < 1/2, and (ρn)n denotes a sequence of measures generated by the associated EVBDF2
scheme (1.8). Although the discrete flow does not move by strictly minimizing the energy at
each step (see Lemma 3.1), we will show that it converges to the maximal slope curve of E .
For this, we will rely on the same arguments as in the original work of Jordan, Kinderlehrer,
and Otto [22] for the JKO scheme.
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Relying on the estimate (3.2), the compactness arguments for obtaining a limit curve are
rather standard. We introduce two density curves on the interval [0, T ], given by

(3.7)

ϱτ (t) =

N∑

n=1

ρn−11(tn−1,tn] , ρτ (0) = ρ0 ,

ϱ̃τ (t) =

N∑

n=1

ϱ̃n(t)1(tn−1,tn] , ρ̃τ (0) = ρ0 ,

with t 7→ ϱ̃n(t) being the geodesic curve between ρn−1 and ρn on the time interval [tn−1, tn]
(i.e. the minimizer of problem (2.2) on this interval). Let ṽn be the associated optimal vector
field as in problem (2.2) for all 1 ≤ n ≤ N . By definition of ϱ̃τ , we have that

∂tϱ̃τ + div(ϱ̃τ ṽτ ) = 0

in the distributional sense on (0, T )×Ω, where ṽτ is the vector field defined by ṽτ |(tn−1,tn] = ṽn
for all 1 ≤ n ≤ N . Moreover, on each interval [tn−1, tn] it holds:

W 2
2 (ρn, ρn−1) = τ

∫ tn

tn−1

∫

Ω
ϱ̃τ |ṽτ |2 .

The curve ϱτ is a piecewise constant measure-valued curve whereas ϱ̃τ is a (absolutely) con-
tinuous one, interpolating the discrete densities.

Proposition 3.4. For a given ρ0 and any given N ≥ 1, let ρτ be the curve defined as in
equation (3.7), with ρ1 being such that W 2

2 (ρ0, ρ1) ≤ Cτ , for a constant C > 0 independent
of τ , and E(ρ1) ≤ E(ρ0). Then, the sequence (ϱτ )τ converges uniformly in the W2 distance to
an absolutely continuous curve ϱ : [0, T ] → P(Ω).

Proof. The sequence of curves (ϱ̃τ )τ∈R+ , defined from [0, T ] to the (compact) space P(Ω)
equipped with the Wasserstein distance, is uniformly Hölder continuous. Indeed, for any
r, s ∈ (0, T ], s > r, denote Nr, Ns the two integers such that r ∈ (tNr , tNr+1], s ∈ (tNs , tNs+1].
By the dynamical formulation of the Wasserstein distance (2.2), it holds

(3.8)

W2(ϱ̃τ (s), ϱ̃τ (r)) ≤ |s− r| 12
(∫ s

r

∫

Ω
ϱ̃τ |ṽτ |2

) 1
2

≤ |s− r| 12
(

Ns∑

n=Nr

∫ tn+1

tn

∫

Ω
ϱ̃τ |ṽτ |2

) 1
2

= |s− r| 12
(

Ns∑

n=Nr

1

τ
W 2

2 (ρn, ρn+1)

) 1
2

≤ C|s− r| 12

where in the last inequality we used the estimate (3.2). By the generalized Ascoli-Arzelà
theorem, the sequence converges uniformly in W2, up to a subsequence, to a limit curve ϱ. As
the inequality (3.8) passes to the limit, ϱ is also an absolutely continuous curve with respect
to the Wasserstein metric. Finally, for any r ∈ [0, T ],

W2(ϱτ (r), ϱ̃τ (r)) = W2(ϱ̃τ (tNr), ϱ̃τ (r)) ≤ √
τ

(∫ tNr+1

tNr

∫

Ω
ϱ̃τ |ṽτ |2

)1/2

≤ C
√
τ ,

by the same computations. Therefore, the piecewise continuous curve ϱτ converges uniformly
with order

√
τ to the same limit curve ϱ.

□
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To characterize the limit curve ϱ we will rely on the optimality conditions of the mini-
mization problem in (1.8), which is equivalent to a single JKO step. Consider an absolutely
continuous measure ρ and a smooth vector field ξ tangent to the boundary of Ω. We define
ω as the absolutely continuous curve solution to

(3.9) ∂sω + div(ωξ) = 0 , in (−δ, δ) × Ω , ω(0) = ρ ,

for δ > 0. The variations of the energy and the Wasserstein distance along curves defined in
this way can be computed explicitly as follows.

Lemma 3.5. Consider two measures ρ ∈ P(Ω), ν ∈ P2(Rd), with ρ absolutely continuous,
and denote by γ the optimal transport plan from ρ to ν. For any ξ ∈ C∞

c (Rd;Rd) with
ξ · n∂Ω = 0 on ∂Ω, let ω be the curve of measures defined by (3.9) with ω(0) = ρ. It holds:

(3.10)
dW 2

2 (ω(s), ν)

ds

∣∣∣
s=0

= 2

∫

Rd×Rd

(x− y) · ξ(x) dγ(x, y) ,

(3.11)
dE(ω(s))

ds

∣∣∣
s=0

= −
∫

Ω
div(ξ(x))dρ(x) +

∫

Ω
∇V (x) · ξ(x)dρ(x) .

Proof. See [2, Corollary 10.2.7] and [38, Theorem 5.30]. □

We are now ready to prove Theorem 1.2 which states the convergence of the sequence of
curves (ϱτ )τ towards a distributional solution of equation (3.4). Specifically, we need to prove
that, for all φ ∈ C∞

c ([0, T ) × Rd) such that ∇φ · n∂Ω = 0 on ∂Ω, the limit curve ϱ satisfies:

(3.12) −
∫ T

0

∫

Ω
∂tφϱ−

∫

Ω
φ(0)ϱ(0) −

∫ T

0

∫

Ω
∆φϱ+

∫ T

0

∫

Ω
∇V · ∇φϱ = 0 .

Proof of Theorem 1.2. Let us define for all ρ ∈ P(Ω),

(3.13) G(ρn−1, ρn−2; ρ) :=
W 2

2 (ρ, ραn−1)

2(1 − β)τ
+ E(ρ) ,

which is minimized by ρn, by the definition of the scheme (1.8). Consider a smooth function
φ ∈ C∞

c ([0, T )×Rd) such that ∇φ ·n∂Ω = 0 on ∂Ω. We define the sequence (φn)n ⊂ C∞
c (Rd)

as φn = φ(tn, ·). Consider then a curve ω defined as in (3.9) with ω(0) = ρn and ξ = ∇φn−2.
Denoting by γn the optimal transport plan from ρn to ραn−1, and using (3.10)-(3.11) as well
as the optimality of ρn, we obtain

(3.14)

dG(ρn−1, ρn−2;ω(s))

ds

∣∣∣
s=0

=
1

(1 − β)τ

∫

Rd×Rd

(x− xα) · ∇φn−2(x)dγn(x, xα)

−
∫

Ω
∆φn−2(x)dρn(x) +

∫

Ω
∇V (x) · ∇φn−2(x)dρn(x) = 0 .

Thanks to Proposition 3.4 and the regularity of φ, we immediately have
∣∣∣∣∣
N∑

n=2

τ

(
−
∫

Ω
∆φn−2ρn +

∫

Ω
∇V · ∇φn−2ρn

)
−
(
−
∫ T

0

∫

Ω
∆φϱ+

∫ T

0

∫

Ω
∇V · ∇φϱ

)∣∣∣∣∣ −→ 0 ,

for τ → 0. In order to prove that the measure ϱ is a distributional solution of equation (3.4)
we need to show that

I1 :=

∣∣∣∣∣
N∑

n=2

1

1 − β

∫

Rd×Rd

(x−xα)·∇φn−2(x)dγn(x, xα)−
(
−
∫ T

0

∫

Ω
∂tφϱ−

∫

Ω
φ(0)ϱ(0)

) ∣∣∣∣∣ −→ 0 ,
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as well. We can bound the latter quantity as I1 ≤ I2 + I3, where I2 =
∑N

n=2 I
n
2 with

In2 :=

∣∣∣∣∣
1

1 − β

∫

Rd×Rd

(x− xα) · ∇φn−2(x)dγn(x, xα) − 1

1 − β

∫

Rd

(ρn − αρn−1 + βρn−2)φn−2

∣∣∣∣∣ ,

and

I3 :=

∣∣∣∣∣
N∑

n=2

1

1 − β

∫

Rd

(ρn − αρn−1 + βρn−2)φn−2 −
(
−
∫ T

0

∫

Ω
∂tφϱ−

∫

Ω
φ(0)ϱ(0)

)∣∣∣∣∣ .

Integrating by parts the discrete derivative in this last term,

N∑

n=2

1

1 − β

∫

Rd

(ρn − αρn−1 + βρn−2)φn−2 =

=

N∑

n=2

1

1 − β

∫

Rd

(φn−2 − (αφn−1 − βφn))ρn +
1

1 − β

∫

Rd

βφ0ρ0 + (βφ1 − αφ0)ρ1 .

Then, since α = 1 + β, and thanks to the smoothness of the function φ and Proposition 3.4,
we obtain I3 ≤ Cτ for some constant C independent of τ .

Let us focus then on the term I2. Adding and subtracting (1−β)−1
∫
Rd(ρn− ραn−1)φn−2 at

each step n, we obtain

In2 ≤ 1

1 − β

∣∣∣∣
∫

Rd×Rd

(x− xα) · ∇φn−2(x)dγn(x, xα) −
∫

Rd

(ρn − ραn−1)φn−2

∣∣∣∣

+
1

1 − β

∣∣∣∣
∫

Rd

(αρn−1 − βρn−2 − ραn−1)φn−2

∣∣∣∣ =:
1

1 − β
(In4 + In5 ) .

(3.15)

Rewriting ∫

Rd

(ρn − ραn−1)φn−2 =

∫

Rd×Rd

(φn−2(x) − φn−2(xα))dγn(x, xα) ,

we can bound In4 as

In4 =

∣∣∣∣
∫

Rd×Rd

φn−2(x) − φn−2(xα) − (x− xα) · ∇φn−2(x)dγn(x, xα)

∣∣∣∣

≤ 1

2
||Hess(φn−2)||∞

(∫

Rd×Rd

|x− xα|2dγn(x, xα)

)

=
1

2
||Hess(φn−2)||∞W 2

2 (ρn, ρ
α
n−1)

≤ ||Hess(φn−2)||∞
(
W 2

2 (ρn, ρn−1) +W 2
2 (ρn−1, ρ

α
n−1)

)

≤ ||Hess(φn−2)||∞
(
W 2

2 (ρn, ρn−1) + θ2W 2
2 (ρn−1, ρn−2)

)
,

where we used the dissipation estimate (1.11). Similarly by the consistency assumption (1.12)
on the extrapolation, there exists a constant Cφ only depending on φ and Ω such that

In5 ≤ CφW
2
2 (ρn−1, ρn−2) .

Using the bound (3.2), the estimates above imply that there exists a constant C > 0 such that
I2 ≤ Cτ . The whole term I1 is therefore converging to zero and ϱ satisfies equation (3.12).

□
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Remark 3.6. The θ-dissipativity and consistency assumptions play different roles in our proof
of convergence. One the one hand, θ-dissipativity is essentially used to get a stable scheme
(Lemma 3.1) and obtain compactness (Lemma 3.2). On the other hand, the consistency
assumption is necessary to obtain a consistent discretization of the time derivative (appearing
in In5 in (3.15)) and recover the correct PDE in the limit.

4. Extrapolation in Wasserstein space

In this section we consider the issue of defining geodesic extrapolations in the Wasserstein
space. In particular, we propose several notions of extrapolation operators Eα, which in some
cases verify the assumptions of Theorem 1.2, and discuss their relationship. We consider the
extrapolation problem on the whole space P2(Rd). This allows us to be more general and to
simplify the exposition, in particular avoiding issues with the boundary. On the other hand,
some of the proposed definitions may be adapted so that the extrapolation of two measures
in P(Ω) stays in P(Ω) (see Remark 4.7). We stress that this last property is not required in
our definition of the EVBDF2 scheme (1.8), but it can be useful to produce a fully-discrete
scheme (see Section 6.3) or an intrinsic formulation. See Section 4.4 for more considerations
on this issue.

As recalled in the introduction, a globally-minimizing geodesic with respect to the W2

metric is a curve ω : [t0, t1] → P2(Rd) such that

(4.1) W2(ω(s0), ω(s1)) =
|s1 − s0|
|t1 − t0|

W2(ω(t0), ω(t1)) ,

for all s0, s1 ∈ (t0, t1). We say that ω : [t0, t1] → P2(Rd) is a locally-minimizing geodesic if for
all t ∈ (t0, t1) there exists an open interval J ∋ t such that (4.1) holds for all s0, s1 ∈ J∩(t0, t1).
From the discussion in Section 2, given two measures µ0, µ1 ∈ P2(Rd), if µ0 is absolutely
continuous there exists a unique globally length-minimizing geodesic connecting the two,
which is given by

(4.2) ω(t) = ((1 − t)Id + t∇u)#µ0

for t ∈ [0, 1], where u is a uniquely defined convex function µ0-a.e. (up to an additive constant).
As a matter of fact, we have for all s0, s1 ∈ (0, 1),

(4.3)
W 2

2 (ω(s0), ω(s1)) ≤
∫

Rd

|(1 − s0)x+ s0∇u(x) − (1 − s1)x− s1∇u(x)|2dµ0(x)

= |s1 − s0|2W 2
2 (µ0, µ1),

where for the first inequality we used as competitor the plan ((1− s0)Id + s0∇u, (1− s1)Id +
s1∇u)#µ0, and for the second equality the optimality of the plan (Id,∇u)#µ0 for the transport
problem from µ0 to µ1. On the other hand, for s1 > s0, by the triangular inequality and (4.3)

W2(µ0, µ1) ≤W2(µ0, ω(s0)) +W2(ω(s0), ω(s1)) +W2(ω(s1), µ1)

≤ (s0 + 1 − s1)W2(µ0, µ1) +W2(ω(s0), ω(s1)) ,

and therefore the inequality in (4.3) is an equality. Moreover, by similar calculations one can
verify that for any α ≥ 1 the curve t ∈ [0, α] 7→ ω(t), still defined as in (4.2), is a globally
length-minimizing geodesic if and only if u is β/α-convex, i.e. the function

(4.4) x 7→ αu(x) − β
|x|2
2

is convex,
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with β = α − 1. However, in general, there is no guarantee that u is strongly-convex even if
µ0 and µ1 have smooth and strictly positive densities and for arbitrarily small β, as shown
by the following example.

Example 4.1 (Contraction flow). Take u = β
2α | · |2, for α > 1 and β = α − 1. Then, for

any absolutely continuous µ0 ∈ P2(R2) and µ1 = (∇u)#µ0, there exists a unique globally
length-minimizing geodesic on (−∞, α] such that ω(0) = µ0 and ω(1) = µ1, which is given
by (4.2). On the other hand, since all trajectories cross at time α (i.e. (1− α)Id + α∇u = 0),
there exists no geodesic on (−∞, α′] (either local or global) with α′ > α satisfying the same
property.

In general, globally length-minimizing geodesic extensions may not exist even if particle
trajectories do not cross. In this case, however, locally length-minimizing extensions may still
exist as shown in the next example.

Example 4.2 (Shear flow). For d = 2, let

µ0 =
1

2
(δz + δ−z) , µ1 =

1

2
(δz−v + δ−z+v)

where z = (1, 1) and v = (1, 0). In this case, there exists a unique geodesic ω : R → P2(R2)
which is locally length-minimizing, and such that ω(0) = µ0 and ω(1) = µ1, which is given by

(4.5) ω(t) =
1

2
(δz−tv + δ−z+tv).

However, ω is globally length-minimizing only when restricted on (−∞, 2].

In order to define our scheme, we need an extrapolation operator which is well-defined even
when the geodesic extension (either globally or locally length-minimizing) does not exist. In
the following we will introduce different possible definitions and describe their properties.

4.1. Free-flow extrapolations. One possible strategy for defining an extrapolation consists
in disregarding the convexity condition on the Brenier potential in (4.4), and allowing particles
to cross each other while keeping their straight trajectories at constant speed. If µ0 ∈ P2(Rd)
is absolutely continuous, this amounts to defining, for any µ1 ∈ P2(Rd) and α > 1,

(4.6) Eα(µ0, µ1) = ((1 − α)Id + α∇u)#µ0 ,

where u is a Brenier potential from µ0 to µ1 (uniquely defined µ0-a.e.). If µ0 is not absolutely
continuous, there may exist multiple geodesics and optimal transport plans from µ0 to µ1. In
general, we say that an extrapolation operator Eα yields a free-flow extrapolation if, denoting
by Γ(µ0, µ1) the set of optimal plans from µ0 to µ1, one has:

(4.7) ∀µ0, µ1 ∈ P2(Rd) , ∃ γ∗ ∈ Γ(µ0, µ1) : Eα(µ0, µ1) = (πα)#γ
∗,

where πα : Rd×Rd → Rd is the map defined by πα(x, y) = x+α(y−x). By construction, when
the geodesic induced by γ∗ in (4.7) admits a locally (or globally) length-minimizing geodesic
extension, the resulting free-flow extrapolation is always consistent with it (for example, free-
flow extrapolations yield the curve (4.5) in the case of Example 4.2). Furthermore, such
extrapolation operators are admissible for our scheme in the sense of Theorem 1.2, as shown
by the following proposition.

Proposition 4.3. Any free-flow extrapolation operator Eα : P2(Rd) × P2(Rd) → P2(Rd),
i.e. any map satisfying (4.7), is β-dissipative with β = α − 1, and in addition it verifies the
consistency assumption (1.12) for all φ ∈ C∞

c (Rd).
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Proof. For simplicity, we only consider the case where µ0 is absolutely continuous. Let ∇u
the optimal transport map from µ0 to µ1. To prove the dissipativity, let γ̄ = (∇u, (1−α)Id +
α∇u)#µ0. Then γ̄ ∈ Π(µ1,Eα(µ0, µ1)) and by equation (2.1),

W 2
2 (µ1,Eα(µ0, µ1)) ≤

∫
|x− y|2dγ̄(x, y) = (1 − α)2

∫
|Id −∇u|2µ1 = β2W 2

2 (µ0, µ1) .

For the consistency, let φ ∈ C∞
c (Rd) and observe that, by the definition of pushforward,

∫
φ (Eα(µ0, µ1) − αµ1 + βµ0) =

∫ [
φ
(
(1 − α)x+ α∇u(x)

)
− αφ

(
∇u(x)

)
+ βφ(x)

]
dµ0(x) .

Using the Taylor expansion of φ around the point x in the integral on the right-hand side, we
find ∣∣∣∣

∫
φ (Eα(µ0, µ1) − αµ1 + βµ0)

∣∣∣∣ ≤
αβ

2
∥Hess(φ)∥∞W 2

2 (µ0, µ1) .

In the general case where µ0 is not absolutely continuous, the proof is analogous replacing
transport maps by optimal plans. □

4.2. Extrapolation with collisions. Free-flow extrapolations are the simplest way to ex-
tend geodesics after their maximal time of existence, but they are purely Lagrangian and they
cannot be easily implemented in an Eulerian setting. Here we describe an alternative route
to construct an extrapolation operator which prevents particles to cross, and which is based
on viscosity solutions of the Hamilton-Jacobi equation. The resulting operator can be imple-
mented in a robust way, but unfortunately it falls outside the hypotheses of the convergence
results presented in this work. In Section 6, we will describe a possible implementation (in the
case of a compact domain Ω) and verify numerically that it leads to a second-order scheme.

Given µ0, µ1 ∈ P2(Rd), let us suppose that the optimal potential ϕ for the transport from
µ0 to a given measure µ1 on the time interval [0, 1], is such that

(4.8) ϕ(0, ·) is globally Lipschitz.

Then, the curve ω : [0,∞) → P2(Rd) satisfying

(4.9) ω(t) =

[
∇co

(
(1 − t)

| · |2
2

+ tu

)]

#

µ0 ,

where u = | · |2/2 + ϕ(0, ·) is a Brenier potential from µ0 to µ1, and where co denotes the
convex hull, is well-defined. We remark that (4.9) coincides at time t = α with the free-flow
extrapolation (4.6) as long as the convexity condition (4.4) holds. On the other hand, if such
condition is not verified, taking the convex envelope in (4.9) guarantees that the flow stays
monotone and particles cannot cross.

If (4.8) holds, one also has that the Hamilton-Jacobi equation (2.5) with initial condition
ϕ(0, ·) has a unique viscosity solution, which is given by the Hopf-Lax formula

(4.10) ϕ(t, ·) = Ht(ϕ(0, ·)), Ht(ϕ(0, ·))(x) := inf
y∈Rd

|x− y|2
2t

+ ϕ(0, y) .

Note that the evolution of the density transported by the velocity field ∇ϕ(t, ·) (via the
continuity equation) is also well-defined since so is its Lagragian flow [23, 7]. In the following
lemma we show that equations (4.10) and (4.9) are closely related.

Lemma 4.4. Let ϕ : [0,∞)×Rd → R be the unique viscosity solution to the Hamilton-Jacobi
equation, or equivalently verifying (4.10) for t > 0, with ϕ(0, ·) being a Lipschitz function,
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and denote u := ϕ(0, ·) + |·|2
2 . Let µ0 ∈ P2(Rd) be an absolutely continuous measure and

ω : [0,∞) → P2(Rd) be the curve defined by (4.9) for all t ≥ 0. Then,

(1) for all t ≥ 0, ω(t) solves

(4.11) min
µ∈P2(Rd)

W 2
2 (µ0, µ)

2t
−
∫
ϕ(t, ·)µ ;

(2) if d = 1, ω is a weak solution to the continuity equation with velocity ∇ϕ(t, ·).
Proof. Concerning the first point, by the optimality conditions of problem (4.11) [34, Example
7.21] one can verify that:

W 2
2 (µ0, µ)

2t
=

∫
ϕ(t, ·)µ−

∫
Ht(−ϕ(t, ·))µ0 .

Therefore, the optimal transport map from µ0 to the optimal measure µ is the gradient of
|·|2
2 − tHt(−ϕ(t, ·)) = |·|2

2 − tHt(−Ht(ϕ(0, ·))). Noting that for any function ψ it holds

(4.12)

|y|2
2

− tHt(ψ)(y) =
|y|2
2

− inf
x

|x− y|2
2

+ tψ(x)

= sup
x
y · x−

( |x|2
2

+ tψ(x)

)
=

( | · |2
2

+ tψ(·)
)∗

(y), ∀y ,

we conclude by applying twice (4.12).
For the second part, we refer to Proposition 4.1 in [3], where an explicit expression for the

measure transported by the flow is provided. □

Remark 4.5. For d > 1, the curve (4.9) does not coincide in general with the solution of
the continuity equation with velocity ∇ϕ(t, ·). This is because (4.9) completely disregards the
dynamics of mass within the shocks, which may be non-trivial [3, 7].

There are two main problems with using (4.9) to define an extrapolation operator, i.e.
setting Eα(µ0, µ1) = ω(α). First, the initial potential ϕ(0, ·) is uniquely defined only µ0-a.e.,
however the value of the potential outside the support of µ0 does affect the final measure ω(α)
for α > 1. Second, because of the same reason one can easily construct solutions that are not
dissipative in the sense of Definition 1.1: for example, one can take µ0 = µ1 with compact
support and select an initial potential outside the support in such a way that ω(α) (defined
as in the previous lemma) is different from µ1.

Remark 4.6 (Extrapolation via pressureless fluids). With the same notation as above, one
could construct geodesic continuations also by looking for solutions ω : [0,∞) → P2(Rd),
v : [0,∞) → L2(ω(t);Rd), of the following system of PDEs:

(4.13)

{
∂tω + div(ωv) = 0 ,
∂t(ωv) + div (ωv ⊗ v) = 0 ,

with initial conditions given by

ω(0) = µ0 , v(0, ·) = ∇ϕ(0, ·) .
System (4.13) describes the evolution of a pressureless fluid with given initial density and
velocity. In fact, any sufficiently regular solution (ω, v) of problem (2.2) on the time interval
[0, 1] also solves (4.13), since the absence of shocks implies that the Hamilton-Jacobi equation
is equivalent to the conservation of momentum, i.e. the second equation in (4.13). Moreover,
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dissipative solutions to such system, i.e. for which the kinetic energy K : [0,∞) → R+ given
by

K(t) :=

∫
ω(t)|v(t)|2

is nonincreasing, provide a dissipative notion of extrapolation, since by equation (2.2), for any
α = 1 + β > 1

W 2
2 (µ1, ω(α)) ≤ β

∫ α

1
dt

∫
ω(t)|u(t)|2 ≤ β2

∫ 1

0
dt

∫
ω(t)|u(t)|2 = β2W 2

2 (µ0, µ1) .

Such solutions can be constructed by requiring a sticky collision condition, which enforces
particles to share the same position after their collision. In dimension higher than one, few
results exist on the well-posedness of system (4.13), so we will not consider this case in detail.
On the other hand, in dimension one, sticky solutions to system (4.13) have been widely
studied in the literature. In particular, Brenier and Grenier [8] showed that one can construct
solutions to (4.13) using the unique entropy solution of a scalar conservation law, and in
particular a solution to (4.13) is given by the curve

ω(t) = X̃(t, ·)#µ0,

with

(4.14) X̃(t, x) := (∂xcoψ(t, ·)) ◦ F0(x) , ψ(t, s) :=

∫ s

0
X(t, F

[−1]
0 (s′)) ds′ ,

where X is defined as in (2.9), and F
[−1]
0 : [0, 1] → R is the quantile function of µ0, i.e. the

pseudo-inverse of its cumulative distribution function F0 : x →
∫ x
−∞ dµ0(x). Note that as

long as the geodesic can be extended ψ(t, ·) stays convex (as it is the integral of a monotone

function) and therefore the definitions for X(t, ·) and X̃(t, ·), respectively in (2.9) and (4.14),
coincide. We will show that in this case the resulting notion of extrapolation coincides with
that provided by the metric extrapolation, which is discussed in detail in the next section.

4.3. Metric extrapolation. In analogy with the Euclidean case (see equation (1.13)), one
can adopt a variational definition for the extrapolation, which we refer to as metric extrapo-
lation, and which is defined for all α > 1 and for all µ0, µ1 ∈ P2(Rd) by

(4.15) Eα(µ0, µ1) := argmin
ρ∈P2(Rd)

F(µ0, µ1; ρ) , F(µ0, µ1; ρ) := αW 2
2 (ρ, µ1) − βW 2

2 (ρ, µ0) ,

where β = α−1. In Proposition 4.10 we will show that problem (4.15) admits indeed a unique
solution, which justifies the definition of the metric extrapolation.

Remark 4.7. Alternatively, one can define the metric extrapolation as in equation (4.15)
via a minimization on probability measures in P(Ω) over a given compact domain Ω. In
this case, differently from the free-flow case (4.6), the support of the extrapolated measures
is always contained in Ω. The results of this section hold also in this case without major
changes.

First of all, we observe that by the triangular and Young’s inequalities, for any ρ, µ0, µ1 ∈
P2(Rd)

W 2
2 (ρ, µ0) ≤

(
1 +

1

β

)
W 2

2 (ρ, µ1) + (1 + β)W 2
2 (µ0, µ1)

and therefore

(4.16) F(µ0, µ1; ρ) ≥ −αβW 2
2 (µ0, µ1).
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µ0

µ1
x

y

µα

Figure 3. Metric extrapolation in the setting of Example 4.2. The black solid
line connecting the support of the three measures represents the trajectory
followed by the extrapolated measure for different values of the parameter α.

Then, if there exists a unique geodesic (4.2) from µ0 to µ1 and this can be continued up
to time α, i.e. if the associated Brenier potential u is β/α-convex, then the lower bound is
attained only by ρ = ω(α) with

ω(α) = ((1 − α)Id + α∇u)#µ0,

since by equation (1.9)

W 2
2 (µ0, ω(α)) = α2W 2

2 (µ0, µ1) , W 2
2 (µ1, ω(α)) = β2W 2

2 (µ0, µ1) .

Remark 4.8. Note that if the geodesic extension is only locally (but not globally) minimizing,
then it may not be recovered as a solution of problem (4.15): for instance, this is the case for
the shear flow example 4.2, in which case one can compute the explicit solution to the metric
extrapolation problem, which is represented in Figure 3.

Existence and uniqueness for minimizers of problem (4.15) actually hold in general due to
the fact that the functional F is strongly convex along particular curves known as generalized
geodesics. To describe such curves, consider three measures ν0, ν1, ν2 ∈ P2(Rd), let γ0,1 ∈
P2(Rd×Rd) and γ0,2 ∈ P2(Rd×Rd) optimal transport plans from ν0 to ν1 and from ν0 to ν2,

respectively. A generalized geodesic from ν1 to ν2 with base ν0 is a curve ω : [0, 1] → P2(Rd)
satisfying, for all φ ∈ C0

b (Rd),
∫
φω(t) =

∫
φ(x1(1 − t) + x2t)dγ(x0, x1, x2)

where γ ∈ P2(Rd × Rd × Rd) is a plan verifying

(4.17)

∫
ψ(x0, x1)dγ(x0, x1, x2) =

∫
ψ(x0, x1)dγ0,1(x0, x1) ,

∫
ψ(x0, x2)dγ(x0, x1, x2) =

∫
ψ(x0, x2)dγ0,2(x0, x2) ,

for all ψ ∈ C0
b (Rd×Rd). The existence of such a plan is a consequence of the so-called gluing

lemma (Lemma 5.3.2 in [2]). In the case where ν0 is absolutely continuous, denoting by T0,1

and T0,2 the optimal transport plans from ν0 to ν1 and from ν0 to ν2 respectively, there exists
a unique generalized geodesic from ν1 to ν2 with base ν0 which is given by

(4.18) ω(t) = ((1 − t)T0,1 + tT0,2)#ν0 .
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A functional J : P2(Rd) → R is λ-convex along generalized geodesics based in ν0, if for all ν1

to ν2 and for all generalized geodesics ω : [0, 1] → P2(Rd) from ν1 to ν2 with base ν0,

(4.19) J (ω(t)) ≤ (1 − t)J (ν1) + tJ (ν2) − λ
t(1 − t)

2

∫
|x1 − x2|2dγ(x0, x1, x2)

with γ satisfying equation (4.17). We say that the functional J is λ-convex along generalized
geodesics if the previous definition holds true for any ν0 ∈ P2(Rd).

The following result was proven in [29] and provides the strong convexity of the functional
F along generalized geodesics.

Lemma 4.9 (Theorem 3.4 in [29]). For any µ0, µ1 ∈ P2(Rd), the functional F(µ0, µ1; ·) :
P2(Rd) → R defined in (4.15) is 2-convex along generalized geodesics based in µ1. In partic-
ular, for any µ2, µ3 ∈ P2(Rd) there exists a curve ω : [0, 1] → P2(Rd), ω(0) = µ2, ω(1) = µ3,
such that for all t ∈ [0, 1], it holds:

(4.20) F(µ0, µ1;ω(t)) ≤ (1 − t)F(µ0, µ1;µ2) + tF(µ0, µ1;µ3) − t(1 − t)W 2
2 (µ2, µ3).

Lemma 4.9 is the main ingredient to prove the following proposition.

Proposition 4.10. The metric extrapolation problem (4.15) admits a unique solution µα.
Moreover, the metric extrapolation is β-dissipative, i.e.

(4.21) W2(µ1, µα) ≤ βW2(µ0, µ1) ,

and for all µ ∈ P2(Rd),

(4.22) W 2
2 (µ, µα) + F(µ0, µ1;µα) ≤ F(µ0, µ1;µ) .

Proof. The functional F is strongly convex along generalized geodesics by Lemma 4.9, which
implies uniqueness of the solution. Regarding existence, let (µn)n be a minimizing sequence.
We denote m = infµ∈P2(Rd) F(µ0, µ1;µ), which is finite due to (4.16), and we introduce G(µ) =

F(µ0, µ1;µ)−m. Consider two measures µn1 , µn2 of the sequence and the generalized geodesic
ω based in µ1 connecting them, as in Lemma 4.9. The inequality (4.20) for t = 1

2 provides

1

4
W 2

2 (µn1 , µn2) ≤ 1

2
G(µn1) +

1

2
G(µn2) ,

which implies that the sequence is Cauchy in the Wasserstein space (P2(Rd),W2). The Wasser-
stein space being complete [2, Proposition 7.1.5], the sequence converges to a measure µα,
which is the minimizer since F is continuous.

Inequality (4.22) derives again from Lemma 4.9. For a given µ ∈ P2(Rd), consider a
generalized geodesic ω as in Lemma 4.9, with ω(0) = µα and ω(1) = µ. By optimality of µα,
it holds

0 ≤ F(µ0, µ1;ω(t)) −F(µ0, µ1;µα)

≤ t
(
F(µ0, µ1;µ) −F(µ0, µ1;µα)

)
− t(1 − t)W 2

2 (µ, µα) ,

which, dividing by t and taking the limit t → 0, gives (4.22). Using (4.16) on the left-hand
side of (4.22) and then taking µ = µ1, we obtain the estimate (4.21).

□

In order to prove the consistency assumption we will use the following optimality conditions
for problem (4.15).
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Lemma 4.11. Let µα be the unique solution to problem (4.15). There exist two optimal
transport plans γ0,α and γ1,α from µ0 to µα and from µ1 to µα, respectively, such that

(4.23) α

∫
(xα − x1) · ξ(xα)dγ1,α(x1, xα) − β

∫
(xα − x0) · ξ(xα)dγ0,α(x0, xα) = 0 ,

for any ξ ∈ C∞
c (Rd;Rd).

Proof. Note that we cannot use directly Lemma 3.5 because µα is not necessarily absolutely
continuous. Therefore, in order to prove the result we construct a sequence of approximated
smooth variational problems and pass to the limit in the optimality conditions. Let us define
for ε > 0,

(4.24) Fε(µ0, µ1;µ) := F(µ0, µ1;µ) + εU(µ|ν) ,

where U(· |ν) denotes the relative entropy

(4.25) U(µ|ν) :=





∫
log

(
dµ

dν

)
dµ if µ≪ ν ,

+∞ otherwise ,

and ν = (2π)−d/2 exp(−|x|2/2)dx ∈ P2(Rd). We introduce the regularized problem

(4.26) inf
µ∈P2(Rd)

Fε(µ0, µ1;µ) .

Let (µn)n be a minimizing sequence for (4.26). Due to Jensen’s inequality the relative
entropy is positive. Furthermore, it is convex along generalized geodesics [2, Theorem 9.4.11].
Hence, reasoning as in Proposition 4.10, we obtain convergence in W2 of µn to a measure
µεα. The relative entropy is lower semi-continuous on the Wasserstein space (P2(Rd),W2) [1,
Theorem 15.4] and therefore µεα is the unique minimizer.

Note that∫
log

(
dµ

dν

)
dµ =

∫
log

(
dµ

dx

)
dµ+

∫ |x|2
2

dµ(x) +
d

2
log(2π) , for µ≪ ν .

Therefore, by applying Lemma 3.5 (adapted to the case where Ω = Rd), we can write down
the necessary optimality conditions of problem (4.26):

(4.27)
dFε(µ0, µ1;ω(s))

ds

∣∣∣∣
s=0

= 2α

∫
(xα − x1) · ξ(xα)dγε1,α(x1, xα)

− 2β

∫
(xα − x0) · ξ(xα)dγε0,α(x0, xα) + ε

∫ (
xα · ξ(xα) − div(ξ(xα))

)
dµεα(xα) = 0 ,

for any ξ ∈ C∞
c (Rd;Rd), where ω : (−δ, δ) → P2(Rd) is the curve of measures defined by (3.9)

with ω(0) = µα, and where we denote now by γε0,α and γε1,α the optimal transport plans from
µ0 to µεα and from µ1 to µεα, respectively.

We want to show that the regularized functionals Fε(µ0, µ1; ·), interpreted as functionals
on the Wasserstein space (P2(Rd),W2), Γ-converges towards F(µ0, µ1; ·), in order to pass to
the limit in the optimality conditions of problem (4.26). Since F is continuous with respect
to W2 convergence and U is positive, the Γ-lim inf is obvious,

F(µ0, µ1;µ) ≤ lim inf
ε

F(µ0, µ1;µε) ≤ lim inf
ε

Fε(µ0, µ1;µε) ,

for any µε → µ in the Wasserstein sense. Concerning the Γ-lim sup, if U(µ|ν) < ∞ we can
take µε = µ as recovery sequence. Otherwise, since the set of absolutely continuous measures
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is dense in P2(Rd), we can take a sequence of absolutely continuous measures µε converging
to µ with respect to the Wasserstein metric. Since U(µ|ν) = ∞, up to a reparametrization
we can assume that the relative entropy is increasing and that

U(µε|ν) ≤ C√
ε
,

for a constant C independent of ε. Then it holds:

lim sup
ε

Fε(µ0, µ1;µε) = lim
ε

Fε(µ0, µ1;µε) = F(µ0, µ1;µ) .

Therefore Fε(µ0, µ1; ·) Γ-converges to F(µ0, µ1; ·). Let us show that the sequence of minimizer
(µεα)ε is Cauchy. For this we observe that (Fε(µ0, µ1;µεα))ε is monotonically decreasing as
ε→ 0 since, for ε2 > ε1:

(4.28) Fε2(µ0, µ1;µε2α ) = (ε2 − ε1)U(µε2α |ν) + Fε1(µ0, µ1;µε2α ) ≥ Fε1(µ0, µ1;µε1α ).

Since Fε(µ0, µ1; ·) are uniformly bounded from below, Fε(µ0, µ1;µεα) converges to a value m
as ε → 0. Hence, we can define Gε(·) := Fε(µ0, µ1; ·) −m ≥ 0. By the same arguments as in
the proof of Proposition 4.10 and the strong convexity of Gε1 along generalized geodesics, for
any ε2 > ε1,

1

4
W 2

2 (µε1α , µ
ε2
α ) ≤ 1

2
Gε1(µε1α ) +

1

2
Gε1(µε2α ) ≤ 1

2
Gε1(µε1α ) +

1

2
Gε2(µε2α )

where the second inequality is a consequence of (4.28). Since Gε(µεα) → 0 as ε → 0 we can
conclude that (µεα)ε is Cauchy and by the Γ-convergence showed above, µεα → µα in W2.

Finally, by the stability of optimal transport plans [39, Theorem 5.20], there exist optimal
plans γ0,α and γ1,α from µ0 to µα and from µ1 to µα, respectively, such that (up to the
extraction of a subsequence)

γε0,α ⇀ γ0,α , γε1,α ⇀ γ1,α ,

weakly, i.e. in duality with continuous bounded functions (and also in the Wasserstein sense;
in fact, the second moments of γε0,α and γε1,α converge to those of γ0,α and γ1,α since µεα → µα
in the Wasserstein sense). As the vector field ξ is smooth, passing to the limit in (4.27) we
obtain (4.23).

□

Proposition 4.12. The metric extrapolation defined via (4.15) verifies the consistency as-
sumption (1.12) for all φ ∈ C∞

c (Rd).

Proof. Using the same notation as in the statement of Lemma 4.11, we have that for all
φ ∈ C∞

c (Rd)
∫
φ (µα−αµ1 +βµ0) = α

∫
(φ(x1)−φ(xα))dγ1,α(x1, xα)−β

∫
(φ(x0)−φ(xα))dγ0,α(x0, xα) .

Using the Taylor expansion of φ at xα in both integrals on the right-hand side, Lemma 4.11
and the dissipation property (4.21), we obtain

∣∣∣∣
∫
φ (µα − αµ1 + βµ0)

∣∣∣∣ ≤
1

2
∥Hessφ∥∞(αW 2

2 (µ1, µα) + βW 2
2 (µ0, µα))

≤ αβ∥Hessφ∥∞W 2
2 (µ0, µ1).

□
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Remark 4.13 (Relation with pressureless fluids). In dimension one, the Wasserstein distance
W2 coincides with the L2 distance between the quantile functions. In particular, the metric
extrapolation µα is given by

µα = (Gα)#dx|[0,1] , Gα := argmin
G∈L2([0,1],R)
monotone

α∥G− F
[−1]
1 ∥2

L2 − β∥G− F
[−1]
0 ∥2

L2 ,

where F
[−1]
0 and F

[−1]
1 are the quantiles of µ0 and µ1, respectively. The solution to this problem

coincides with the sticky particle model described in Remark 4.6, i.e. Gα = X̃(α, ·) with X̃ as
in (4.14).

Remark 4.14 (Dual formulation of the metric extrapolation). Let us recall that the optimal
transport problem (2.1) admits the following dual formulation [39, Theorem 5.10]:

(4.29)
W 2(µ0, µ1)

2
= sup

ϕ0

{∫
H1(ϕ0)µ1 −

∫
ϕ0µ0 :

| · |2
2

+ ϕ0(·) is convex

}
,

and if µ0 is absolutely continuous, this admits a unique maximiser ϕ0, and u(·) := |·|2
2 + ϕ0(·)

is the Brenier potential from µ0 to µ1. However, the associated geodesic from µ0 to µ1 can be
extended up to time α > 1 only if (4.4) holds, or equivalently if

(4.30) x 7→ |x|2
2

+ αϕ0(x) is convex.

Therefore, in order to construct an extrapolation, one can instead consider the problem

(4.31) sup
ϕ0

{∫
H1(ϕ0)µ1 −

∫
ϕ0µ0 :

| · |2
2

+ αϕ0(·) is convex

}
,

and, if µ0 is absolutely continuous, set

Eα(µ0, µ1) = (∇uα)#µ0,

where uα(·) := |·|2
2 + αϕ0(·) and ϕ0 solves (4.31). This extrapolation is well defined and it

turns out to be a dual formulation for the metric extrapolation in the spirit of [13]. However,
even if very natural, this dual point of view was not needed for the results presented here, and
therefore it will be developed in a future work.

4.4. Extrapolation on bounded domains. So far we only discussed the extrapolation
problem on the whole space P2(Rd). However, even if the EVBDF2 scheme is well-defined
using such extrapolations, it can be convenient for numerical reasons to use an extrapolation
operator mapping two measures on P(Ω) to an extrapolated one still in P(Ω). As mentioned
in Remark 4.7, this can be achieved easily in the case of the metric extrapolation, since one
can simply perform the minimization problem (4.15) over P(Ω) rather than P2(Rd). It is not
difficult to check that all the properties discussed in the previous section hold also with this
modification.

In general, a straightforward way of defining an extrapolation operator EΩ
α : P(Ω)×P(Ω) →

P(Ω) is to compose with a W2 projection. Specifically, given an operator Eα and µ0, µ1 ∈ P(Ω)
we can define:

EΩ
α(µ0, µ1) := argmin

ρ∈P(Ω)
W 2

2 (ρ,Eα(µ0, µ1)) = P#Eα(µ0, µ1) ,

where P : Rd → Ω is the Euclidean projection on the convex set Ω. Then, if Eα is θ-
dissipative and satisfies the consistency assumption (1.12), also EΩ

α does. In fact, denoting by
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γ∗ the optimal plan from µ1 to Eα(µ0, µ1), (Id, P )#γ
∗ ∈ Π(µ1,E

Ω
α(µ0, µ1)), and therefore one

has

W 2
2 (µ1,E

Ω
α(µ0, µ1)) ≤

∫

Rd×Rd

|x− P (y)|2dγ∗(x, y)

≤
∫

Rd×Rd

|x− y|2dγ∗(x, y) = W 2
2 (µ1,Eα(µ0, µ1)) ,

which implies that EΩ
α is θ-dissipative if so is Eα. Moreover, ∀φ ∈ C∞

c (Rd) with ∇φ · n∂Ω = 0
on ∂Ω ∣∣∣∣

∫

Rd

φ
(
EΩ
α(µ0, µ1) − Eα(µ0, µ1)

)∣∣∣∣ =

∣∣∣∣
∫

Rd

(φ ◦ P − φ)Eα(µ0, µ1)

∣∣∣∣

≤ 1

2
||Hess(φ)||∞W 2

2 (EΩ
α(µ0, µ1),Eα(µ0, µ1))

≤ 1

2
||Hess(φ)||∞W 2

2 (µ1,Eα(µ0, µ1)) ,

where to pass from the first to the second line we used a Taylor expansion of φ together with
the fact that ∇φ(P (x)) · (P (x) − x) = 0 on Rd. Hence, using the θ-dissipativity property, we
find that if Eα verifies the consistency assumption for all φ ∈ C∞

c (Rd), then EΩ
α also verifies it

for all φ ∈ C∞
c (Rd) such that ∇φ · n∂Ω = 0 on ∂Ω. As a consequence, the convergence result

of Theorem 1.2 holds also when the operator EΩ
α is used in the extrapolation step.

5. Convergence in the EVI sense

In this section, we make a further assumption on the energy functional E . Besides lower
semi-continuity, which ensures well-posedness of the scheme (see Section 3) we assume that E
is λ-convex in the generalized geodesic sense on P(Ω), for λ ∈ R+ (see equation (4.19), and
recall that Ω is supposed to be convex, so generalized geodesics with endpoints in P(Ω) are
well-defined as curves on P(Ω)). We recall that a curve ϱ : [0, T ] → P(Ω), ϱ(0) = ρ0, is a
Wasserstein gradient flow in the EVI sense if for any ν ∈ P(Ω) it holds

(5.1)
d

dt

1

2
W 2

2 (ϱ(t), ν) ≤ E(ν) − E(ϱ(t)) − λ

2
W 2

2 (ϱ(t), ν), ∀t ∈ (0, T ) ,

or, equivalently, if for all r, s ∈ (0, T ) with r ≤ s it holds

(5.2)
1

2
W 2

2 (ϱ(s), ν) − 1

2
W 2

2 (ϱ(r), ν) ≤ E(ν)(s− r) −
∫ s

r

(
E(ϱ(t)) +

λ

2
W 2

2 (ϱ(t), ν)
)

dt .

In this section, we show that the limit curve extracted from the time discretization (1.8) using
the metric extrapolation (4.15) (defined on either P(Ω) or P2(Rd)) satisfies the inequality
(5.2).

We first show that for scheme (1.8)-(4.15) a discrete version of the inequality (5.2) holds.
As the Wasserstein distance W 2

2 (·, ραn−1) is 2-convex along any generalized geodesic based in
ραn−1 (see, e.g., the proof of Lemma 4.9), the overall functional

(5.3) G(ρn−1, ρn−2; ρ) =
W 2

2 (ρ, ραn−1)

2(1 − β)τ
+ E(ρ) ,

is 1
(1−β)τ + λ > 0 convex along any generalized geodesic on P(Ω) based in ραn−1. Note that in

order to consider the case λ < 0 one should explicitly add a restriction on the time step τ so
that 1

(1−β)τ + λ > 0.
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Lemma 5.1. At each step n, for all ν ∈ P(Ω), the following inequality holds:

(5.4)
( 1

2(1 − β)τ
+
λ

2

)
W 2

2 (ρn, ν) − α
W 2

2 (ν, ρn−1)

2(1 − β)τ
+ β

W 2
2 (ν, ρn−2)

2(1 − β)τ

≤ E(ν) − E(ρn) + αβ
W 2

2 (ρn−1, ρn2)

2(1 − β)τ
− W 2

2 (ρn, ρ
α
n−1)

2(1 − β)τ
.

Proof. By the discussion above, considering the generalized geodesic ω between ν and ρn with
base ραn−1, and using the optimality of ρn, we obtain

0 ≤ G(ρn−1, ρn−2;ω(t)) − G(ρn−1, ρn−2; ρn)

≤ t(G(ρn−1, ρn−2; ν) − G(ρn−1, ρn−2; ρn)) − 1

2

( 1

(1 − β)τ
+ λ

)
t(1 − t)W 2

2 (ρn, ν).

Dividing by t and taking the limit t→ 0, this yields

( 1

2(1 − β)τ
+
λ

2

)
W 2

2 (ρn, ν) − W 2
2 (ν, ραn−1)

2(1 − β)τ
≤ E(ν) − E(ρn) − W 2

2 (ρn, ρ
α
n−1)

2(1 − β)τ
.

Adding on both side the term − 1
2(1−β)τF(ρn−1, ρn−2; ραn−1), using (4.22) on the left-hand side,

we obtain

( 1

2(1 − β)τ
+
λ

2

)
W 2

2 (ρn, ν) − α
W 2

2 (ν, ρn−1)

2(1 − β)τ
+ β

W 2
2 (ν, ρn−2)

2(1 − β)τ

≤ E(ν) − E(ρn) − 1

2(1 − β)τ
F(ρn−1, ρn−2; ραn−1) − W 2

2 (ρn, ρ
α
n−1)

2(1 − β)τ
.

Finally, using (4.16) on the right-hand side we conclude. □

Proof of Theorem 1.3. We recall that thanks to the classical estimate (3.2) (Lemma 3.2), the
piecewise constant curve

ρτ (t) =
N∑

n=1

ρn−11(tn−1,tn] , ρτ (0) = ρ0 ,

converges uniformly in the W2 distance to an absolutely continuous limit curve ϱ : [0, T ] →
P(Ω) (see Proposition 3.4). In order to prove convergence of the scheme in the EVI sense, we
show that this curve satisfies inequality (5.2). Thanks to the uniform convergence in time,
the procedure is the same as in [29, Theorem 5.1].

For simplicity, assume that given r, s ∈ (0, T ), r ≤ s, there exist Nτ ,Mτ ∈ N, Nτ ≤ Mτ ,
such that r = Nττ, s = Mττ , ∀τ . We multiply by τ inequality (5.4) and sum over n from Nτ

to Mτ to obtain the discrete integral form of the EVI:

(5.5)
1

2(1 − β)

Mτ∑

n=Nτ

(
W 2

2 (ρn, ν) − αW 2
2 (ν, ρn−1) + βW 2

2 (ν, ρn−2)
)

≤ E(ν)(t− s) −
Mτ∑

n=Nτ

τ
(
E(ρn) +

λ

2
W 2

2 (ρn, ν)
)

+
1

2(1 − β)

Mτ∑

n=Nτ

(
αβW 2

2 (ρn−1, ρn−2) −W 2
2 (ρn, ρ

α
n−1)

)
.
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By canceling out terms, the left-hand side is equal to

(5.6)
1

2(1 − β)

(
−αW 2

2 (ν, ρNτ−1) + βW 2
2 (ν, ρNτ−2) + βW 2

2 (ν, ρNτ−1)

+W 2
2 (ρMτ−1, ν) +W 2

2 (ρMτ , ν) − αW 2
2 (ν, ρMτ−1)

)
,

and thanks to the uniform convergence in the Wasserstein distance, (5.6) converges to

1

2
W 2

2 (ϱ(s), ν) − 1

2
W 2

2 (ϱ(r), ν) ,

for τ → 0, where we recall α − β = 1. Concerning the right-hand side, thanks again to the
uniform convergence in the Wasserstein distance, the lower semi-continuity of E and Fatou’s
lemma, we have

lim sup
n→∞

−
Mτ∑

n=Nτ

τ
(
E(ρn) +

λ

2
W 2

2 (ρn, ν)
)
≤ −

∫ s

r

(
E(ϱ(t)) +

λ

2
W 2

2 (ϱ(t), ν)
)

dt .

Finally, owing to bound (3.2), we estimate the last contribution of (5.5) as
∑

n

αβW 2
2 (ρn−1, ρn−2) −W 2

2 (ρn, ρ
α
n−1) ≤

∑

n

αβW 2
2 (ρn−1, ρn−2) ≤ Cτ,

which converges to zero. As a consequence, we recover the continuous inequality (5.2).
□

6. Finite volume discretization

In this section we describe a space-time discretization of the proposed approach which yields
numerically second-order accuracy both in space and time. We consider a discretization in
the Eulerian framework of finite volumes. In this setting, neither the free-flow extrapolation
nor the metric one have a straightforward implementation. For this reason, we will construct
a discrete extrapolation operator based on formula (4.11): in this way the extrapolation step
is cast in a variational way allowing for a robust implementation. Although not satisfying
the hypotheses of theorem (1.2), this choice leads to a convergent and second order accurate
scheme, as we will show numerically. As explained in Remark 4.5, the variational step (4.11)
differs from the direct forward integration of the continuity equation. This latter is a viable
alternative to define a discrete extrapolation and leads to second order accuracy as well (see
[37]), but it is not clear how to discretize this in a robust way.

The fundamental tool is the solution of JKO steps, which requires the expensive problem
of computing the Wasserstein distance. Following [12, 30], we linearize the Wasserstein dis-
tance obtaining LJKO steps, a more affordable problem to solve. Remarkably, this approach
preserves the second order accuracy in time of our time discretization. The discretization
in space is based instead on Two-Point Flux Approximation (TPFA) finite volumes with a
centered choice for the mobility, which leads to simple and flexible schemes which are second
order accurate in space.

6.1. Discrete setting. TPFA finite volumes require a sufficiently regular partitioning of the
domain Ω, according to [18, Definition 9.1]. For simplicity, we describe the methodology in
two dimensions only, although generalizations to arbitrary dimensions are possible, and for
Ω ⊂ R2 being a polygonal domain. The discretization of Ω consists of three sets: the set
of cells K ∈ T ; the set of edges σ ∈ Σ, which is composed of the two subsets of internal
edges Σ and external edges Σ \ Σ; the set of cell centers (xK)K∈T . We will denote the



FROM GEODESIC EXTRAPOLATION TO A BDF2 SCHEME FOR WASSERSTEIN GRADIENT FLOWS 27

finite volume mesh as
(
T ,Σ, (xK)K∈T

)
. The fundamental regularity hypothesis we need to

construct TPFA schemes is the orthogonality between each internal edge σ = K|L ∈ Σ and
the segment xL − xK . Typical example of meshes that can be used to this end are Cartesian
grids, Voronoi tessellations and Delaunay triangulations, by taking the circumcenters of the
polygonal cells as cell centers.

For each cell K ∈ T , we denote ΣK and ΣK the subsets of edges and internal edges
belonging to K, and by mK the measure of the cell. The mesh size h is the largest among all
cells’ diameters, h := maxK∈T diam(K), and characterizes the refinement of the mesh. For
every internal edge, the diamond cell ∆σ is the quadrilateral with vertices given by the cell
centers, xK and xL, and the vertices of the edge. Denoting by dσ := |xL − xK | and mσ the
measure of the edge, the measure of the diamond cell is equal to m∆σ = mσdσ

d , where d stands
for the space dimension. Finally, we denote by dK,σ the Euclidean distance between the cell

center xK and the midpoint of the edge σ ∈ ΣK , and by nK,σ the outward unit normal of the
cell K on the edge σ.

The finite volume methodology introduces two levels of discretization, on cells and edges.
The first one is used to discretize scalar quantities whereas the second one for vectorial ones.
To this end, we introduce three discrete inner product spaces (RT , ⟨·, ·⟩T ), (RΣ, ⟨·, ·⟩Σ) and
(FT , ⟨·, ·⟩FT ). The scalar products ⟨·, ·⟩T and ⟨·, ·⟩Σ are defined as

⟨·, ·⟩T : (a, b) ∈ [RT ]2 7→
∑

K∈T
aKbKmK ,

⟨·, ·⟩Σ : (u,v) ∈ [RΣ]2 7→
∑

σ∈Σ

uσvσmσdσ .

The space FT is the space of conservative fluxes, it is defined by

FT = {F = (FK,σ, FL,σ)σ∈Σ ∈ R2Σ : FK,σ + FL,σ = 0} ,
and its scalar product is

⟨·, ·⟩FT : (F ,G) ∈ [FT ]2 7→
∑

σ∈Σ

(FK,σGK,σ + FL,σGL,σ)
mσdσ

2
.

Note that the space FT is defined on internal edges only. This is sufficient, since we are
dealing with no flux boundary value problems, and therefore we can neglect the flux variables
on the boundary. We denote Fσ = |FK,σ| = |FL,σ| the modulus of the flux on each internal

edge σ = K|L ∈ Σ and, by convention, |F | = (Fσ)σ∈Σ ∈ RΣ and |F |2 = (F 2
σ )σ∈Σ ∈ RΣ, for

F ∈ FT .
According to finite volumes, the discrete divergence operator divT : FT → RT is defined in

an integral sense as

(divT F )K := divKF :=
1

mK

∑

σ∈ΣK

FK,σmσ ,

that is, for each cell, the discrete divergence is computed as the sum of the fluxes across
its boundary. The discrete gradient ∇Σ : RT → FT is defined by duality, requiring that
⟨∇Σa,F ⟩FT = −⟨a, divT F ⟩T , for all a ∈ RT and F ∈ FT . Then, it holds

(∇Σa)K,σ := ∇K,σa :=
aL − aK
dσ

.

Both the discrete divergence and gradient operators automatically inherit the zero flux bound-
ary condition from the definition of FT .
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The space (RΣ, ⟨·, ·⟩Σ) is introduced in order to match the two different discretizations on
cells and edges. In order to reconstruct variables defined on cells to the edges, and vice-versa,
we need two reconstruction operators. We use a centered reconstruction for the mobility in
order to attain the second order accuracy in space. To this end, we use the weighted arithmetic
average operator LΣ : RT → RΣ and its adjoint L∗

Σ : RΣ → RT (with respect to the two scalar
products):

(6.1) (LΣa)σ := λK,σaK + λL,σaL , (L∗
Σu)K :=

∑

σ∈ΣK

λK,σuσ
mσdσ
mK

,

for a ∈ RT and u ∈ RΣ, with λK,σ + λL,σ = 1,∀σ = K|L ∈ Σ. Two possible choices for

the weights are (λK,σ, λL,σ) = (
dK,σ

dσ
,
dL,σ

dσ
) or (1

2 ,
1
2), both leading to second order accurate

schemes in space [30]. The former choice is possible only if xK ∈ K, which may not be always
the case for arbitrary admissible meshes.

Remark 6.1. The definition of the reconstruction operators and the choice of weights may
be delicate in general for the discretization of dynamical optimal transport, depending on the
discretization chosen for Ω. See [21, 31] for details. Notice in particular that the choice
(λK,σ, λL,σ) = (1

2 ,
1
2) may lead to convergence failure in very simple settings [21, Section 5].

Nevertheless, in the context of the discretization of Wasserstein gradient flows the definition
of the reconstruction is more flexible, see [12, 20].

6.2. Discrete
.
H−1 norm. As suggested in [25, 17, 31], a convenient choice for the time

discretization of the Wasserstein distance (2.2) is to use a staggered time discretization for
the velocity and the density on subintervals of the time interval [0, 1], and reconstruct the
density on intermediate steps via arithmetic average. It has been shown numerically in [12, 30]
that a single step discretization on the whole interval is sufficient in order to preserve the first-
order accuracy of the JKO scheme (1.3). Following the same ideas, here we approximate the
Wasserstein distance between two measures µ, ν ∈ P(Ω) as

(6.2)
1

2
W 2

2 (µ, ν) ≈ sup
ϕ

∫

Ω
ϕ(µ− ν) − 1

2

∫

Ω

(µ+ ν

2

)
|∇ϕ|2 .

Formula (6.2) is obtained by discretizing in one step problem (2.2) and by applying a duality
result thanks to the change of variables (ω, v) 7→ (ω, ωv). For more details on this construction
see [12, 30]. This approximation consists in replacing the Wasserstein distance with the
weighted dual norm 1

2 ||µ− ν||Ḣ−1
µ+ν
2

. The choice of the arithmetic average of the two measures

as weight is fundamental in order to achieve second order accuracy in time for the scheme we
will propose in the following.

Using the finite volume discretization introduced above we can provide a discrete analogous
of the weighted norm. Given the discrete measures µ,ν ∈ RT

+ and for any h ∈ RT , the discrete

counterpart of the weighted Ḣ−1 norm squared is

(6.3) AT
(µ + ν

2
;h
)

:= sup
ϕ∈RT

⟨h,ϕ⟩T − 1

2

〈
LΣ

(µ + ν

2

)
, |∇Σϕ|2

〉
Σ
.

A few remarks are in order about such a discretization.

• For any ρ ∈ RT
+, the function AT (ρ; ·) is proper, convex and lower semi-continuous as

supremum of convex and lower semi-continuous functions.
• The supremum is unbounded if the condition ⟨h,1⟩T = 0 is not satisfied. On other

hand, if ⟨h,1⟩T = 0, there exists a maximizer ϕ, which is however not uniquely
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defined, since the function maximised in (6.2) is invariant with respect to addition of
a global constant or perturbations sufficiently far from the support of h, µ, and ν.

• Setting h = ν −µ in (6.3), with µ and ν being a discrete approximation of two mea-
sures µ and ν, we obtain a discrete version of W 2

2 (µ, ν)/2. In this case the optimal
potential ϕ can be interpreted as a discrete counterpart of a continuous optimal po-
tential ϕ, satisfying the Hamilton-Jacobi equation on the time interval [0, 1], evaluated
at time 1/2.

• The total kinetic energy is discretized on the diamond cells. Notice that due to the
definition of the scalar product ⟨·, ·⟩Σ, the measure of each diamond cell is taken
mσdσ = dm∆σ , i.e. d times the actual measure. This is done in order to compensate
for the unidirectional discretization, since each term |∇K,σϕ| is meant as an approxi-
mation of the quantity |∇ϕ · nK,σ|, and have a consistent discretization. See [31] for
more details on this construction.

6.3. Discrete extrapolation. We now construct a discrete version of the extrapolation op-
erator Eα at time α, by discretizing the procedure described in Section 4.2, and in particular
of equation (4.11). The proposed strategy requires three subsequent steps: i) compute the
interpolation between the two measures; ii) integrate forward in time the optimal potential;
and finally iii) solve a JKO step.

Let us consider two discrete densities µ,ν ∈ RT
+ with the same total discrete mass ⟨µ,1⟩T =

⟨ν,1⟩T . The first step requires to solve problem (6.3) for h = ν−µ in order to find an optimal
potential ϕ, which approximates the continuous one, solution to the Hamilton-Jacobi equation
(2.5), at the midpoint of the time interval [0, 1].

In the second step, we evolve the optimal potential according to the Hamilton-Jacobi equa-
tion until the final time α, that is considering a temporal step of length 1

2 + β = α+β
2 . This

can be done with an explicit Euler step as follows:

(6.4) ϕα = ϕ− 2

α+ β

1

2
L∗

Σ|∇Σϕ|2 .

Note that we use the operator L∗
Σ to reconstruct the square of the gradient of the poten-

tial. However, as this step is not variational, it is not mandatory to use the adjoint of the
reconstruction LΣ and any other (second order) strategy can be adopted.

Finally, for the third step, we approximate problem (4.11) using again the discrete weighted

Ḣ−1 norm. Specifically, we define a discrete extrapolation operator as a map ET
α : RT

+×RT
+ →

RT
+ verifying

(6.5) ET
α (µ,ν) ∈ argmin

ρ∈RT
+

1

α
AT
(ρ + µ

2
;µ− ρ

)
− ⟨ϕα,ρ⟩T ,

for all µ,ν ∈ RT
+ and where ϕα is given by equation (6.4). Due to the definition of AT , any

solution ρ satisfies ⟨ρ,1⟩T = ⟨ν,1⟩T . However, since ϕ is in general not unique, in order to
specify a discrete extrapolation operator one needs to select a specific optimal potential for
any µ,ν ∈ RT

+.

6.4. A space-time discrete EVBDF2 scheme. We can finally formulate our second order
finite volume scheme. Consider a convex discrete energy function ET : RT → R and the two
initial densities ρ0,ρ1 ∈ RT

+, with the same total discrete mass. We define the subspace of

discrete probability measures PT ⊂ RT as

PT = {ρ ∈ RT
+ : ⟨ρ,1⟩T = ⟨ρ0,1⟩T } .
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For the time step τ > 0, we compute the sequence of densities (ρn)n≥2 ⊂ PT defined by the
following recursive scheme:

(6.6)





ραn−1 = ET
α (ρn−2,ρn−1) ,

ρn ∈ argmin
ρ∈RT

+

1

τ(1 − β)
AT
(ρ + ραn−1

2
;ραn−1 − ρ

)
+ ET (ρ) .

The LJKO step in (6.6) is a well posed convex optimization problem. Uniqueness of the
solution at each step is guaranteed if ET is strictly convex. Moreover, due to the definition of
AT , any solution ρ belongs to PT .

Remark 6.2 (Efficient implementation via the interior method). Problem (6.5) and the LJKO
step in (6.6) can be solved efficiently thanks to an interior point algorithm, as suggested in [30]
(see also [31, 19]). This implies that the density will be always strictly greater than zero, up
to the tolerance set for the solver. Hence, one can compute the solution ϕ, required to define
ET
α , solving directly the linear system given by the optimality condition of problem (6.3):

(6.7) ν − µ + divT (L
(µ + ν

2

)
⊙∇ϕ) = 0 ,

where ⊙ denotes the component-wise product, which has then a unique solution defined up to
a global additive constant.

6.5. Other implementations. We now propose a discrete version of the extrapolation-based
version of the VIM scheme (1.19) and the BDF2 scheme (1.16) within the same TPFA finite
volume setting introduced above. We will study these numerically in Section 7.2.1 by com-
paring their solutions to the solutions provided by scheme (6.6) on one-dimensional test cases.

Our formulation of the VIM scheme (1.19) requires solving a JKO step with time step τ
2

and then computing the 2-extrapolation. Using the tools introduced above, in the discrete
setting this can be formulated as follows. Given the initial density ρ0 ∈ PT and a time step
τ > 0, construct the sequence of densities (ρn)n≥1 ⊂ PT by solving at each step n

(6.8)





ρn− 1
2
∈ argmin

ρ∈RT
+

2

τ
AT
(ρ + ρn−1

2
;ρn−1 − ρ

)
+ ET (ρ) ,

ρn = ET
2 (ρn−1,ρn− 1

2
) .

As before, the discrete LJKO steps can be computed thanks to an interior point algorithm.
From a computational point of view, this scheme is cheaper to compute than (6.6), as in this

case the value of the optimal potential in the discrete weighted Ḣ−1 norm from ρn−1 to ρn− 1
2

is already known from the LJKO step and does not need to be computed. However, in the
next section, we will show numerically that the solutions produced by the VIM scheme (6.8)
are much more oscillatory than those obtained with the EVBDF2 scheme.

We can also propose a naive discretization of the BDF2 scheme (1.16) by replacing the

Wasserstein distances with discrete weighted Ḣ−1 norms. Consider two initial conditions
ρ0,ρ1 ∈ PT and the time parameter τ > 0. At each step n, compute ρn as solution to

(6.9) inf
ρ∈RT

+

α

(1 − β)τ
AT
(ρ + ρn−1

2
;ρn−1 −ρ

)
− β

(1 − β)τ
AT
(ρ + ρn−2

2
;ρn−2 −ρ

)
+ET (ρ) .

Problem (6.9) is not a convex optimization problem. Notice that it is not even bounded from

below in general. Indeed, the function AT (
ρ+ρn−2

2 ;ρn−2 − ρ) is not bounded from above if
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the density ρn−2 is not supported everywhere. We can nevertheless try to compute stationary
points of the objective function in (6.9) using again an interior point algorithm. Despite not
being a robust and completely meaningful strategy, in some cases it is possible to solve the
problem, which enables us to compare it to our implementation.

Remark 6.3. In one dimension, as pointed out in Remark 4.13, both the metric extrapolation
(1.14) and the BDF2 scheme (1.16) can be recast as convex optimization problems. In this
case it is possible then to design effective discretizations for these (as originally done in [29]).
Nevertheless, this approach requires, at least in the Eulerian framework, to be able to switch
between discrete densities and discrete quantile functions, and it does not appear obvious how
to achieve this while preserving the second order accuracy of the space discretization.

7. Numerical validation of the EVBDF2 scheme

The objective of this section is to validate our numerical scheme (6.6). We will first show
qualitatively its behavior with simple one-dimensional examples and compare it to the schemes
(6.8) and (6.9). We then show that all these three approaches lead to a second order accurate
discretization in both time and space. We consider for these purposes two specific problems
that exhibit a gradient flow structure in the Wasserstein space: the Fokker-Planck equation
we presented in Section 3.2 and the porous medium equation. This latter writes

(7.1) ∂tϱ = ∆ϱδ + div(ϱ∇V ) ,

and it is a Wasserstein gradient flow with respect to the energy

(7.2) E(ρ) =

∫

Ω

1

δ − 1
ρδ + ρV ,

for a given δ > 1 and with V ∈ W 1,∞(Ω) a Lipschitz continuous exterior potential [32]. The
energy functionals (3.5) and (7.2) are both of the form E(ρ) =

∫
ΩE(ρ)dx for a strictly convex

function E : R+ → R. They can be straightforwardly discretized as ET =
∑

K∈T E(ρK)mK .
Finally, we will test scheme (6.6) on a more challenging application in order to show its
flexibility and robustness, that is an incompressible immiscible multiphase flow in a porous
medium.

We remark that when two initial conditions ρ0,ρ1 are needed, we compute first ρ1 from
ρ0 via an LJKO step:

ρ1 = argmin
ρ∈RT

+

1

τ
AT
(ρ + ρ0

2
;ρ0 − ρ

)
+ ET (ρ) .

In the ODE setting, computing the second initial condition via a first step of implicit Euler
scheme ensures the overall second order accuracy [16]. This strategy reveals to be numerically
effective also in this setting.

7.1. Comparison of the three approaches. We compare the three different approaches
on simple one dimensional tests for the diffusion equation and the porous medium equation.
For both system we set Ω = [0, 1], discretized in subintervals of equal length mK = 0.02.

We first consider the diffusion equation, which is problem (3.4) with zero external potential
V . We take as initial condition

ρ0 = exp
(
− 50

(
x− 1

2

)2)
,

which we discretize as ρ0 = (ρ0(xK))K∈T , and the time step τ = 0.01. In Figure 4, we show
the density obtained with the three schemes at three different times. Using the VIM scheme
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Figure 4. Comparison between the three schemes for the diffusion equation.
From top to bottom, the BDF2 scheme (6.9), the VIM scheme (6.8) and the
EVBDF2 scheme (6.6). From left to right, three different time steps: t =
0.02, 0.04, 0.06.

(6.8), spurious oscillations appear in the solution and these persist along the integration in
time. Such oscillations can be explained as the result of the interaction of the extrapolation
step, causing the mass to exit the domain, and the boundary conditions, forcing the mass to
stay within Ω. Neither the EVBDF2 scheme (6.6) nor the BDF2 scheme (6.9) suffer from this
problem. However, notice that in both cases the dynamics slightly differ from pure diffusion
due to the presence of bumps in the solution.

Consider now the porous medium equation (7.1) with δ = 2 and the external potential
V (x) = −x, which causes the mass to drift towards the positive direction. We take as initial
condition

ρ0(x) = 1x≤ 3
10
,

discretized again as ρ0 = (ρ0(xK))K∈T , and the time step τ = 0.002. In this case, the naive
implementation we proposed for the BDF2 scheme does not converge, which is not surprising
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Figure 5. Comparison between the VIM scheme (6.8) (top row) and the
EVBDF2 scheme (6.6) (bottom row) for the porous medium equation. The
BDF2 scheme (6.9) does not converge in this case. From left to right, three
different time steps: t = 0.004, 0.008, 0.020.

since the objective function in (6.9) is unbounded from below. The results for the VIM
scheme (6.8) and the EVBDF2 scheme (6.6) are shown in Figure 5. Again, the VIM scheme
is unstable whereas the EVBDF2 scheme controls and smooths the oscillations generated by
the extrapolation step. Note that in this case the oscillations are due to the compact support
of the density and the explicit integration in time of the Hamilton-Jacobi equation: in the
extrapolation step the mass cannot flow outside the support, which acts then like a boundary.

Finally, we observe that, as in the continuous setting, we cannot expect any regularity on
the measure obtained after the extrapolation, and the JKO step is the only source of regularity
for both the EVBDF2 and the VIM scheme. One may argue that the two schemes perform
the same operations up to a temporal shift, which should contradict the different behavior
shown in Figure 4. However, notice that scheme (6.6) performs a smaller extrapolation and
a bigger JKO step with respect to scheme (6.8). Furthermore, in (6.6) one needs to compute
an extrapolation between two minimizers of the JKO step, whereas in (6.8) the extrapolation
is between an extrapolated measure and a JKO minimizer.

7.2. Convergence tests. We now compare the three schemes in terms of order of conver-
gence with respect to an exact one-dimensional solution of the Fokker-Planck equation (3.4).
For the EVBDF2 scheme (6.6), we will also perform two dimensional tests using the porous
medium equation (7.1). For all tests, we consider a sequence of meshes

(
Tm,Σm, (xK)K∈Tm

)

with decreasing meshsize hm and a sequence of decreasing time steps τm such that hm+1

hm
=

τm+1

τm
. We solve the discrete problem for each couple (hm, τm) and evaluate the convergence
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Table 1. Errors and convergence rates for the three schemes for the Fokker-
Planck equation in one dimension. Integration time [0, 0.25] for the first three
cases, [0.05, 0.25] for the last one.

BDF2 (6.9) EVBDF2 (6.6) VIM (6.8) VIM (6.8)

hm τm ϵm rate ϵm rate ϵm rate ϵm rate

0.100 0.050 2.091e-02 / 2.217e-02 / 5.895e-02 / 4.667e-03 /
0.050 0.025 6.376e-03 1.713 7.016e-03 1.660 3.615e-02 0.706 1.024e-03 2.188
0.025 0.013 1.791e-03 1.832 2.044e-03 1.779 2.294e-02 0.656 2.517e-04 2.025
0.013 0.006 4.849e-04 1.885 5.653e-04 1.854 1.468e-02 0.644 6.264e-05 2.007
0.006 0.003 1.280e-04 1.922 1.508e-04 1.906 1.234e-02 0.251 1.562e-05 2.003
0.003 0.002 3.324e-05 1.945 3.933e-05 1.939 9.983e-03 0.306 3.901e-06 2.002

with respect to the discrete L1((0, T );L1(Ω)) error:

ϵm =
∑

n

τ
∑

K∈Tm
|ρK,n − ϱ(xK , nτ)|mK .

We compute the rate of convergence as:

log(ϵm−1) − log(ϵm)

log(τm−1) − log(τm)
.

7.2.1. One-dimensional tests. On the domain Ω = [0, 1] and for the external potential V (x) =
−gx, we consider the following exact solution to the Fokker-Planck equation (3.4):

(7.3) ϱ(t, x) = exp

(
−
(
π2 +

g2

4

)
t+

g

2
x

)(
π cos(πx) +

g

2
sin(πx)

)
+ π exp

(
g
(
x− 1

2

))
.

We consider the value g = 1. For each mesh
(
Tm,Σm, (xK)K∈Tm

)
and time step τm, we

compute then the discrete solution using the three schemes, starting from the initial condition
ρ0 = (ϱ(0,xK))K∈T . The results are presented in Table 1. Both the BDF2 and the EVBDF2
schemes are second order accurate, whereas the order of convergence is less than one for the
VIM scheme. This is due to the presence of oscillations in the solutions obtained with the
VIM scheme, which are however only present at the beginning of the time interval [0, 0.25].
Repeating the test on the interval [0.05, 0.25], the convergence significantly improves and
attains second order accuracy as well.

7.2.2. Two-dimensional tests. We now estimate the order of convergence of the EVBDF2
scheme on two-dimensional test cases. Here, we set Ω = [0, 1]2 and use the same sequence
of grids that have been used in [12, 30], which allows for a direct comparison of the results
therein.

We repeat first the test on the Fokker-Planck equation in two dimensions using the same
solution (7.3) on the domain Ω = [0, 1]2. The results are shown in Table 2 and confirm the
second order accuracy of the scheme.

We also perform a convergence test with respect to an explicit solution of the porous
medium equation (7.1) with zero exterior potential V . This equation admits a solution called
Barenblatt profile [32]:

(7.4) ϱ(t, x) =
1

tdλ

(δ − 1

δ

) 1
δ−1

max
(
M − λ

2

∣∣∣x− x0

tλ

∣∣∣
2
, 0
) 1

δ−1
,
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Table 2. Errors and convergence rate for the EVBDF2 scheme (6.6) for the
Fokker-Planck equation in two dimensions.

hm τm ϵm rate

0.2986 0.0500 2.111e-02 /
0.1493 0.0250 6.800e-03 1.634
0.0747 0.0125 2.017e-03 1.754
0.0373 0.0063 5.669e-04 1.831
0.0187 0.0031 1.535e-04 1.884

Table 3. Errors and convergence rates for the EVBDF2 scheme (6.6) for the
porous medium equation.

δ = 2 δ = 3 δ = 4

hm τm ϵm rate ϵm rate ϵm rate

0.2986 2.000e-04 5.139e-04 / 7.515e-04 / 9.537e-04 /
0.1493 1.000e-04 1.999e-04 1.363 2.780e-04 1.435 3.085e-04 1.628
0.0747 5.000e-05 6.429e-05 1.636 4.630e-05 2.586 1.103e-04 1.485
0.0373 2.500e-05 1.471e-05 2.127 2.903e-05 0.674 3.847e-05 1.519
0.0187 1.250e-05 4.129e-06 1.833 7.521e-06 1.949 1.340e-05 1.522

where λ = 1
d(δ−1)+2 , d standing for the space dimension, and x0 is the point where the mass

is centered. The parameter M can be chosen to fix the total mass. The value

M =
( δ

δ − 1

)− 1
δ
( λδ

2π(δ − 1)

) δ−1
δ

sets it equal to one. The function (7.4) solves (7.1) on the domain Ω = [0, 1]d, with x0

in the interior of Ω, starting from t0 > 0 and for a sufficiently small time horizon T , such
that the mass does not reach the boundary of the domain. We consider the two-dimensional
case and x0 = (0.5, 0.5). We solve the problem for δ = 2, 3, 4, with initial condition ρ0 =
(ϱ(t0,xK))K∈T , starting respectively from t0 = 10−4, 10−5, 10−6 and up to time T = t0+10−3.
The results are presented in Table 3. The convergence profile is not clean, probably due to
the low precision of the discretization in space. We can nevertheless notice that in the case
δ = 2 the rate of convergence is approaching order two with refinement. In the cases δ = 3, 4,
where the solution is less regular, the order tends to 1.5.

7.3. Incompressible immiscible multiphase flows in porous media. Incompressible
immiscible multiphase flows in porous media can be described as Wasserstein gradient flows,
as shown in [10]. We recall quickly the model problem in a simplified way. In the porous
medium Ω, N + 1 phases are flowing and we denote by s = (s0, ..., sN ) the saturations of each
phase, i.e. the portion of volume occupied by each phase in each point. The evolution of each
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saturation obeys the following equations:

(7.5)





∂si
∂t

+ div(sivi) = 0 ,

vi = − 1

µi
(∇pi − ρig) ,

pi − p0 = πi(s, x) ,

i ∈ {0, ..., N} for the first two equations, i ∈ {1, ..., N} for the third one, plus the total

saturation condition
∑N

i=0 si(t, x) = 1 and the no-flux boundary conditions. The densities ρi
and the viscosities µi, both constant in the whole domain, are characteristic of each phase. In
(7.5) the porosity of the medium is considered constant and neglected. The term ρig reflects
the influence of the potential energy on the motion (g is the gravitational acceleration), but
other types of potential energy could be considered. The model is completed specifying the
N capillary pressure relations, described by the functions πi.

We introduce the probability spaces

Pi =
{
si ∈ P(Ω) : si(Ω) = ci

}
, i ∈ {0, ..., N},

with the constant ci denoting the total mass of each phase. Each space Pi is endowed with
the following quadratic Wasserstein distance,

W 2
2,i(s

1
i , s

2
i ) = min

γ∈Π(s1i ,s
2
i )

∫
µi|x− y|2dγ(x, y) ,

for s1
i , s

2
i ∈ Pi and we can define the global quadratic Wasserstein distance W 2 on P :=

P0 × ...× PN by setting

W 2
2(s1, s2) =

N∑

i=0

W 2
2,i(s

1
i , s

2
i ), ∀s1, s2 ∈ P .

Problem (7.5) can then be represented as the gradient flow in the space P with respect to
the (strictly convex) energy functional

(7.6) E(s) =

∫

Ω
Ψ · s +

∫

Ω
Π(s, x) + iS(s) ,

where Ψ = (Ψ0, . . . ,ΨN ) is the exterior gravitational potential given by

Ψi(x) = −ρig · x, ∀x ∈ Ω ,

Π(s, x) is a strictly convex potential such that

πi(s, x) =
∂Π(s, x)

∂si
, i ∈ {1, ..., N},

and iS is the indicator function of the set

S =

{
s ∈ P :

N∑

i=0

si(x) = 1, for a.e. x ∈ Ω

}
.

When applying the EVBDF2 scheme to such gradient flow, the extrapolation may be taken
in each space Pi independently, i.e. we define the extrapolation in the space P as

Eα(s1, s2) := (Eα(s1
i , s

2
i ))

N
i=0 ,

for all s1, s2 ∈ P . This does not guarantee at all that at each step n of the scheme the
extrapolation is a feasible point for E(s), that is Eα(s1, s2) /∈ S in general even though
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Figure 6. Evolution of the saturation of the oil phase in the hourglass. The
evolution of the water is complementary. As expected, the water, the denser
phase, flows down the hourglass under the effect of gravity up until reaching
the bottom.

s1, s2 ∈ S. Nevertheless, the resulting scheme is well defined as well as the numerical approach
(6.6). In our implementation, we linearize each Wasserstein distances independently. The
energy functional can be discretized straightforwardly.

As a specific instance of problem (7.5), we consider a two-phase flow, where water (s0) and
oil (s1) are competing in the porous medium. We choose the classical Brooks-Corey capillary
pressure model,

p1 − p0 = π1(s1) = λ(1 − s1)−
1
2 ,

and take g acting along the negative direction of the y axis, |g| = 9.81. We set the model
parameter λ = 0.05. The densities and the viscosities of the two fluids are, respectively,
ρ0 = 1 and ρ1 = 0.87, µ0 = 1 and µ1 = 100. We consider a non convex domain Ω shaped as
an hourglass and set an initial condition where the water is distributed uniformly in a layer in
the upper part, whereas the oil takes the complementary space (see Figure 6a). The evolution
of the oil saturation s1 is presented in Figure 6.

8. Conclusion

In this work we proposed and analyzed different notions of extrapolation in the Wasserstein
space. We showed how these can be used to construct a second-order time discretization of
Wasserstein gradient flows, based on a two-step reformulation of the classical BDF2 scheme.
According to the specific notion considered, we could prove different types of convergence
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Table 4. Summary of the different types of extrapolation proposed in the
present work.

Free-flow
extrapolation

(4.7)

Viscosity
extrapolation

(4.9)

Metric
extrapolation

(4.15)

Fokker-Planck conv. ✓ ? ✓

EVI conv. ? ? ✓

Implementation ? ✓ ?

Second order ? ✓ ?

guarantees for the scheme. We also proposed a fully-discrete version of the method, and
demonstrated numerically its second-order accuracy in space and time. The possibility to
provide an implementable scheme is in fact the main advantage of our approach compared
to previous works also based on the BDF2 scheme [29], or on the midpoint rule [27]. The
different type of extrapolations and their properties are summarized in Table 4.

In order to provide our fully discrete scheme, we worked in the framework of Eulerian
discretizations and considered an extrapolation based on viscosity solutions of the Hamilton-
Jacobi equation. The resulting scheme is robust and allows to achieve second order of accu-
racy both in space and time, but it does not verify the hypotheses of our convergence results.
The free-flow extrapolation could be implemented straightforwardly in the framework of La-
grangian discretizations (see, e.g., [28, 9] for Lagrangian discretizations of Wasserstein gradient
flows), although in this setting it would be challenging to achieve second order accuracy in
space. The metric extrapolation enjoys the nicest mathematical structure, and in principle
one could exploit its dual formulation (4.31), which is a convex optimization problem, to im-
plement it numerically. However, dealing with the strong-convexity constraint on the Brenier
potential requires the development of dedicated tools. We will investigate this direction in a
future work.
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Abstract

We show that the widely used model governing the motion of two incompressible immiscible fluids in a possibly
heterogeneous porous medium has a formal gradient flow structure. More precisely, the fluid composition is
governed by the gradient flow of some non-smooth energy. Starting from this energy together with a dissipation
potential, we recover the celebrated Darcy-Muskat law and the capillary pressure law governing the flow thanks to
the steepest descent condition for the energy. Our interpretation does not require the introduction of any algebraic
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Résumé

La structure de flot gradient pour les écoulements incompressibles immiscible en milieux poreux.
Nous montrons qu’un modèle très couramment utilisé dans l’industrie pour décrire un écoulement diphasique
incompressible et immiscible dans un milieux poreux possiblement hétérogène possède une structure de flot gra-
dient. Plus précisément, la composition du fluide est gouvernée par flot gradient d’une énergie singulière. En
partant de cette énergie et d’un potentiel de dissipation, nous retrouvons les lois de Darcy-Muskat et de pression
capillaire gouvernant l’écoulement à l’aide d’un principe de moindre dissipation de l’énergie. Notre interprétation
ne nécessite pas l’introduction de transformation algébrique du type pression globale ou transformée de Kirchhoff,
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Email addresses: clement.cances@inria.fr (Clément Cancès), thomas.gallouet@polytechnique.edu (Thomas O.
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1. Introduction

1.1. General motivations

The models for multiphase porous media flows have been widely studied in the last decades since they
are of great interest in several fields of applications, like e.g. oil-engineering, carbon dioxide sequestration,
or nuclear waste repository management. We refer to the monographs [5,6] for an extensive discussion
on the derivation of models for porous media flows, and to [4,11,3,13] for numerical and mathematical
studies.

More recently, F. Otto showed in his seminal work [17] that the so-called porous medium equation:

∂tρ−∆ρm = 0 for (x, t) ∈ RN × R+ and m > 1,

which is a very simplified model corresponding to the case of an isentropic gas flowing within a porous
medium, can be reinterpreted in a physically relevant way as the gradient flow of the free energy with
respect to some Wasserstein metric in the space of Borel probability measures. Extensions to more general
degenerate parabolic equations were then proposed for example in [1,15].

In this note, we will focus on the model governing the motion of an incompressible immiscible two-phase
flow in a possibly heterogeneous porous medium, that will appear in the sequel as (3) and (11)–(13). This
model is relevant for instance for describing the flow of oil and water, whence the subscripts o and w
appearing in the sequel of this note, within a rock that is possibly made of several rock-types. Our goal
is to show that, at least formally, this model can be reinterpreted as the gradient flow of some singular
energy. This will motivate the use of structure-preserving numerical methods inspired from [9] to this
model in the future.

Our approach is inspired from the one of A. Mielke [16] and, more closely, to the one of M. A.
Peletier [18]. The basic recipe for variational modeling is recalled in §1.2, then its ingredients are identified
in §2. This approach is purely formal, but it can be made rigorous under some unphysical strict positivity
assumption on the phase mobilities ηo, ηw defined below. We will remain sloppy about regularity issues
all along this note.

1.2. The recipe of getting formal variational models

Here we recall very briefly the main ingredients needed for defining a formal gradient flow.

i. The state space M is the set where the solution of the gradient flow can evolve.

ii. At a point s ∈M, the tangent space TsM, to whom would belong ∂ts, is identified in a non-unique
way with a so-called process space Zs (that might depend on s). More precisely, we assume that for
each s ∈M there exists an onto linear application P(s) : Zs → TsM.

iii. The energy functional E : M → R ∪ {+∞} admits a (local) sub-differential ∂sE(s) ⊂ (TsM)
∗

at
s ∈M.

iv. The dissipation potential D is such that, for all s ∈ M and all V ∈ Zs, one has D(s; V) ≥ 0. It is
supposed to be convex and coercive w.r.t. to its second variable.

v. The initial data s0 belongs to M.

All these ingredient being defined, we obtain from the steepest descent condition that s : R+ →M is the
gradient flow of the energy E for the dissipation D if
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∂ts = P(s)V where V ∈ argmin
V̂∈Zs

(
max

h∈∂sE(s)

(
D
(
s(t); V̂(t)

)
+
〈
h , P(s)V̂

〉
(TsM)∗,TsM

))
. (1)

The formula (1) means that a gradient flow is lazy and smart: the motion aims to minimize the dissipation
while maximizing the decay of the energy. We refer to [16,18] for additional material on such a formal
modeling and to [2] for an extensive (and rigorous) discussion on gradient flows in metric spaces.

2. Variational modeling for two-phase flows in porous media

2.1. State space and process space

Let Ω be an open subset of RN representing a (possibly heterogeneous) porous medium, let φ : Ω→ (0, 1)
be a measurable function (called porosity) such that φ ≤ φ(x) ≤ φ for a.e. x ∈ Ω for some constants

φ, φ ∈ (0, 1), and let so, sw : Ω→ [0, 1) be two measurable functions (so-called residual saturations) such
that so(x) + sw(x) < 1 for a.e. x ∈ Ω. In what follows, we denote by

so(x) = 1− sw(x), sw(x) = 1− so(x), for a.e. x ∈ Ω.

For almost all x ∈ Ω, we denote by

∆x =
{
s = (so, sw) ∈ R2

∣∣∣ so + sw = 1 with sα(x) ≤ sα ≤ sα(x) for α ∈ {o, w}
}
.

Let s0 = (s0
o, s

0
w) be a given initial saturation profile, we denote by mα (α ∈ {o, w}) the volume

occupied by the phase α in the porous medium, i.e.,

mo =

∫

Ω

φ(x)s0
o(x)dx, and mw =

∫

Ω

φ(x)s0
w(x)dx.

For simplicity, we restrict our attention to the case where the volume of each phase is preserved: no source
term and no-flux boundary conditions (otherwise, non-autonomous gradient flows should be considered).
Hence the saturation profile lies at each time in the so-called state space M, defined by

M =

{
s = (so, sw)

∣∣∣∣ sα : Ω→ R+ with

∫

Ω

φ(x)sα(x)dx = mα for α ∈ {o, w}
}
.

Let us now describe the processes that allow to transform the saturation profile. We denote by

Zs =
{

V = (vo,vw)
∣∣∣ vα : Ω→ RN with vα · n = 0 on ∂Ω

}

the process space of the admissible processes for modifying a saturation profile s ∈M. The identification
between V = (vo,vm) ∈ Zs and ṡ = (ṡo, ṡw) ∈ TsM is made through the onto operator P(s) : Zs →
TsM defined by

P(s)V =

(
− 1

φ
∇ · vo ; − 1

φ
∇ · vw

)
, ∀V ∈ Zs. (2)

Since ∂ts ∈ TsM, the relation (2) yields the existence of some phase filtration speeds (vo,vw) ∈ Zs

such that the following continuity equations hold:

φ∂tsα + ∇ · vα = 0, α ∈ {o, w}. (3)

The relation (3) must be understood as the local volume conservation of each phase α ∈ {o, w}. Finally,
the duality bracket 〈· , ·〉(TsM)∗,TsM is given by

〈h, ṡ〉(TsM)∗,TsM =
∑

α∈{o,w}

∫

Ω

φhαṡα = −
∑

α∈{o,w}

∫

Ω

hα∇ · vα =
∑

α∈{o,w}

∫

Ω

∇hα · vα.
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2.2. About the energy

For a.e. x ∈ Ω, we assume the capillary pressure graph π(·,x) : [so(x), so(x)] → 2R to be a maximal
monotone graph whose restriction π|(so,so)

(·,x) to the open interval (so(x), so(x)) is an increasing (single-

valued) function belonging to L1(so(x), so(x)). In particular, π−1(·,x) : R → [so(x), so(x)] is a single
valued function.

We denote by Π : R× Ω→ R ∪ {+∞} the (strictly convex w.r.t. its first variable) function defined by

Π(so,x) =





∫ so

σ(x)

π(a,x)da− (ρo − ρw)sgz if so ∈ [so(x), so(x)],

+∞ otherwise,

where, denoting by ez the downward unit normal vector of RN , we have set z = x · ez, and where g
and ρα denote the gravity constant and the density of the phase α respectively, and where σ is such that
x 7→ π(σ(x),x)− (ρo − ρw)gz is constant. Since π|(so,so)

(·,x) ∈ L1(so(x), so(x)), we get that Π(so(x),x)

and Π(so(x),x) are finite for a.e. x ∈ Ω.
The volume energy function E : R2 × Ω→ R ∪ {+∞} is defined by

E(s,x) =

{
Π(so,x) if s = (so, sw) ∈ ∆x,

+∞ otherwise.
(4)

The function E(·,x) is convex and finite on ∆x for a.e. x ∈ Ω. Its sub-differential is given by

∂sE(s,x) =

{{
(ho, hw) ∈ R2

∣∣∣ ho − hw + (ρo − ρw)gz ∈ π(so,x)
}

if s ∈ ∆x,

∅ otherwise.

Finally, we can define the so-called global energy E :M→ R ∪ {+∞} by

E(s) =

∫

Ω

φ(x)E(s(x),x)dx, ∀s = (so, sw) ∈M. (5)

The saturation profile s ∈ M is of finite energy E(s) < ∞ if and only if s(x) ∈ ∆x for a.e. x ∈ Ω. For
s ∈M with finite energy one can check that the local sub-differential ∂sE(s) of E at s is given by

∂sE(s) =
{
h = (ho, hw) : Ω→ R2

∣∣∣ho − hw + (ρo − ρw)gz ∈ π(so,x) for a.e. x ∈ Ω
}
. (6)

2.3. About the dissipation

The permeability tensor field Λ ∈ L∞(Ω;RN×N ) is assumed to be such that Λ(x) is a symmetric and
positive matrix for a.e. x ∈ Ω. Moreover, we assume that there exist λ?, λ

? ∈ R∗+ such that

λ?|u|2 ≤ Λ(x)u · u ≤ λ?|u|2, for all u ∈ RN and a.e. x ∈ Ω.

This ensures that Λ(x) is invertible for a.e. x ∈ Ω. Its inverse is denoted by Λ−1(x).
We also need the two Carathéodory functions ηo, ηw : R × Ω → R+ — the so-called phase mobilities

— such that ηα(·,x) are Lipschitz continuous and nondecreasing on R+ for a.e. x ∈ Ω and α ∈ {o, w}.
Moreover, we assume that ηα(s,x) = 0 if s ≤ sα(x) and that ηα(s,x) > 0 if s > sα(x).

Given s = (so, sw) ∈M and V = (vo,vw) ∈ Zs, we define the dissipation potential D by

D(s,V) =
1

2

∑

α∈{o,w}

∫

Ω

Λ−1vα · vα
ηα(sα)

dx, ∀s ∈M, ∀V ∈ Zs.

The finiteness of the dissipation, i.e., D(s,V) <∞, implies vα = 0 a.e. on {x ∈ Ω | sα(x) ≤ sα(x)}.
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2.4. Steepest descent condtition and resulting equations

Let us consider the gradient flow governed by the energy E , the continuity equation (3), and the
dissipation D. Let s ∈ M be a finite energy saturation profile, then because of the steepest descent
condition (1) and of the definition (2) of the operator P(s) : Zs → TsM, the process V = (vo,vw) ∈ Zs

and the hydrostatic phase pressures h = (ho, hw) must be chosen so that (V,h) is the min−max saddle-
point of the functional

(V̂, ĥ) 7→ D(s, V̂)−
∑

α∈{o,w}

∫

Ω

ĥα∇ · v̂αdx. (7)

One can first fix ĥ ∈ ∂sE(s) and minimize w.r.t. V. This provides

argmin
V̂∈Z


D(s, V̂)−

∑

α∈{o,w}

∫

Ω

ĥα∇ · v̂αdx


 =

(
−ηo(so)Λ∇ĥo,−ηw(sw)Λ∇ĥw

)
. (8)

Injecting this expression in (7) and maximizing w.r.t. ĥ ∈ ∂sE(s), that is minimizing

h = argmin
ĥ∈∂sE(s)

(
1

2

∫

Ω

ηα(sα)Λ∇ĥα · ∇ĥα
)

(9)

among all elements ĥ in the subdifferential ∂sE(s), yields

−∇ ·
(
vo + vw

)
= 0, vα = −ηα(sα)Λ∇hα. (10)

In (10) the first condition follows from the constraint ĥ ∈ ∂sE(s) in (9), and the second one from (8).
Define the phase pressures p = (po, pw) by pα(x) = hα(x) + ραgz, for a.e. x ∈ Ω and α ∈ {o, w}, then

we recover the classical Darcy-Muskat law :

vα = −ηα(sα)Λ∇ (pα − ραgz) , α ∈ {o, w}. (11)

Moreover, it follows from (6) that the following capillary pressure relation holds:

po(x)− pw(x) ∈ π(so(x),x) a.e. in Ω. (12)

We recover here the multivalued capillary pressure relation proposed in [19,7,8,10].
Combining (3) and (10) easily gives ∂t(so + sw) = 0, so that the condition

so + sw = 1 a.e. in Ω, (13)

is preserved along time and the whole pore volume remains saturated by the two fluids.
Gathering (3), (11), (12) and (13) gives the usual system of equations governing immiscible incom-

pressible two-phase flows in porous media [5,11,3,12,10].

Remark 1 By similarity with the classical Wasserstein distance used in optimal mass transport [17] one
could here endow the tangent space TsM at s ∈M with a weighted Ḣ−1-scalar product

(
ṡ1, ṡ2

)
TsM =

∑

α∈{o,w}

∫

Ω

ηα(sα)Λ∇h1,α ·∇h2,αdx,

where, for i ∈ {1, 2} and α ∈ {o, w}, we have set ṡi = (ṡi,o, ṡi,w) and where hi,α solves

−∇ · (ηα(sα)Λ∇hi,α) = ṡi,α in Ω, ηα(sα)Λ∇hi,α · n = 0 on ∂Ω.

Under some conditions on the functions ηα (see [14]), this should allow us to considerM as a metric space
endowed with the corresponding distance, but E is not locally λ-convex for this Riemannian structure. The
minimization (9) then consists in the selection of the subgradient with minimal norm.
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INCOMPRESSIBLE IMMISCIBLE MULTIPHASE FLOWS IN

POROUS MEDIA: A VARIATIONAL APPROACH

CLÉMENT CANCÈS, THOMAS O. GALLOUËT, AND LÉONARD MONSAINGEON

Abstract. We describe the competitive motion of (N + 1) incompressible

immiscible phases within a porous medium as the gradient flow of a singu-
lar energy in the space of non-negative measures with prescribed masses, en-

dowed with some tensorial Wasserstein distance. We show the convergence of

the approximation obtained by a minimization scheme à la [R. Jordan, D.
Kinderlehrer & F. Otto, SIAM J. Math. Anal, 29(1):1–17, 1998]. This allow

to obtain a new existence result for a physically well-established system of
PDEs consisting in the Darcy-Muskat law for each phase, N capillary pressure

relations, and a constraint on the volume occupied by the fluid. Our study

does not require the introduction of any global or complementary pressure.

Keywords. Multiphase porous media flows, Wasserstein gradient flows, constrained par-
abolic system, minimizing movement scheme

AMS subjects classification. 35K65, 35A15, 49K20, 76S05

Contents

1. Introduction 2
1.1. Equations for multiphase flows in porous media 2
1.2. Wasserstein gradient flow of the energy 3
1.3. Minimizing movement scheme and main result 7
1.4. Goal and positioning of the paper 7
2. One-step regularity estimates 9
2.1. Energy and distance estimates 9
2.2. Flow interchange, entropy estimate and enhanced regularity 10
3. The Euler-Lagrange equations and pressure bounds 13
3.1. A decomposition result 14
3.2. The discrete capillary pressure law and pressure estimates 16
4. Convergence towards a weak solution 20
4.1. Time integrated estimates 20
4.2. Compactness of approximate solutions 21
4.3. Identification of the limit 22
Appendix A. A simple condition for the geodesic convexity of (Ω, di) 25
Appendix B. A multicomponent bathtub principle 26
Acknowledgements 30
References 30

1



2 CLÉMENT CANCÈS, THOMAS O. GALLOUËT, AND LÉONARD MONSAINGEON

1. Introduction

1.1. Equations for multiphase flows in porous media. We consider a convex
open bounded set Ω ⊂ Rd representing a porous medium. N+1 incompressible and
immiscible phases, labeled by subscripts i ∈ {0, . . . , N} are supposed to flow within
the pores. Let us present now some classical equations that describe the motion
of such a mixture. The physical justification of these equations can be found for
instance in [10, Chapter 5]. We denote by si : Ω×(0, T ) =: Q→ [0, 1] the content of
the phase i, i.e., the volume ratio of the phase i compared to all the phases and the
solid matrix, and by vi the filtration speed of the phase i. Then the conservation
of the volume of each phase writes

(1) ∂tsi + ∇ · (sivi) = 0 in Q, ∀i ∈ {0, . . . , N},
where T > 0 is an arbitrary finite time horizon. The filtration speed of each phase
is assumed to be given by Darcy’s law

(2) vi = − 1

µi
K (∇pi − ρig) in Q, ∀i ∈ {0, . . . , N}.

In the above relation, g is the gravity vector, µi denotes the constant viscosity of
the phase i, pi its pressure, and ρi its density. The intrinsic permeability tensor
K : Ω → Rd×d is supposed to be smooth, symmetric K = KT , and uniformly
positive definite: there exist κ?, κ

? > 0 such that:

(3) κ?|ξ|2 ≤ K(x)ξ · ξ ≤ κ?|ξ|2, ∀ξ ∈ Rd, ∀x ∈ Ω.

The pore volume is supposed to be saturated by the fluid mixture

(4) σ :=
N∑

i=0

si = ω(x) a.e. in Q,

where the porosity ω : Ω → (0, 1) of the surrounding porous matrix is assumed to
be smooth. In particular, there exists 0 < ω? ≤ ω? such that ω? ≤ ω(x) ≤ ω? for
all x ∈ Ω. In what follows, we denote by s = (s0, . . . , sN ), by

∆(x) =

{
s ∈ (R+)N+1

∣∣∣∣∣
N∑

i=0

si = ω(x)

}
,

and by

X =
{
s ∈ L1(Ω;RN+1

+ )
∣∣ s(x) ∈ ∆(x) a.e. in Ω

}
.

There is an obvious one-to-one mapping between the sets ∆(x) and

∆∗(x) =

{
s∗ = (s1, . . . , sN ) ∈ (R+)N

∣∣∣∣∣
N∑

i=1

si ≤ ω(x)

}
,

and consequently also between X and

X ∗ =
{
s∗ ∈ L1(Ω;RN+ )

∣∣ s∗(x) ∈ ∆∗(x) a.e. in Ω
}
.

In what follows, we denote by Υ =
⋃
x∈Ω

∆∗(x)× {x}.

In order to close the system, we impose N capillary pressure relations

(5) pi − p0 = πi(s
∗,x) a.e in Q, ∀i ∈ {1, . . . , N},
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where the capillary pressure functions πi : Υ→ R are assumed to be continuously
differentiable and to derive from a strictly convex potential Π : Υ→ R+:

πi(s
∗,x) =

∂Π

∂si
(s∗,x) ∀i ∈ {1, . . . , N}.

We assume that Π is uniformly convex w.r.t. its first variable. More precisely, we
assume that there exist two positive constants $? and $? such that, for all x ∈ Ω
and all s∗, ŝ∗ ∈ ∆∗(x), one has

(6)
$?

2
|ŝ∗ − s∗|2 ≥ Π(ŝ∗,x)−Π(s∗,x)− π(s∗,x) · (ŝ∗ − s∗) ≥ $?

2
|ŝ∗ − s∗|2,

where we introduced the notation

π :

{
Υ→ RN

(s∗,x) 7→ π(s∗,x) = (π1(s∗,x), . . . , πN (s∗,x)) .

The relation (6) implies that π is monotone and injective w.r.t. its first variable.
Denoting by

z 7→ φ(z,x) = (φ1(z,x), . . . , φN (z,x)) ∈ ∆∗(x)

the inverse of π(·,x), it follows from (6) that

(7) 0 <
1

$?
≤ Jzφ(z,x) ≤ 1

$?
for all x ∈ Ω and all z ∈ π(∆∗(x),x),

where Jz stands for the Jacobian with respect to z and the above inequality should
be understood in the sense of positive definite matrices. Moreover, due to the
regularity of π w.r.t. the space variable, there exists Mφ > 0 such that

(8) |∇xφ(z,x)| ≤Mφ for all x ∈ Ω and all z ∈ π(∆∗(x),x),

where ∇x denote the gradient w.r.t. to the second variable only.

The problem is complemented with no-flux boundary conditions

(9) vi · n = 0 on ∂Ω× (0, T ), ∀i ∈ {0, . . . , N},
and by the initial content profile s0 =

(
s0

0, . . . , s
0
N

)
∈ X :

(10) si(·, 0) = s0
i ∀i ∈ {0, . . . , N}, with

N∑

i=0

s0
i = ω a.e. in Ω.

Since we did not consider sources, and since we imposed no-flux boundary con-
ditions, the volume of each phase is conserved along time

(11)

∫

Ω

si(x, t)dx =

∫

Ω

s0
i (x)dx =: mi > 0, ∀i ∈ {0, . . . , N}.

We can now give a proper definition of what we call a weak solution to the
problem (1)–(2), (4)–(5), and (9)–(10).

Definition 1.1 (Weak solution). A measurable function s : Q → (R+)N+1 is
said to be a weak solution if s ∈ ∆ a.e. in Q, if there exists p = (p0, . . . , pN ) ∈
L2((0, T );H1(Ω))N+1 such that the relations (5) hold, and such that, for all φ ∈
C∞c (Ω× [0, T )) and all i ∈ {0, . . . , N}, one has

(12)

∫∫

Q

si∂tφdxdt+

∫

Ω

s0
iφ(·, 0)dx−

∫∫

Q

si
µi

K (∇pi − ρig) ·∇φdxdt = 0.

1.2. Wasserstein gradient flow of the energy.
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1.2.1. Energy of a configuration. First, we extend the convex function Π : Υ →
[0,+∞], called capillary energy density, to a convex function (still denoted by)
Π : RN+1 × Ω→ [0,+∞] by setting

Π(s,x) =

{
Π
(
ω s
∗

σ ,x
)

= Π
(
ω s1σ , . . . , ω

sN
σ ,x

)
if s ∈ RN+1

+ and σ ≤ ω(x),

+∞ otherwise,

σ being defined by (4). The extension of Π by +∞ where σ > ω is natural because

of the incompressibility of the fluid mixture. The extension to {σ < ω} ∪ RN+1
+ is

designed so that the energy density only depends on the relative composition of the
fluid mixture. However, this extension is somehow arbitrary, and, as it will appear
in the sequel, it has no influence on the flow since the solution s remains in X (i-e∑N
i=0 si = ω). In our previous note [15] the appearance of void σ < ω was directly

prohibited by a penalization in the energy.

The second part in the energy comes from the gravity. In order to lighten the
notations, we introduce the functions

Ψi :

{
Ω → R+,
x 7→ −ρig · x, ∀i ∈ {0, . . . , N},

and

Ψ :

{
Ω → RN+1

+ ,
x 7→ (Ψ0(x), . . . ,ΨN (x)) .

The fact that Ψi can be supposed to be positive come from the fact that Ω is
bounded. Even though the physically relevant potentials are indeed the gravita-
tional Ψi(x) = −ρig · x, the subsequent analysis allows for a broader class of ex-
ternal potentials and for the sake of generality we shall therefore consider arbitrary
Ψi ∈ C1(Ω) in the sequel.

We can now define the convex energy functional E : L1(Ω,RN+1)→ R ∪ {+∞}
by adding the capillary energy to the gravitational one:

(13) E(s) =

∫

Ω

(Π(s,x) + s ·Ψ) dx ≥ 0, ∀s ∈ L1(Ω;RN+1).

Note moreover that E(s) < ∞ iff s ≥ 0 and σ ≤ ω a.e. in Ω. It follows from the
mass conservation (11) that

∫

Ω

σ(x)dx =
N∑

i=0

mi =

∫

Ω

ω(x)dx.

Assume that there exists a non-negligible subset A of Ω such that σ < ω on A, then
necessarily, there must be a non-negligible subset B of Ω such that σ > ω so that
the above equation holds, hence E(s) = +∞. Therefore,

(14) E(s) <∞ ⇔ s ∈ X .

Let p = (p0, . . . , pN ) : Ω → RN+1 be such that p ∈ ∂sΠ(s,x) for a.e. x in Ω,
then, defining hi = pi + Ψi(x) for all i ∈ {0, . . . , N} and h = (hi)0≤i≤N , h belongs

to the subdifferential ∂sE(s) of E at s, i.e.,

E(ŝ) ≥ E(s) +
N∑

i=0

∫

Ω

hi(ŝi − si)dx, ∀ŝ ∈ L1(Ω;RN+1).
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The reverse inclusion also holds, hence

(15) ∂sE(s) =
{
h : Ω→ RN+1

∣∣ hi −Ψi(x) ∈ ∂sΠ(s,x) for a.e. x ∈ Ω
}
.

Thanks to (14), we know that a configuration s has finite energy iff s ∈ X .
Since we are interested in finite energy configurations, it is relevant to consider the
restriction of E to X . Then using the one-to-one mapping between X and X ∗, we
define the energy of a configuration s∗ ∈ X ∗, that we denote by E(s∗) by setting
E(s∗) = E(s) where s is the unique element of X corresponding to s∗ ∈ X ∗.

1.2.2. Geometry of Ω and Wasserstein distance. Inspired by the paper of Lisini [36],
where heterogeneous anisotropic degenerate parabolic equations are studied from
a variational point of view, we introduce (N + 1) distances on Ω that take into
account the permeability of the porous medium and the phase viscosities. Given
two points x,y in Ω, we denote by

P (x,y) =
{
γ ∈ C1([0, 1]; Ω)

∣∣γ(0) = x and γ(1) = y
}

the set of the smooth paths joining x to y, and we introduce distances di, i ∈
{0, . . . , N} between elements on Ω by setting

(16) di(x,y) = inf
γ∈P (x,y)

(∫ 1

0

µiK−1(γ(τ))γ′(τ) · γ′(τ)dτ

)1/2

, ∀(x,y) ∈ Ω.

It follows from (3) that

(17)

√
µi
κ?
|x− y| ≤ di(x,y) ≤

√
µi
κ?
|x− y|, ∀(x,y) ∈ Ω

2
.

For i ∈ {0, . . . , N} we define

Ai =

{
si ∈ L1(Ω;R+)

∣∣∣∣
∫

Ω

sidx = mi

}
.

Given si, ŝi ∈ Ai, the set of admissible transport plans between si and ŝi is given
by

Γi(si, ŝi) =
{
θi ∈M+(Ω× Ω)

∣∣∣ θi(Ω× Ω) = mi, θ
(1)
i = si and θ

(2)
i = ŝi

}
,

where M+(Ω × Ω) stands for the set of Borel measures on Ω × Ω and θ
(k)
i is the

kth marginal of the measure θi. We define the quadratic Wasserstein distance Wi

on Ai by setting

(18) Wi(si, ŝi) =

(
inf

θi∈Γ(si,ŝi)

∫∫

Ω×Ω

di(x,y)2dθi(x,y)

)1/2

.

Due to the permeability tensor K(x), the porous medium Ω might be heterogeneous
and anisotropic. Therefore, some directions and areas might me privileged by the
fluid motions. This is encoded in the distances di we put on Ω. Moreover, the
more viscous the phase is, the more costly are its displacements, hence the µi in
the definition (16) of di. But it follows from (17) that

(19)

√
µi
κ?
Wref(si, ŝi) ≤Wi(si, ŝi) ≤

√
µi
κ?
Wref(si, ŝi)., ∀si, ŝi ∈ Ai,
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where Wref denotes the classical quadratic Wasserstein distance defined by

(20) Wref(si, ŝi) =

(
inf

θi∈Γ(si,ŝi)

∫∫

Ω×Ω

|x− y|2dθi(x,y)

)1/2

.

With the phase Wasserstein distances (Wi)0≤i≤N at hand, we can define the
global Wasserstein distance W on A := A0 × · · · × AN by setting

W (s, ŝ) =

(
N∑

i=0

Wi(si, ŝi)
2

)1/2

, ∀s, ŝ ∈ A.

Finally for technical reasons we also assume that there exist smooth extensions

K̃ and ω̃ to Rd of the tensor and the porosity, respectively, such that (3) holds on

Rd for K̃, and such that ω̃ is strictly bounded from below. This allows to define

distances d̃i on the whole Rdby

(21) d̃i(x,y) = inf
γ∈P̃ (x,y)

(∫ 1

0

µiK̃−1(γ(τ))γ′(τ) · γ′(τ)dτ

)1/2

, ∀x,y ∈ Rd

where P̃ (x,y) =
{
γ ∈ C1([0, 1];Rd)

∣∣γ(0) = x and γ(1) = y
}
. In the sequel, we

assume that the extension K̃ of K is such that

(22) Ω is geodesically convex in Mi = (Rd, d̃i) for all i.

In particular d̃i = di on Ω × Ω. Since K̃−1 is smooth, at least C2
b (Rd), the Ricci

curvature of the smooth complete Riemannian manifoldMi is uniformly bounded,

i.e., there exists C depending only on (µi)0≤i≤N and K̃ such that

(23) |RicMi,x(v)| ≤ CµiK−1v · v, ∀x ∈ Rd, ∀v ∈ Rd.

Combined with the assumptions on ω̃ we deduce that Hω̃ is λ̃i displacement convex

on Pac2 (Mi) for some λ̃i ∈ R. Then (22) and mass scaling implies that Hω is λi
displacement convex on (Ai,Wi) for some λi ∈ R. We refer to [46, Chap. 14 & 17]
for further details on the Ricci curvature and its links with optimal transportation.

In the homogeneous and isotropic case K(x) = Id, Condition (22) simply amounts
to assuming that Ω is convex. A simple sufficient condition implying (22) is given
in Appendix A in the isotropic but heterogeneous case K(x) = κ(x)Id.

1.2.3. Gradient flow of the energy. The content of this section is formal. Our aim
is to write the problem as a gradient flow, i.e.

(24)
ds

dt
∈ −gradW E(s) = −

(
gradW0

E(s), . . . , gradWN
E(s)

)

where gradW E(s) denotes the full Wasserstein gradient of E(s), and gradWi
E(s)

stands for the partial gradient of si 7→ E(s) with respect to the Wasserstein distance
Wi. The Wasserstein distance Wi was built so that ṡ = (ṡi)i ∈ gradW E(s) iff
there exists h ∈ ∂sE(s) such that

∂tsi = −∇ ·
(
si

K
µi

∇hi

)
, ∀i ∈ {0, . . . , N}.

Such a construction was already performed by Lisini in the case of a single equation.
Owing to the definitions (13) and (15) of the energy E(s) and its subdifferential
∂sE(s), the partial differential equations can be (at least formally) recovered. This
was roughly speaking to purpose of our note [15].
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In order to define rigorously the gradient gradW E in (24), A has to be a Rie-
mannian manifold. The so-called Otto’s calculus (see [42] and [46, Chapter 15])
allows to put a formal Riemannian structure on A. But as far as we know, this
structure cannot be made rigorous and A is a mere metric space. This leads us
to consider generalized gradient flows in metric spaces (cf. [5]). We won’t go deep
into details in this direction, but we will prove that weak solutions can be obtained
as limits of a minimizing movement scheme presented in the next section. This
characterizes the gradient flow structure of the problem.

1.3. Minimizing movement scheme and main result.

1.3.1. The scheme and existence of a solution. For a fixed time-step τ > 0, the
so-called minimizing movement scheme [24, 5] or JKO scheme [30] consists in com-
puting recursively (sn)n≥1 as the solution to the minimization problem

(25) sn = Argmin
s∈A

(
W (s, sn−1)2

2τ
+ E(s)

)
,

the initial data s0 being given (10).

1.3.2. Approximate solution and main result. Anticipating that the JKO scheme
(25) is well posed (this is the purpose of Proposition 2.1 below), we can now define
the piecewise constant interpolation sτ ∈ L∞((0, T );X ∩A) by

(26) sτ (0, ·) = s0, and sτ (t, ·) = sn ∀t ∈ ((n− 1)τ, nτ ], ∀n ≥ 1.

The main result of our paper is the following.

Theorem 1.2. Let (τk)k≥1 be a sequence of time steps tending to 0, then there
exists one weak solution s in the sense of Definition 1.1 such that, up to an unlabeled
subsequence, (sτk)k≥1 converges a.e. in Q towards s as k tends to ∞.

As a direct by-product of Theorem 1.2, the continuous problem admits (at least)
one solution in the sense of Definition 1.1. As far as we know, this existence result
is new.

Remark 1.3. It is worth stressing that our final solution will satisfy a posteriori
∂tsi ∈ L2((0, T );H1(Ω)′), si ∈ L2((0, T );H1(Ω)), and thus si ∈ C([0, T ];L2(Ω)).
This regularity is enough to retrieve the so-called Energy-Dissipation-Equality

d

dt
E(s(t)) = −

N∑

i=0

∫

Ω

K
si(t)

µi
∇(pi(t)+Ψi)·∇(pi(t)+Ψi)dx ≤ 0 for a.e. t ∈ (0, T ),

which is another admissible formulation of gradient flows in metric spaces [5].

1.4. Goal and positioning of the paper. The aims of the paper are twofolds.
First, we aim to provide rigorous foundations to the formal variational approach
exposed in the authors’ recent note [15]. This gives new insights into the modeling
of complex porous media flows and their numerical approximation. Our approach
appears to be very natural since only physically motivated quantities appear in
the study. Indeed, we manage to avoid the introduction of the so-called Kirchhoff
transform and global pressure, which classically appear in the mathematical study
of multiphase flows in porous media (see for instance [18, 9, 20, 26, 27, 22, 19, 2, 3]).
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Second, the existence result that we deduce from the convergence of the varia-
tional scheme is new as soon as there are at least three phases (N ≥ 2). Indeed,
since our study does not require the introduction of any global pressure, we get rid
of many structural assumptions on the data among which the so-called total dif-
ferentiability condition, see for instance Assumption (H3) in the paper by Fabrie
and Saad [26]. This structural condition is not naturally satisfied by the models,
and suitable algorithms have to be employed in order to adapt the data to this
constraint [21]. However, our approach suffers from another technical difficulty: we
are stuck to the case of linear relative permeabilities. The extension to the case of
nonlinear concave relative permeabilities, i.e., where (1) is replaced by

∂tsi + ∇ · (ki(si)vi) = 0,

may be reachable thanks to the contributions of Dolbeault, Nazaret, and Savaré [25]
(see also [48]), but we did not push in this direction since the relative permeabilities
ki are in general supposed to be convex in models coming from engineering.

Since the seminal paper of Jordan, Kinderlehrer, and Otto [30], gradient flows
in metric spaces (and particularly in the space of probability measures endowed
with the quadratic Wasserstein distance) were the object of many studies. Let
us for instance refer to the monograph of Ambrosio, Gigli, and Savaré [5] and to
Villani’s book [46, Part II] for a complete overview. Applications are numerous.
We refer for instance to [41] for an application to magnetic fluids, to [43, 7, 6] for
applications to supra-conductivity, to [12, 11, 47] for applications to chemotaxis,
to [37] for phase field models, to [39] for a macroscopic model of crowd motion,
to [13] for an application to granular media, to [17] for aggregation equations,
or to [31] for a model of ionic transport that applies in semi-conductors. In the
context of porous media flows, this framework has been used by Otto [42] to study
the asymptotic behavior of the porous medium equation, that is a simplified model
for the filtration of a gas in a porous medium. The gradient flow approach in
Wasserstein metric spaces was used more recently by Laurençot and Matioc [34] on
a thin film approximation model for two-phase flows in porous media. Finally, let us
mention that similar ideas were successfully applied for multicomponent systems,
see e.g. [16, 32, 48, 49].

The variational structure of the system governing incompressible immiscible two-
phase flows in porous media was recently depicted by the authors in their note [15].
Whereas the purpose of [15] is formal, our goal is here to give a rigorous foundation
to the variational approach for complex flows in porous media. Finally, let us
mention the work of Gigli and Otto [28] where it was noticed that multiphase linear
transportation with saturation constraint (as we have here thanks to (1) and (4))
yields nonlinear transport with mobilities that appear naturally in the two-phase
flow context.

The paper is organized as follows. In Section 2, we derive estimates on the
solution sτ for a fixed τ . Beyond the classical energy and distance estimates detailed
in §2.1, we obtain enhanced regularity estimates thanks to an adaptation of the
so-called flow interchange technique of Matthes, McCann, and Savaré [38] to our
inhomogeneous context in §2.2. Because of the constraint on the pore volume (4),
the auxiliary flow we use is no longer the heat flow, and a drift term has to be added.
An important effort is then done in §3 to derive the Euler-Lagrange equations
that follow from the optimality of sn. Our proof is inspired from the work of
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Maury, Roudneff-Chupin, and Santambrogio [39]. It relies on an intensive use of the
dual characterization of the optimal transportation problem and the corresponding
Kantorovitch potentials. However, additional difficulties arise from the multiphase
aspect of our problem, in particular when there are at least three phases (i.e., N ≥
2). These are overpassed using a generalized multicomponent bathtub principle
(Theorem B.1 in Appendix) and computing the associated Lagrange multipliers in
§3.1. This key step then allows to define the notion of discrete phase and capillary
pressures in §3.2. Then Section 4 is devoted to the convergence of the approximate
solutions (sτk)k towards a weak solution s as τk tends to 0. The estimates we
obtained in Section 2 are integrated w.r.t. time in §4.1. In §4.2, we show that these
estimates are sufficient to enforce the relative compactness of (sτk)k in the strong
L1(Q)N+1 topology. Finally, it is shown in §4.3 that any limit s of (sτk)k is a weak
solution in the sense of Definition 1.1.

2. One-step regularity estimates

The first thing to do is to show that the JKO scheme (25) is well-posed. This is
the purpose of the following Proposition.

Proposition 2.1. Let n ≥ 1 and sn−1 ∈ X ∩A, then there exists a unique solution
sn to the scheme (25). Moreover, one has sn ∈ X ∩A.

Proof. Any sn−1 ∈ X ∩ A has finite energy thanks to (14). Let (sn,k)k ⊂ A
be a minimizing sequence in (25). Testing sn−1 in (25) it is easy to see that
E(sn,k) ≤ E(sn−1) < ∞ for large k, thus (sn,k)k ⊂ X ∩A thanks to (14). Hence,

one has 0 ≤ sn,ki (x) ≤ ω(x) for all k. By Dunford-Pettis theorem, we can therefore

assume that sn,ki ⇀ sni weakly in L1(Ω). It is then easy to check that the limit sn

of sn,k belongs to X ∩A. The lower semi-continuity of the Wasserstein distance
with respect to weak L1 convergence is well known (see, e.g., [44, Prop. 7.4]), and
since the energy functional is convex thus l.s.c., we conclude that sn is indeed a
minimizer. Uniqueness follows from the strict convexity of the energy as well as
from the convexity of the Wasserstein distances (w.r.t. linear interpolation sθ =
(1− θ)s0 + θs1). �

The rest of this section is devoted to improving the regularity of the successive
minimizers.

2.1. Energy and distance estimates. Testing s = sn−1 in (25) we obtain

(27)
W (sn, sn−1)2

2τ
+ E(sn) ≤ E(sn−1),

As a consequence we have the monotonicity

. . . ≤ E(sn) ≤ E(sn−1) ≤ . . . ≤ E(s0) <∞
at the discrete level, thus sn ∈ X for all n ≥ 0 thanks to (14). Summing (27) over
n we also obtain the classical total square distance estimate

(28)
1

τ

∑

n≥0

W 2(sn+1, sn) ≤ 2E(s0) ≤ C (Ω,Π,Ψ) ,

the last inequality coming from the fact that s0 is uniformly bounded since it
belongs to X , thus so is E(s0). This readily gives the approximate 1/2-Hölder
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estimate

(29) W (sn1 , sn2) ≤ C
√
|n2 − n1|τ .

2.2. Flow interchange, entropy estimate and enhanced regularity. The
goal of this section is to obtain some additional Sobolev regularity on the capillary
pressure field π(sn∗,x), where sn∗ = (sn1 , . . . , s

n
N ) is the unique element of X ∗

corresponding to the minimizer sn of (25). In what follows, we denote by

πni :

{
Ω → R,
x 7→ πi(s

n∗(x),x),
∀i ∈ {1, . . . , N}

and πn = (πn1 , . . . , π
n
N ). Bearing in mind that ω(x) ≥ ω? > 0 in Ω, we can define

the relative Boltzmann entropy Hω with respect to ω by

Hω(s) :=

∫

Ω

s(x) log

(
s(x)

ω(x)

)
dx, for all measurable s : Ω→ R+.

Lemma 2.2. There exists C depending only on Ω,Π, ω,K, (µi)i, and Ψ such that,
for all n ≥ 1 and all τ > 0, one has

(30)
N∑

i=0

‖∇πni ‖2L2(Ω) ≤ C
(

1 +
W 2(sn, sn−1)

τ
+

N∑

i=0

Hω(sn−1
i )−Hω(sni )

τ

)
.

Proof. The argument relies on the flow interchange technique introduced by Matthes,
McCann, and Savaré in [38]. Throughout the proof, C denotes a fluctuating con-
stant that depends on the prescribed data Ω,Π, ω,K, (µi)i, and Ψ, but neither on
t, τ , nor on n. For i = 0 . . . N consider the auxiliary flows

(31)





∂tši = div(K∇ši − šiK∇ logω), t > 0, x ∈ Ω,
K(∇ši − ši∇ logω) · ν = 0, t > 0, x ∈ ∂Ω,
ši|t=0 = sni , x ∈ Ω

for each i ∈ {0, . . . , N}. By standard parabolic theory (see for instance [33, Chapter
III, Theorem 12.2]), these Initial-Boundary value problems are well-posed, and
their solutions ši(x) belong to C1,2((0, 1]×Ω)∩ C([0, 1];Lp(Ω)) for all p ∈ (1,∞) if
ω ∈ C2,α(Ω) and K ∈ C1,α(Ω) for some α > 0. Therefore, t 7→ ši(·, t) is absolutely
continuous in L1(Ω), thus inAi endowed with the usual quadratic distanceWref (20)
thanks to [44, Prop. 7.4]. Because of (19), the curve t 7→ ši(·, t) is also absolutely
continuous in Ai endowed with Wi.

From Lisini’s results [36], we know that the evolution t 7→ ši(·, t) can be inter-
preted as the gradient flow of the relative Boltzmann functional 1

µi
Hω with respect

to the metric Wi, the scaling factor 1
µi

appearing due to the definition (18) of the

distance Wi. As a consequence of (23), The Ricci curvature of (Ω, di) is bounded,
hence bounded from below. Since ω ∈ C2(Ω) and with our assumption (22) we
also have that 1

µi
Hω is λi-displacement convex with respect to Wi for some λi ∈ R

depending on ω and the geometry of (Ω, di), see [46, Chapter 14]. Therefore, we
can use the so-called Evolution Variational Inequality characterization of gradient
flows (see for instance [4, Definition 4.5]) centered at sn−1

i , namely

1

2

d

dt
W 2
i (ši(t), s

n−1
i ) +

λi
2
W 2
i (ši(t), s

n−1
i ) ≤ 1

µi
Hω(sn−1

i )− 1

µi
Hω(ši(t)).
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Denote by š = (š0, . . . , šN ), and by š∗ = (š1, . . . , šN ). Summing the previous
inequality over i ∈ {0, . . . , N} leads to
(32)

d

dt

(
1

2τ
W 2(š(t), sn−1)

)
≤ C

(
W 2(š(t), sn−1)

τ
+

N∑

i=0

Hω(sn−1
i )−Hω(ši(t))

τ

)
.

In order to estimate the internal energy contribution in (25), we first note that∑
sni (x) = ω(x) for all x ∈ Ω, thus by linearity of (31) and since ω is a stationary

solution we have
∑
ši(x, t) = ω(x) as well. Moreover, the problem (31) is mono-

tone, thus order preserving, and admits 0 as a subsolution. Hence ši(x, t) ≥ 0, so
that š(t) ∈ A∩X is an admissible competitor in (25) for all t > 0. The smoothness
of š for t > 0 allows to write

(33)
d

dt

(∫

Ω

Π(š∗(x, t),x)dx

)
=

N∑

i=1

∫

Ω

π̌i(x, t)∂tši(x, t)dx = I1(t) + I2(t),

where π̌i := πi(š
∗, ·), and where, for all t > 0, we have set

I1(t) = −
N∑

i=1

∫

Ω

∇π̌i(t) ·K∇ši(t)dx, I2(t) = −
N∑

i=1

∫

Ω

ši(t)

ω
∇π̌i(t) ·K∇ωdx.

To estimate I1, we first use the invertibility of π to write

š(x, t) = φ(π̌(x, t),x) =: φ̌(x, t),

yielding

(34) ∇š(x, t) = Jzφ(π̌(x, t),x)∇π̌(x, t) + ∇xφ(π̌(x, t),x).

Combining (3), (7), (8) and the elementary inequality

(35) ab ≤ δ a
2

2
+
b2

2δ
with δ > 0 arbitrary,

we get that for all t > 0, there holds

I1(t) ≤ − κ?
$?

∫

Ω

|∇π̌(t)|2dx+ κ?
(
δ

∫

Ω

|∇π̌(t)|2dx+
1

δ

∫

Ω

|∇xφ(π̌(t))|2dx

)
.

Choosing δ = κ?
4κ?$? , we get that

(36) I1(t) ≤ − 3κ?
4$?

∫

Ω

|∇π̌(t)|2dx+ C, ∀t > 0.

In order to estimate I2, we use that š(t) ∈ X for all t > 0, so that 0 ≤ ši(x, t) ≤
ω(x), hence we deduce that

∑N
i=1

(
ši
ω

)2 ≤ 1. Therefore, using (35) again, we get

I2(t) ≤ δκ?
∫

Ω

|∇π̌(t)|2dx+
κ?

δ

∫

Ω

|∇ω|2dx.

Choosing again δ = κ?
4κ?$? yields

(37) I2(t) ≤ κ?
4$?

∫

Ω

|∇π̌(t)|2dx+ C.

Taking (36)–(37) into account in (33) provides

(38)
d

dt

(∫

Ω

Π(š∗(x, t),x)dx

)
≤ − κ?

2$?

∫

Ω

|∇π̌(t)|2dx+ C, ∀t > 0.
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Let us now focus on the potential (gravitational) energy. Since š(t) belongs to
X ∩A for all t > 0, we can make use of the relation

š0(x, t) = ω(x)−
N∑

i=1

ši(x, t), for all (x, t) ∈ Ω× R+,

to write: for all t > 0,

N∑

i=0

∫

Ω

ši(x, t)Ψi(x)dx =
N∑

i=1

∫

Ω

ši(x, t)(Ψi −Ψ0)(x)dx+

∫

Ω

ω(x)Ψ0(x)dx.

This leads to

(39)
d

dt

(
N∑

i=0

∫

Ω

ši(t)Ψidx

)
=

N∑

i=1

∫

Ω

(Ψi(x)−Ψ0(x))∂tsi(x, t)dx = J1(t)+J2(t),

where, using the equations (31), we have set

J1(t) =−
N∑

i=1

∫

Ω

∇(Ψi −Ψ0) ·K∇ši(t)dx,

J2(t) =

N∑

i=1

∫

Ω

ši(t)

ω
∇(Ψi −Ψ0) ·K∇ωdx.

The term J1 can be estimated using (35). More precisely, for all δ > 0, we have

(40) J1(t) ≤ κ?
(
δ‖∇š∗(t)‖2L2 +

1

δ

N∑

i=1

‖∇(Ψi −Ψ0)‖2L2

)
.

Using (34) together with (7)–(8), we get that

‖∇š∗‖2L2 ≤
(

1

$?
‖∇π̌‖L2 + |Ω|Mφ

)2

≤ 2

($?)2
‖∇π̌‖2L2 + 2 (|Ω|Mφ)

2
.

Therefore, choosing δ = ($?)2κ?
8κ?$? in (40), we infer from the regularity of Ψ that

(41) J1(t) ≤ κ?
4$?

∫

Ω

|∇π̌(t)|2dx+ C, ∀t > 0.

Finally, it follows from the fact that
∑N
i=1 ši ≤ ω, from the Cauchy-Schwarz in-

equality, and from the regularity of Ψ, ω that

(42) J2(t) ≥ −κ?
N∑

i=1

‖∇Ψi −∇Ψ0‖L2‖∇ω‖L2 = C.

Combining (39), (41), and (42) with (38), we get that

(43)
d

dt
E(š(t)) ≤ − κ?

4$?

∫

Ω

|∇π̌(t)|2dx+ C, ∀t > 0.

Denote by

(44) Fnτ (s) :=
1

2τ
W 2(s, sn−1) + E(s)
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the functional to be minimized in (25), then gathering (32) and (43) provides

d

dt
Fnτ (š(t)) +

κ?
4$?
‖∇π̌‖2L2

≤ C
(

1 +
W 2(š(t), sn−1)

τ
+

N∑

i=0

Hω(sn−1
i )−Hω(ši(t))

τ

)
∀t > 0.

Since š(0) = sn is a minimizer of (25) we must have

0 ≤ lim sup
t→0+

(
d

dt
Fnτ (š(t))

)
,

otherwise š(t) would be a strictly better competitor than sn for small t > 0. As a
consequence, we get

lim inf
t→0+

‖∇π̌(t)‖2L2 ≤ C lim sup
t→0+

(
1 +

W 2(š(t), sn−1)

τ
+

N∑

i=0

Hω(sn−1
i )−Hω(ši(t))

τ

)
.

Since ši belongs to C([0, 1];Lp(Ω)) for all p ∈ [1,∞) (see for instance [14]), the
continuity of the Wasserstein distance and of the Boltzmann entropy with respect
to strong Lp-convergence imply that

W 2(š(t), sn−1) −→
t→0+

W 2(sn, sn−1) and Hω(ši(t)) −→
t→0+

Hω(sni ).

Therefore, we obtain that

(45) lim inf
t→0+

‖∇π̌(t)‖2L2 ≤ C
(

1 +
W 2(sn, sn−1)

τ
+

N∑

i=0

Hω(sn−1
i )−Hω(sni )

τ

)
.

It follows from the regularity of π that

π(š∗(t),x) = π̌(t) −→
t→0+

πn = π(sn∗,x) in Lp(Ω).

Finally, let (t`)`≥1 be a decreasing sequence tending to 0 realizing the lim inf in (45),

then the sequence (∇π̌(t`))`≥1 converges weakly in L2(Ω)N×d towards ∇πn. The
lower semi-continuity of the norm w.r.t. the weak convergence leads to

N∑

i=1

‖∇πni ‖2L2 ≤ lim
`→∞

‖∇π̌(t`)‖2L2 = lim inf
t→0+

‖∇π̌(t)‖2L2

≤ C
(

1 +
W 2(sn, sn−1)

τ
+

N∑

i=0

Hω(sn−1
i )−Hω(sni )

τ

)

and the proof is complete. �

3. The Euler-Lagrange equations and pressure bounds

The goal of this section is to extract informations coming from the optimality of
sn in the JKO minimization (25). The main difficulty consists in constructing the
phase and capillary pressures from this optimality condition. Our proof is inspired
from [39] and makes an extensive use of the Kantorovich potentials. Therefore, we
first recall their definition and some useful properties. We refer to [44, §1.2] or [46,
Chapter 5] for details.

Let (ν1, ν2) ∈ M+(Ω)2 be two nonnegative measures with same total mass. A
pair of Kantorovich potentials (ϕi, ψi) ∈ L1(ν1)×L1(ν2) associated to the measures
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ν1 and ν2 and to the cost function 1
2d

2
i defined by (16), i ∈ {0, . . . , N}, is a solution

of the Kantorovich dual problem

DPi(ν1, ν2) = max
(ϕi,ψi)∈L1(ν1)×L1(ν2)

ϕi(x)+ψi(y)≤ 1
2d

2
i (x,y)

∫

Ω

ϕi(x)ν1(x)dx+

∫

Ω

ψi(y)ν2(y)dy.

We will use the three following important properties of the Kantorovich potentials:

(a) There is always duality

DPi(ν1, ν2) =
1

2
W 2
i (ν1, ν2), ∀i ∈ {0, . . . , N}.

(b) A pair of Kantorovich potentials (ϕi, ψi) is dν1 ⊗ dν2 unique, up to additive
constants.

(c) The Kantorovich potentials ϕi and ψi are 1
2d

2
i -conjugate, that is

ϕi(x) = inf
y∈Ω

1

2
d2
i (x,y)− ψi(y), ∀x ∈ Ω,

ψi(y) = inf
x∈Ω

1

2
d2
i (x,y)− ϕi(x), ∀y ∈ Ω.

Remark 3.1. Since Ω is bounded, the cost functions (x,y) 7→ 1
2d

2
i (x,y), i ∈

{1, . . . , N}, are globally Lipschitz continuous, see (17). Thus item (c) shows that
ϕi and ψi are also Lipschitz continuous.

3.1. A decomposition result. The next lemma is an adaptation of [39, Lemma
3.1] to our framework. It essentially states that, since sn is a minimizer of (25), it
is also a minimizer of the linearized problem.

Lemma 3.2. For n ≥ 1 and i = 0, . . . , N there exist some (backward, optimal)
Kantorovich potentials ϕni from sni to sn−1

i such that, using the convention πn0 =
∂Π
∂s0

(sn1 , . . . , s
n
N ,x) = 0, setting

(46) Fni :=
ϕni
τ

+ πni + Ψi, ∀i ∈ {0, . . . , N} ,

and denoting Fn = (Fni )0≤i≤N , there holds

(47) sn ∈ Argmin
s∈X∩A

∫

Ω

Fn(x) · s(x)dx.

Moreover, Fni ∈ L∞ ∩H1(Ω) for all i ∈ {0, . . . , N}.

Proof. We assume first that sn−1
i (x) > 0 everywhere in Ω for all i ∈ {1, . . . , N},

so that the Kantorovich potentials (ϕni , ψ
n
i ) from sni to sn−1

i are uniquely deter-
mined after normalizing ϕni (xref) = 0 for some arbitrary point xref ∈ Ω (cf. [44,
Proposition 7.18]). Given any s = (si)1≤0≤N ∈ X ∩A and ε ∈ (0, 1) we define the
perturbation

sε := (1− ε)sn + εs.

Note that X ∩A is convex, thus sε is an admissible competitor for all ε ∈ (0, 1). Let
(ϕεi , ψ

ε
i ) be the unique Kantorovich potentials from sεi to sn−1

i , similarly normalized
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as ϕεi (xref) = 0. Then by characterization of the squared Wasserstein distance in
terms of the dual Kantorovich problem we have





1

2
W 2
i (sεi , s

n−1
i ) =

∫

Ω

ϕεi (x)sεi (x)dx+

∫

Ω

ψεi (y)sn−1
i (y)dy,

1

2
W 2
i (sni , s

n−1
i ) ≥

∫

Ω

ϕεi (x)sni (x)dx+

∫

Ω

ψεi (y)sn−1
i (y)dy.

By definition of the perturbation sε it is easy to check that sεi − sni = ε(si − sni ).
Subtracting the previous inequalities we get

(48)
W 2
i (sεi , s

n−1
i )−W 2

i (sni , s
n−1
i )

2τ
≤ ε

τ

∫

Ω

ϕεi (si − sni )dx.

Denote by sε∗ = (sε1, . . . , s
ε
N ), πε = π(sε∗, ·), and extend to the zero-th component

πε = (0,πε). The convexity of Π as a function of s1, . . . , sN implies that

(49)

∫

Ω

(Π(sn∗,x)−Π(sε∗,x)) dx ≥
∫

Ω

πε · (sn∗ − sε∗) dx

=

∫

Ω

πε · (sn − sε) dx = −ε
∫

Ω

πε · (s− sn) dx.

For the potential energy, we obtain by linearity that

(50)

∫

Ω

(sε − sn) ·Ψ dx = ε

∫

Ω

(s− sn) ·Ψdx.

Summing (48)–(50), dividing by ε, and recalling that sn minimizes the functional
Fnτ defined by (44), we obtain

(51) 0 ≤ F
n
τ (sε)−Fnτ (sn)

ε
≤

N∑

i=0

∫

Ω

(
ϕεi
τ

+ πεi + Ψi

)
(si − sni )dx

for all s ∈ X ∩ A and all ε ∈ (0, 1). Because Ω is bounded, any Kantorovich
potential is globally Lipschitz with bounds uniform in ε (see for instance the proof
of [44, Theorem 1.17]). Since sε converges uniformly towards sn when ε tends to
0, we infer from [44, Theorem 1.52] that ϕεi converges uniformly towards ϕni as ε
tends to 0, where ϕni is a Kantorovich potential form sni to sn−1

i . Moreover, since
π is uniformly continuous in s, we also know that πε converges uniformly towards
πn and thus the extension to the zero-th component πε → πn = (0,πn) as well.
Then we can pass to the limit in (51) and infer that

(52) 0 ≤
∫

Ω

Fn · (s− sn)dx, ∀s ∈ X ∩A

and (47) holds.
If sn−1

i > 0 does not hold everywhere we argue by approximation. Running the
flow (31) for a short time δ > 0 starting from sn−1, we construct an approximation

sn−1,δ = (sn−1,δ
0 , . . . , sn−1,δ

N ) converging to sn−1 = (sn−1
0 , . . . , sn−1

N ) in L1(Ω) as
δ tends to 0. By construction sn−1,δ ∈ X ∩ A, and it follows from the strong

maximum principle that sn−1,δ
i > 0 in Ω for all δ > 0. By Proposition 2.1 there

exists a unique minimizer sn,δ to the functional

Fn,δτ :

{
X ∩A→ R+

s 7→ 1
2τW

2(s, sn−1,δ) + E(s)
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Since sn−1,δ > 0, there exist unique Kantorovich potentials (ϕn,δi , ψn,δi ) from sn,δi
to sn−1,δ

i . This allows to construct Fn,δ using (46) where ϕni (resp. πni ) has been

replaced by ϕn,δi (resp. πn,δi ). Thanks to the above discussion,

(53) 0 ≤
∫

Ω

Fn,δ∗ · (s∗ − sn,δ∗)dx, ∀s∗ ∈ X ∗ ∩A∗.

We can now let δ tend to 0. Because of the time continuity of the solutions to (31),
we know that sn−1,δ converges towards sn−1 in L1(Ω). On the other hand, from the
definition of sn,δ and Lemma 2.2 (in particular (30) with sn−1,δ, sn,δ,πn,δ instead
of sn−1, sn,πn) we see that πn,δ is bounded in H1(Ω)N+1 uniformly in δ > 0. Using
next the Lipschitz continuous (8) of φ, one deduces that sn,δ is uniformly bounded
in H1(Ω)N+1. Then, thanks to Rellich’s compactness theorem, we can assume that
sn,δ converges strongly in L2(Ω)N+1 as δ tends to 0. By the strong convergence
sn−1,δ → sn−1 and standard properties of the squared Wasserstein distance, one
readily checks that Fn,δτ Γ-converges towards Fnτ , and we can therefore identify the
limit of sn,δ as the unique minimizer sn of Fnτ . Thanks to Lebesgue’s dominated

convergence theorem, we also infer that πn,δi converges in L2(Ω) towards πni . Using
once again the stability of the Kantorovich potentials [44, Theorem 1.52], we know

that ϕn,δi converges uniformly towards some Kantorovich potential ϕni . Then we can
pass to the limit in (53) and claim that (52) is satisfied even when some coordinates
of sn−1 vanish on some parts of Ω.

Finally, note that since the Kantorovich potentials ϕni are Lipschitz continuous
and because πni ∈ H1 (cf. Lemma 2.2) and Ψ is smooth, we have Fni ∈ H1. Since
the phases are bounded 0 ≤ sni (x) ≤ ω(x) and π is continuous we have πn ∈ L∞,
thus Fni ∈ L∞ as well and the proof is complete. �

We can now suitably decompose the vector field Fn = (Fni )0≤i≤N defined by

(46).

Corollary 3.3. Let F n = (Fn0 , . . . , F
n
N ) be as in Lemma 3.2. There exists αn ∈

RN+1 such that, setting λn(x) := min
j

(Fnj (x) + αnj ), there holds λn ∈ H1(Ω) and

Fni + αni = λn dsni − a.e. in Ω, ∀i ∈ {0, . . . , N},(54)

∇Fni = ∇λn dsni − a.e. in Ω, ∀i ∈ {0, . . . , N}.(55)

Proof. By Lemma 3.2 we know that sn minimizes s 7→
∫
F n ·s among all admissible

s ∈ X ∩ A. Applying the multicomponent bathtub principle, Theorem B.1 in
appendix, we infer that there existsαn = (αn0 , . . . , α

n
N ) ∈ RN+1 such that Fni +αni =

λn for dsni -a.e. x ∈ Ω and λn = min
j

(Fnj + αnj ) as in our statement. Note first that

λn ∈ H1(Ω) as the minimum of finitely many H1 functions F0, . . . , FN ∈ H1(Ω).
From the usual Serrin’s chain rule we have moreover that

∇λn = ∇min
j

(Fnj + αnj ) = ∇Fi.χ[Fni +αni =λn],

and since sni = 0 inside [Fni + αni 6= λn] the proof is complete. �

3.2. The discrete capillary pressure law and pressure estimates. In this
section, some calculations in the Riemannian settings (Ω, di) will be carried out. In
order to make them as readable as possible, we have to introduce a few basics. We
refer to [46, Chapter 14] for a more detail presentation.
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Let i ∈ {0, . . . , N}, then consider the Riemannian geometry (Ω, di), and let
x ∈ Ω, then we denote by gi,x : Rd × Rd → R the local metric tensor defined by

gi,x(v,v) = µiK−1(x)v · v = Gi(x)v · v, ∀v ∈ Rd.

In this framework, the gradient ∇giϕ of a function ϕ ∈ C1(Ω) is defined by

ϕ(x+ hv) = ϕ(x) + hgi,x
(∇gi,xϕ(x),v

)
+ o(h), ∀v ∈ Sd−1, ∀x ∈ Ω.

It is easy to check that this leads to the formula

(56) ∇giϕ =
1

µi
K∇ϕ,

where ∇ϕ stands for the usual (euclidean) gradient. The formula (56) can be
extended to Lipschitz continuous functions ϕ thanks to Rademacher’s theorem.

For ϕ belonging to C2, we can also define the Hessian D2
giϕ of ϕ in the Riemann-

ian setting by

gi,x
(
D2
giϕ(x) · v,v

)
=

d2

dt2
ϕ(γt)

∣∣∣∣
t=0

for any geodesic γt = expi,x(tv) starting from x with initial speed v ∈ Ti,xΩ.

Denote by ϕni the backward Kantorovich potential sending sni to sn−1
i associated

to the cost 1
2d

2
i . By the usual definition of the Wasserstein distance through the

Monge problem, one has

W 2
i (sni , s

n−1
i ) =

∫

Ω

d2
i (x, t

n
i (x))sni (x)dx,

where tni denotes the optimal map sending sni on sn−1
i . It follows from [46, Theorem

10.41] that

(57) tni (x) = expi,x (−∇giϕ
n
i (x)) , ∀x ∈ Ω.

Moreover, using the definition of the exponential and the relation (56), one gets
that

d2
i (x, expi,x (−∇giϕ

n
i (x)) = gi,x (∇giϕ

n
i (x),∇giϕ

n
i (x)) =

1

µi
K(x)∇ϕni (x)·∇ϕni (x).

This yields the formula

(58) W 2
i (sni , s

n−1
i ) =

∫

Ω

sni
µi

K∇ϕni ·∇ϕni dx, ∀i ∈ {0, . . . , N}.

We have now introduced the necessary material in order to reconstruct the phase
and capillary pressures. This is the purpose of the following Proposition 3.4 and of
then Corollary 3.5

Proposition 3.4. For n ≥ 1 let ϕni : sni → sn−1
i be the (backward) Kantorovich

potentials from Lemma 3.2. There exists h = (hn0 , . . . , h
n
N ) ∈ H1(Ω)N+1 such that

(i) ∇hni = −∇ϕni
τ for dsni -a.e. x ∈ Ω

(ii) hni (x)− hn0 (x) = πni (x) + Ψi(x)−Ψ0(x) for dx-a.e. x ∈ Ω, i ∈ {1, . . . , N}
(iii) there exists C depending only on Ω,Π, ω,K, (µi)i, and Ψ such that, for all

n ≥ 1 and all τ > 0, one has

‖hn‖2H1(Ω)N+1 ≤ C
(

1 +
W 2(sn, sn−1)

τ2
+

N∑

i=0

Hω(sn−1
i )−Hω(sni )

τ

)
.
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Proof. Let ϕni be the Kantorovich potentials from Lemma 3.2 and Fni ∈ L∞∩H1(Ω)
as in (46), as well as αn ∈ RN+1 and λn = min

j
(Fnj + αnj ) ∈ L∞ ∩ H1(Ω) as in

Corollary 3.3. Setting

hni := −ϕ
n
i

τ
+ Fni − λn, ∀i ∈ {0, . . . , N},

we have hni ∈ H1(Ω) as the sum of Lipschitz functions (the Kantorovich potentials
ϕni ) and H1 functions Fni , λ

n. Recalling that we use the notation π0 = ∂Π
∂s0

= 0, we

see from the definition (46) of Fni that

(59)

hni −hn0 =

(
Fni −

ϕni
τ

)
−
(
Fn0 −

ϕn0
τ

)
= (πni +Ψi)− (πn0 +Ψ0) = πni +Ψi−Ψ0

for all i ∈ {1, . . . , N} and dx-a.e. x, which is exactly our statement (ii).
For (i), we simply use (55) to compute

(60)

∇hni = −∇ϕni
τ

+∇(Fni −λni ) = −∇ϕni
τ

for dsni -a.e. x ∈ Ω, ∀i ∈ {0, . . . , N}.

In order to establish now the H1 estimate (iii), let us denote

Ui =

{
x ∈ Ω

∣∣∣∣ sni (x) ≥ ω?
N + 1

}
.

Then since
∑
sni (x) = ω(x) ≥ ω? > 0, one gets that, up to a negligible set,

(61)
N⋃

i=0

Ui = Ω, hence (Ui)c ⊂
⋃

j 6=i
Uj .

We first estimate ∇hn0 . To this end, we write

(62) ‖∇hn0‖2L2 ≤ 1

κ?

∫

Ω

K∇hn0 ·∇hn0 dx ≤ A+B,

where we have set

A =
1

κ?

∫

U0
K∇hn0 ·∇hn0 dx, B =

1

κ?

∫

(U0)c
K∇hn0 ·∇hn0 dx.

Owing to (60) one has ∇hn0 = −∇ϕ0

τ on U0 ⊂ Ω, where sn0 ≥ ω?
N+1 . Therefore,

A ≤ (N + 1)µ0

ω?κ?

∫

U0

sn0
µ0

K∇hn0 ·∇hn0 dx ≤ (N + 1)µ0

τ2ω?κ?

∫

Ω

sn0
µ0

K∇ϕn0 ·∇ϕn0 dx.

Then it results from formula (58) that

(63) A ≤ C

τ2
W 2

0 (sn0 , s
n−1
0 )

where C depends neither on n nor on τ . Combining (61) and (59), we infer

B ≤ 1

κ?

N∑

i=1

∫

Ui
K∇[hni − (πni + Ψi −Ψ0)] ·∇[hni − (πni + Ψi −Ψ0)]dx.
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Using (a+ b+ c)2 ≤ 3(a2 + b2 + c2) and (3), we get that

(64) B ≤ 3

κ?

N∑

i=1

∫

Ui
K∇hi ·∇hidx+

3κ?

κ?

N∑

i=1

(
‖∇πni ‖2L2 + ‖∇(Ψi −Ψ0)‖2L2

)
.

Similar calculations to those carried out to estimate A yield∫

Ui
K∇hi ·∇hidx ≤

C

τ2
W 2
i (sni , s

n−1
i )

for some C depending neither on n, i nor on τ . Combining this inequality with
Lemma 2.2 and the regularity of Ψ, we get from (64) that

(65) B ≤ C
(

1 +
W 2(sn, sn−1)

τ2
+

N∑

i=0

Hω(sn−1
i )−Hω(sni )

τ

)

for some C not depending on n and τ (here we also used 1/τ ≤ 1/τ2 for small τ in
the W 2 terms). Gathering (63) and (65) in (62) provides

‖∇hn0‖2L2 ≤ C
(

1 +
W 2(sn, sn−1)

τ2
+

N∑

i=0

Hω(sn−1
i )−Hω(sni )

τ

)
.

Note that (i)(ii) remain invariant under subtraction of the same constant hn0 , h
n
i  

hn0 − C, hni − C, as the gradients remain unchanged in (i) and only the differences
hni − hn0 appear in (ii) for i ∈ {1 . . . N}. We can therefore assume without loss of
generality that

∫
Ω
hn0 dx = 0. Hence by the Poincaré-Wirtinger inequality, we get

that

‖hn0‖2H1 ≤ C‖∇hn0‖2L2 ≤ C
(

1 +
W 2(sn, sn−1)

τ2
+

N∑

i=0

Hω(sn−1
i )−Hω(sni )

τ

)
.

Finally, from (ii) hni = hn0 + πni + Ψi − Ψ0, the smoothness of Ψ, and using again
the estimate (30) for ‖∇πn‖2L2 we finally get that for all i ∈ {1, . . . , N}, one has

‖hni ‖2H1 ≤ C(‖hn0‖2H1 + ‖πni ‖2H1 + ‖Ψi‖2H1 + ‖Ψ0‖2H1)

≤ C
(

1 +
W 2(sn, sn−1)

τ2
+

N∑

i=0

Hω(sn−1
i )−Hω(sni )

τ

)
,

and the proof of Proposition 3.4 is complete. �

We can now define the phase pressures (pni )i=0,...,N by setting

(66) pni := hni −Ψi, ∀i ∈ {0, . . . , N}.
The following corollary is a straightforward consequence of Proposition 3.4 and of
the regularity of Ψi.

Corollary 3.5. The phase pressures pn = (pni )0≤i≤N ∈ H1(Ω)N+1 satisfy

(67) ‖pn‖2H1(Ω) ≤ C
(

1 +
W 2(sn, sn−1)

τ2
+

N∑

i=0

Hω(sn−1
i )−Hω(sni )

τ

)

for some C depending only on Ω,Π, ω,K, (µi)i, and Ψ (but neither on n nor on τ),
and the capillary pressure relations are fulfilled:

(68) pni − pn0 = πni , ∀i ∈ {1, . . . , N}.
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Our next result is a first step towards the recovery of the PDEs.

Lemma 3.6. There exists C depending depending only on Ω,Π, ω,K, (µi)i, and Ψ

(but neither on n nor on τ) such that, for all i ∈ {0, . . . , N} and all ξ ∈ C2(Ω), one
has

(69)

∣∣∣∣
∫

Ω

(
sni − sn−1

i

)
ξdx+ τ

∫

Ω

sni
K
µi

∇ (pni + Ψi) ·∇ξdx

∣∣∣∣
≤ CW 2

i (sni , s
n−1
i )‖D2

giξ‖∞.
This is of course a discrete approximation to the continuity equation ∂tsi =

∇ · (si K
µi
∇ (pi + Ψi)).

Proof. Let ϕni denote the (backward) optimal Kantorovich potential from Lemma 3.2
sending sni to sn−1

i , and let tni be the corresponding optimal map as in (57). For

fixed ξ ∈ C2(Ω) let us first Taylor expand (in the gi Riemannian framework)
∣∣∣∣ξ(tni (x))− ξ(x) +

1

µi
K(x)∇ξ(x) ·∇ϕni (x)

∣∣∣∣ ≤
1

2
‖D2

giξ‖∞d2
i (x, t

n
i (x)).

Using the definition of the pushforward sn−1
i = tni #sni , we then compute

∣∣∣∣
∫

Ω

(sni (x)− sn−1
i (x))ξ(x)dx−

∫

Ω

K(x)

µi
∇ξ(x) ·∇ϕni (x)sni (x)dx

∣∣∣∣

=

∣∣∣∣
∫

Ω

(ξ(x)− ξ(tni (x))sni (x)dx−
∫

Ω

K(x)

µi
∇ξ(x) ·∇ϕni (x)sni (x)dx

∣∣∣∣

≤
∫

Ω

1

2
‖D2

giξ‖∞d2
i (x, t

n
i (x))sni (x)dx =

1

2
‖D2

giξ‖∞W 2
i (sni , s

n−1
i ).

From Proposition 3.4(i) we have ∇ϕni = −τ∇hni for dsni a.e. x ∈ Ω, thus by the
definition (66) of pni , we get ∇ϕn = −τ∇(pni + Ψi). Substituting in the second
integral of the left-hand side gives exactly (69) and the proof is complete. �

4. Convergence towards a weak solution

The goal is now to prove the convergence of the piecewise constant intepro-
lated solutions sτ , defined by (26), towards a weak solution s as τ → 0. Simi-
larly, the τ superscript denotes the piecewise constant interpolation of any previ-
ous discrete quantity (e.g. pτi (t) stands for the piecewise constant time interpola-
tion of the discrete pressures pni ). In what follows, we will also use the notations
sτ∗ = (sτ1 , . . . , s

τ
N ) ∈ L∞((0, T );X ∗) and πτ = π(sτ∗,x).

4.1. Time integrated estimates. We immediately deduce from (29) that

(70) W (sτ (t2), sτ (t1)) ≤ C|t2 − t1 + τ | 12 , ∀ 0 ≤ t1 ≤ t2 ≤ T.

From the total saturation
N∑
i=0

sni (x) = ω(x) ≤ ω? and sτi ≥ 0, we have the L∞

estimates

(71) 0 ≤ sτi (x, t) ≤ ω? a.e. in Q for all i ∈ {0, . . . , N}.
Lemma 4.1. There exists C depending only on Ω, T,Π, ω,K, (µi)i, and Ψ such
that

(72) ‖pτ‖2L2((0,T );H1(Ω)N+1) + ‖πτ‖2L2((0,T );H1(Ω)N ) ≤ C.
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Proof. Summing (67) from n = 1 to n = Nτ := dT/τe, we get

‖pτ‖2L2(H1) =

Nτ∑

n=1

τ‖pn‖2H1

≤ C
Nτ∑

n=1

τ

(
1 +

W 2(sn, sn−1)

τ2
+

Nτ∑

i=0

Hω(sn−1
i )−Hω(sni )

τ

)

≤ C
(

(T + 1) +

Nτ∑

n=1

W 2(sn, sn−1)

τ
+

N∑

i=0

(
Hω(s0

i )−Hω(sNτi )
))

.

We use that

0 ≥ Hω(s) ≥ −1

e
‖ω‖L1 ≥ −|Ω|

e
, ∀s ∈ L∞(Ω) with 0 ≤ s ≤ ω

together with the total square distance estimate (28) to infer that ‖p‖2L2(H1) ≤ C.

The proof is identical for the capillary pressure πτ (simply summing the one-step
estimate from Lemma 2.2). �

4.2. Compactness of approximate solutions. We denote by H ′ = H1(Ω)′.

Lemma 4.2. For each i ∈ {0, . . . , N}, there exists C depending only on Ω, Π, Ψ,
K, and µi (but not on τ) such that

‖sτi (t2)− sτi (t1)‖H′ ≤ C|t2 − t1 + τ | 12 , ∀ 0 ≤ t1 ≤ t2 ≤ T.
Proof. Thanks to (71), we can apply [39, Lemma 3.4] to get
∣∣∣∣
∫

Ω

f{sτi (t2)− sτi (t1)}dx
∣∣∣∣ ≤ ‖∇f‖L2(Ω)Wref(s

τ
i (t1), sτi (t2)), ∀f ∈ H1(Ω).

Thus by duality and thanks to the distance estimate (70) and to the lower bound
in (19), we obtain that

‖sτi (t2)− sτi (t1)‖H′ ≤Wref(s
τ
i (t1), sτi (t2)) ≤ CWi(s

τ
i (t1), sτi (t2)) ≤ C|t2 − t1 + τ | 12

for some C depending only on Ω, Π, (ρi)i, g, (µi)i, K. �

From the previous equi-continuity in time, we deduce full compactness of the
capillary pressure:

Lemma 4.3. The family (πτ )τ>0 is sequentially relatively compact in L2(Q)N .

Proof. We use Alt & Luckhaus’ trick [1] (an alternate solution would consist in
slightly adapting the nonlinear time compactness results [40, 8] to our context).
Let h > 0 be a small time shift, then by monotonicity and Lipschitz continuity of
the capillary pressure function π(.,x)

‖πτ (·+ h)− πτ (·)‖2L2((0,T−h);L2(Ω)N )

≤ 1

κ?

∫ T−h

0

∫

Ω

(πτ (t+ h,x)− πτ (t,x)) · (sτ∗(t+ h,x)− sτ∗(t,x))dxdt

≤ 2
√
T

κ?
‖πτ‖L2((0,T );H1(Ω)N )‖sτ∗(·+ h, ·)− sτ∗‖L∞((0,T−h);H′)N .
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Then it follows from Lemmas 4.1 and 4.2 that there exists C > 0, depending neither
on h nor on τ , such that

‖πτ (·+ h, ·)− πτ‖L2((0,T−h);L2(Ω)N ) ≤ C|h+ τ |1/2.

On the other hand, the (uniform w.r.t. τ) L2((0, T );H1(Ω)N )- and L∞(Q)N -
estimates on πτ ensure that

‖πτ (·, ·+ y))− πτ‖L2(0,T ;L2) ≤ C
√
|y|(1 +

√
|y|), ∀y ∈ Rd,

where πτ is extended by 0 outside Ω. This allows to apply Kolmogorov’s com-
pactness theorem (see, for instance, [29]) and entails the desired relative compact-
ness. �

4.3. Identification of the limit. In this section we prove our main Theorem 1.2,
and the proof goes in two steps: we first retrieve strong convergence of the phase
contents sτ → s and weak convergence of the pressures pτ ⇀ p, and then use the
strong-weak limit of products to show that the limit is a weak solution. All along
this section, (τk)k≥1 denotes a sequence of times steps tending to 0 as k →∞.

Lemma 4.4. There exist s ∈ L∞(Q)N+1 with s(·, t) ∈ X ∩A for a.e. t ∈ (0, T ),
and p ∈ L2((0, T );H1(Ω)N+1) such that, up to an unlabeled subsequence, the fol-
lowing convergence properties hold:

sτk −→
k→∞

s a.e. in Q,(73)

πτk −⇀
k→∞

π(s∗, ·) weakly in L2((0, T );H1(Ω)N ),(74)

pτk −⇀
k→∞

p weakly in L2((0, T );H1(Ω)N+1).(75)

Moreover, the capillary pressure relations (5) hold.

Proof. From Lemma 4.3, we can assume that πτk → z strongly in L2(Q)N for
some limit z, thus a.e. up to the extraction of an additional subsequence. Since
z 7→ φ(z,x) = π−1(z,x) is continuous, we have that

sτk∗ = φ(πτk ,x) −→
k→∞

φ(π,x) =: s∗ a.e. in Q.

In particular, this yields πτk −→
k→∞

π(s∗, ·) a.e. in Q. Since we had the total satu-

ration
N∑
i=0

sτki (t,x) = ω(x), we conclude that the first component i = 0 converges

pointwise as well. Therefore, (73) holds. Thanks to Lebesgue’s dominated conver-
gence theorem, it is easy to check that s(·, t) ∈ X ∩A for a.e. t ∈ (0, T ). The
convergences (74) and (75) are straightforward consequences of Lemma 4.1. Lastly,
it follows from (68) that

pτki − pτk0 = πi(s
τk∗, ·), ∀i ∈ {1, . . . , N}, ∀k ≥ 1.

We can finally pass to the limit k → ∞ in the above relation thanks to (74)–(75)
and infer

pi − p0 = πi(s
∗,x) in L2((0, T );H1(Ω)), ∀i ∈ {1, . . . , N}.

which immediately implies (5) as claimed. �
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Lemma 4.5. Up to the extraction of an additional subsequence, the limit s of
(sτk)k≥1 belongs to C([0, T ];A) where A is equipped with the metric W . Moreover,

W (sτk(t), s(t)) −→
k→∞

0 for all t ∈ [0, T ].

Proof. It follows from the bounds (71) on si that for all t ∈ [0, T ], the sequence
(sτki )k is weakly compact in L1(Ω). It is also compact in Ai equipped with the
metric Wi due to the continuity of Wi with respect to the weak convergence in
L1(Ω) (this is for instance a consequence of [44, Theorem 5.10] together with the
equivalence of Wi with Wref stated in (19)). Thanks to (70), one has

lim sup
k→∞

Wi (sτki (t2), sτki (t1)) ≤ |t2 − t1|1/2, ∀t1, t2 ∈ [0, T ].

Applying a refined version of the Arzelà-Ascoli theorem [5, Prop. 3.3.1] then pro-
vides the desired result. �

In order to conclude the proof of Theorem 1.2, it only remains to show that
s = lim sτk and p = limpτk satisfy the weak formulation (12):

Proposition 4.6. Let (τk)k≥1 be a sequence such that the convergences in Lem-

mas 4.4 and 4.5 hold. Then the limit s of (sτk)k≥1 is a weak solution in the sense

of Definition 1.1 (with −ρig replaced by +∇Ψi in the general case).

Proof. Let 0 ≤ t1 ≤ t2 ≤ T , and denote nj,k =
⌈
tj
τk

⌉
and t̃j = nj,kτk for j ∈ {1, 2}.

Fixing an arbitrary ξ ∈ C2(Ω) and summing (69) from n = n1,k + 1 to n = n2,k

yields

(76)

∫

Ω

(sτki (t2)− sτki (t1))ξdx =

n2,k∑

n=n1,k+1

∫

Ω

(sni − sn−1
i )ξdx

= −
∫ t̃2

t̃1

∫

Ω

sτki
µi

K∇ (pτki + Ψi) ·∇ξdxdt+O




n2,k∑

n=n1,k+1

W 2
i (sni , s

n−1
i )


 .

Since 0 ≤ t̃j − tj ≤ τk and
s
τk
i

µi
K∇ (pτki + Ψi) ·∇ξ is uniformly bounded in L2(Q),

one has
∫ t̃2

t̃1

∫

Ω

sτki
µi

K∇ (pτki + Ψi) ·∇ξdxdt

=

∫ t2

t1

∫

Ω

sτki
µi

K∇ (pτki + Ψi) ·∇ξdxdt+O(
√
τk).

Combining the above estimate with the total square distance estimate (28) in (76),
we obtain

(77)

∫

Ω

(sτki (t2)−sτki (t1))ξdx+

∫ t2

t1

∫

Ω

sτki
µi

K∇ (pτki + Ψi) ·∇ξdxdt = O (
√
τk) .

Thanks to Lemma 4.5, and since the convergence in (Ai,Wi) is equivalent to the
narrow convergence of measures (i.e., the convergence in C(Ω)′, see for instance [44,
Theorem 5.10]), we get that

(78)

∫

Ω

(sτki (t2)− sτki (t1))ξdx −→
k→∞

∫

Ω

(si(t2)− si(t1))ξdx.
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Moreover, thanks to Lemma 4.4, one has

(79)

∫ t2

t1

∫

Ω

sτki
µi

K∇ (pτki + Ψi) ·∇ξdxdt −→
k→∞

∫ t2

t1

∫

Ω

si
µi

K∇ (pi + Ψi) ·∇ξdxdt.

Gathering (77)–(79) yields, for all ξ ∈ C2(Ω) and all 0 ≤ t1 ≤ t2 ≤ T ,

(80)

∫

Ω

(si(t2)− si(t1))ξdx+

∫ t2

t1

∫

Ω

si
µi

K∇ (pi + Ψi) ·∇ξdxdt = 0.

In order to conclude the proof, it remains to check that the formulation (80) is
stronger the formulation (12). Let ε > 0 be a time step (unrelated to that appearing
in the minimization scheme (25)), and set Lε =

⌊
T
ε

⌋
. Let φ ∈ C∞c (Ω× [0, T )), one

sets φ` = φ(·, `ε) for ` ∈ {0, . . . , Lε}. Since t 7→ φ(·, t) is compactly supported in
[0, T ), then there exists ε? > 0 such that φLε ≡ 0 for all ε ∈ (0, ε?]. Then define by

φε :

{
Ω× [0, T ] → R

(x, t) 7→ φ`(x) if t ∈ [`ε, (`+ 1)ε).

Choose t1 = `ε, t2 = (`+1)ε, ξ = φ` in (80) and sum over ` ∈ {0, . . . , Lε−1}. This
provides

(81) A(ε) +B(ε) = 0, ∀ε > 0.

where

A(ε) =

Lε−1∑

`=0

∫

Ω

(si((`+ 1)ε)− si(`ε))φ`dx,

B(ε) =

∫∫

Q

si
µi

K∇ (pi + Ψi) ·∇φεdxdt.

Due to the regularity of φ, ∇φε converges uniformly towards φ as ε tends to 0, so
that

(82) B(ε) −→
ε→0

∫∫

Q

si
µi

K∇ (pi + Ψi) ·∇φdxdt.

Reorganizing the first term and using that φLε ≡ 0, we get that

A(ε) = −
Lε∑

`=1

ε

∫

Ω

si(`ε)
φ` − φ`−1

ε
dx−

∫

Ω

s0
iφ(·, 0)dx.

It follows from the continuity of t 7→ si(·, t) in Ai equipped with Wi and from the
uniform convergence of

(x, t) 7→ φ`(x)− φ`−1(x)

ε
if t ∈ [(`− 1)ε, `ε)

towards ∂tφ that

(83) A(ε) −→
ε→0
−
∫∫

Q

si∂tφdxdt−
∫

Ω

s0
iφ(·, 0)dx.

Combining (81)–(83) shows that the weak formulation (12) is fulfilled. �
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Appendix A. A simple condition for the geodesic convexity of (Ω, di)

The goal of this appendix is to provide a simple condition on the permeability
tensor in order to ensure that Condition (22) is fulfilled. For the sake of simplicity,
we only consider here the case of isotropic permeability tensors

(84) K(x) = κ(x)Id, ∀x ∈ Ω

with κ? ≤ κ(x) ≤ κ? for all x ∈ Ω. Let us stress that the condition we provide is
not optimal.

As in the core of the paper, Ω denotes a convex open subset of Rd with C2

boundary ∂Ω. For x ∈ ∂Ω, we denote by n(x) the outward-pointing normal.
Since ∂Ω is smooth, then there exists `0 > 0 such that, for all x ∈ Ω such that
dist(x, ∂Ω) < `0, there exists a unique x ∈ ∂Ω such that dist(x, ∂Ω) = |x−x| (here
dist denotes the usual Euclidian distance between sets in Rd). As a consequence,
one can rewrite x = x− `n(x) for some ` ∈ (0, `0).

In what follows, a function f : Ω → R is said to be normally nondecreasing
(resp. nonincreasing) on a neighborhood of ∂Ω if there exists `1 ∈ (0, `0] such that
` 7→ f(x− `n(x)) is nonincreasing (resp. nondecreasing) on [0, `1].

Proposition A.1. Assume that:

(i) the permeability field x 7→ κ(x) is normally non-increasing in a neighborhood
of ∂Ω;

(ii) for all x ∈ ∂Ω, either ∇κ(x)·n(x) < 0, or ∇κ(x)·n(x) = 0 and D2κ(x)n(x)·
n(x) = 0.

Then there exists a C2 extension κ̃ : Rd → [κ?2 , κ
?] of κ and a Riemannian metric

(85) δ̃(x,y) = inf
γ∈P̃ (x,y)

(∫ 1

0

1

κ̃(γ(τ))
|γ′(τ)|2dτ

)1/2

, ∀x,y ∈ Rd

with P̃ (x,y) =
{
γ ∈ C1([0, 1];Rd)

∣∣γ(0) = x and γ(1) = y
}
, such that (Ω, δ̃i) is

geodesically convex.

Proof. Since Ω is convex, then for all x ∈ Rd \Ω, there exists a unique x ∈ ∂Ω such
that dist(x,Ω) = |x − x|. Then one can extend κ in a C2 way into the whole Rd
by defining

κ(x) = κ(x) + |x− x|∇κ(x) · n(x) +
|x− x|2

2
D2κ(x)n(x) · n(x), ∀x ∈ Rd \ Ω.

Thanks to Assumptions (i) and (ii), the function ` 7→ κ(x−`n(x)) is non-decreasing
on (−∞, `1] for all x ∈ ∂Ω. Since ∂Ω is compact, there exists `2 > 0 such that

κ(x− `n(x) ≥ κ?
2
, ∀` ∈ (−`2, 0].

Let ρ : R+ → R be a non-decreasing C2 function such that ρ(0) = 1, ρ′(0) =
ρ′′(0) = 0 and ρ(`) = 0 for all ` ≥ `2. Then define

κ̃(x) = ρ(dist(x,Ω))κ(x) + (1− ρ(dist(x,Ω)))
κ?
2
, ∀x ∈ Rd,

so that the function ` 7→ κ̃(x− `n(x)) is non-increasing on (−∞, `1) and bounded
from below by κ?

2 .
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Let x,y ∈ Ω, then there exists ε > 0 such that dist(x, ∂Ω) ≥ ε, dist(y, ∂Ω) ≥ ε,
and κ is normally nonincreasing on ∂Ωε := {x ∈ Ω | dist(x, ∂Ω) < ε}. A sufficient

condition for (Ω, δ̃) to be geodesic is that the geodesic γopt
x,y from x to y is such that

(86) dist
(
γopt
x,y(t), ∂Ω

)
≥ ε, ∀t ∈ [0, 1].

In order to ease the reading, we denote by γ = γopt
x,y any geodesic such that

(87) δ̃2(x,y) =

∫ 1

0

1

κ̃(γ(τ))
|γ′(τ)|2dτ.

We define the continuous and piecewise C1 path γε from x to y by setting

(88) γε(t) = projΩε(γ(t)), ∀t ∈ [0, 1],

where Ωε := {x ∈ Ω | dist(x, ∂Ω) ≥ ε} is convex, and the orthogonal (w.r.t. the
euclidian distance dist) projection projΩε onto Ωε is therefore uniquely defined.

Assume that Condition (86) is violated. Then by continuity there exists a non-
empty interval [a, b] ⊂ [0, 1] such that

dist(γ(t), ∂Ω) < ε, ∀t ∈ (a, b),

the geodesic between γ(a) and γ(b) coincides with the part of the geodesics between
x and y. Then, changing x into γ(a) and y into γ(b), we can assume without loss
of generality that

dist(γ(t), ∂Ω) < ε, ∀t ∈ (0, 1).

It is easy to verify that

(89) |γ′ε(t)| ≤ |γ′(t)|, ∀t ∈ [0, 1], and |γ′ε(t)| < |γ′(t)| on (a, b)

for some non-empty interval (a, b) ⊂ [0, 1]. It follows from (85) that

δ̃2(x,y) ≤
∫ 1

0

1

κ̃(γε(τ))
|γ′ε(τ)|2dτ.

Since κ is normally non-increasing, one has

δ̃2(x,y) ≤
∫ 1

0

1

κ̃(γ(τ))
|γ′ε(τ)|2dτ.

Thanks to (89), one obtains that

δ̃2(x,y) <

∫ 1

0

1

κ̃(γ(τ))
|γ′(τ)|2dτ,

providing a contradiction with the optimality (87) of γ. Thus Condition (86) holds,
hence (Ω, δ) is a geodesic space. �

Appendix B. A multicomponent bathtub principle

The following theorem can be seen as a generalization of the classical scalar
bathtub principle (see for instance [35, Theorem 1.14]). In what follows, N is a
positive integer and Ω denotes an arbitrary measurable subset of Rd.

Theorem B.1. Let ω ∈ L1
+(Ω), and let m = (m0, . . . ,mN ) ∈ (R∗+)N+1 be such

that
∑N
i=0mi =

∫
Ω
ω dx. We denote by

X∩A =

{
s = (s0, . . . , sN ) ∈ L1

+(Ω)N+1

∣∣∣∣∣

∫

Ω

sidx = mi and
N∑

i=0

si = ω a.e. in Ω

}
.
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Then for any F = (F0, . . . , FN ) ∈ (L∞(Ω))N+1, the functional

F : s 7→
∫

Ω

F · sdx

has a minimizer in X ∩A. Moreover, there exists α = (α0, . . . , αN ) ∈ RN+1 such
that, denoting

λ(x) := min
0≤j≤N

{Fj(x) + αi}, x ∈ Ω,

any minimizer s = (s0, . . . , sN ) satisfies

Fi + αi = λ dsi-a.e. in Ω, ∀i ∈ {0, . . . , N}.

One can think of this as: si = 0 in {Fi+αi > λ} and Fi+αi ≥ λ everywhere, i.e.,

si > 0 can only occur in the “contact set”

{
x

∣∣∣∣ Fi(x) + αi = min
j

(Fj(x) + αj)

}
.

Proof. For the existence part, note that F is continuous for the weak L1 conver-
gence, and that X ∩A is weakly closed. Since

∑
si = ω and si ≥ 0 we have in

particular 0 ≤ si ≤ ω ∈ L1 for all i and s ∈ X ∩A. This implies that X ∩A
is uniformly integrable, and since the mass ‖si‖L1 =

∫
si = mi is prescribed, the

Dunford-Pettis theorem shows that X ∩A is L1-weakly relatively compact. Hence
from any minimizing sequence we can extract a weakly-L1 converging subsequence,
and by weak L1 continuity the weak limit is a minimizer.

Let us now introduce a dual problem: for fixed α = (α0, . . . , αN ) ∈ RN+1 we
denote

(90) λα(x) := min
i
{Fi(x) + αi}

and define

J(α) :=

∫

Ω

λα(x)ω(x)dx−
N∑

i=0

αimi.

We shall prove below that

(i) sup
α∈RN+1

J(α) = max
α∈RN+1

J(α) is achieved,

(ii) min
s∈X∩A

F(s) = max
α∈RN+1

J(α).

The desired decomposition will then follow from equality conditions in (ii), and
λ(x) = λα(x) will be retrieved from any maximizer α ∈ Argmax J .

Remark B.2. The above dual problem can be guessed by introducing suitable La-
grange multipliers λ(x),α for the total saturation and mass constraints, respec-
tively, and writing the convex indicator of the constraints as a supremum over
these multipliers. Formally exchanging inf sup = sup inf and computing the opti-
mality conditions in the right-most infimum relates λ to α as in (90), which in turn
yields exactly the duality inf

s
F = max

α
J . See also Remark B.3
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Let us first establish property (i). For all α ∈ RN+1 and all s ∈ X ∩A, we first
observe that

J(α) =

∫

Ω

min
j
{Fj(x) + αj}ω(x)dx−

N∑

i=0

αimi

=

∫

Ω

min
j
{Fj(x) + αj}

N∑

i=0

si(x)dx−
N∑

i=0

αi

∫

Ω

si(x)dx

=
N∑

i=0

∫

Ω

(
min
j
{Fj(x) + αj} − αi

)
si(x)dx ≤

∫

Ω

F · sdx = F(s).

In particular J is bounded from above and

(91) sup
α∈RN+1

J(α) ≤ min
s∈X∩A

F(s).

Since
∫
ωdx =

∑
mi, the function J is invariant under diagonal shifts, i.e., J(α+

c1) = J(α) for any constant c ∈ R. As a consequence we can choose a maximizing
sequence {αk}k≥1 such that min

j
αkj = 0 for all k ≥ 0. Let j(k) be an index such

that αkj(k) = min
j
αkj = 0. Then, since αk is maximizing and ω(x) ≥ 0, we get, for

k large enough,

sup J − 1 ≤ J(αk) =

∫

Ω

min
j
{Fj(x) + αkj }ω(x)dx−

∑
αkimi

≤
∫

Ω

(
Fj(k)(x) + αkj(k)︸ ︷︷ ︸

=0

)
ω(x)dx−

∑
αkimi ≤ ‖F ‖L∞‖ω‖L1 −

∑
αkimi.

Thus
∑
αkimi ≤ C, and since αki ≥ 0 and mi > 0 we deduce that

(
αk
)
k

is
bounded. Hence, up to extraction of an unlabelled subsequence, we can assume
that αk converges towards some α ∈ RN+1

+ . The map J is continuous, hence α is
a maximizer.

Let us now focus on property (ii). Note from (91) and (i) it suffices to prove the
reverse inequality

max
α∈RN+1

J(α) ≥ min
s∈X∩A

F(s).

We show below that, for any maximizer α of J , we can always construct a suitable
s ∈ X ∩A such that F(s) = J(α). This will immediately imply the reverse inequal-
ity and thus our claim (ii). In order to do so, we first observe that J is concave,
thus the optimality condition at α can be written in terms of superdifferentials as
0RN+1 ∈ ∂J(α). Denoting by

Λ(α) =

∫

Ω

λαωdx =

∫

Ω

min
j
{Fj(x) + αj}ω(x)dx

the first contribution in J , this optimality can be recast as

(92) m ∈ ∂Λ(α).

For fixed x ∈ Ω and by usual properties of the min function, the superdifferential
∂λα(x) of the concave map α 7→ λα(x) at α ∈ RN+1 is characterized by

∂λα(x) =

{
θ ∈ RN+1

+

∣∣∣∣∣
N∑

i=0

θi = 1, and θi = 0 if Fi(x) + αi > λα(x)

}
.
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Therefore, it follows from the extension of the formula of differentiation under the
integral to the non-smooth case (cf. [23, Theorem 2.7.2]) that
(93)

∂Λ(α) =

{
w ∈ RN+1

+

∣∣∣∣ w =

∫

Ω

θ(x)ω(x)dx with θ(x) ∈ ∂λα(x) a.e. in Ω

}
.

The optimality criterion (92) at any maximizer α gives the existence of some func-
tion θ as in (93) such that

mi =

∫

Ω

θi(x)ω(x)dx, ∀i ∈ {0, . . . , N}.

Defining

(94) si(x) := θi(x)ω(x), ∀i ∈ {0, . . . , N},

we have by construction that si ≥ 0,
∫
si = mi, and

∑
si = (

∑
i θi)ω = ω a.e, thus

s ∈ X ∩A. Exploiting again
∑
si = ω as well as the crucial property that θi = 0

a.e. in {x | Fi + αi > λα}, or in other words that Fi + αi = λα for dsi-a.e x ∈ Ω,
we get

J(α) =

∫

Ω

λαωdx−
N∑

i=0

αimi =
N∑

i=0

∫

Ω

λαsidx−
N∑

i=0

αimi

=
N∑

i=0

∫

Ω

(Fi + αi)sidx−
N∑

i=0

αimi = F(s)

as claimed. Therefore s constructed by (94) is a minimizer of F and

(95) J(α) = F(s).

In order to finally retrieve the desired decomposition, choose any minimizer
s ∈ X ∩A of F and any maximizer α ∈ RN+1 of J . Then it follows from (95) that

0 = F(s)− J(α) =
N∑

i=0

∫

Ω

Fisidx−
∫

Ω

λα ωdx+
N∑

i=0

αimi.

Using once again that
∫
si = mi and

∑
i si = ω, we get that

N∑

i=0

∫

Ω

(Fi + αi − λα) sidx = 0.

By definition of λα the above integrand is nonnegative, hence Fi + αi = λα a.e. in
{si > 0}. �

Remark B.3. To understand the dual problem one chan think the function Fi as
N + 1 bathub that can be translated vertically. The translation of each bathtub is
given by αi. Once these translations are given one just wants to fill the bathubs
starting from the bottom (that is λα), while satisfying the global saturation and
mass constraints. For an optimal translation vector α, each phase i contributes at
x with a ratio θi(x) as in (94).
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[15] C. Cancès, T. O. Gallouët, and L. Monsaingeon. The gradient flow structure of immiscible

incompressible two-phase flows in porous media. C. R. Acad. Sci. Paris Sér. I Math., 353:985–
989, 2015.

[16] G. Carlier and M. Laborde. On systems of continuity equations with nonlinear diffusion and

nonlocal drifts. arXiv preprint, arXiv:1505.01304, 2015.
[17] J. A. Carrillo, M. DiFrancesco, A. Figalli, T. Laurent, and D. Slepčev. Global-in-time weak
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MINIMIZING MOVEMENT AND FINITE VOLUME SCHEMES
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Abstract. The Wasserstein gradient flow structure of the PDE system governing multiphase

flows in porous media was recently highlighted in [C. Cancès, T. O. Gallouët, and L. Monsain-

geon, Anal. PDE 10(8):1845–1876, 2017]. The model can thus be approximated by means of
the minimizing movement (or JKO) scheme, that we solve thanks to the ALG2-JKO scheme

proposed in [J.-D. Benamou, G. Carlier, and M. Laborde, ESAIM Proc. Surveys, 57:1–17,

2016]. The numerical results are compared to a classical upstream mobility Finite Volume
scheme, for which strong stability properties can be established.
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1. Multiphase porous media flows as Wasserstein gradient flow

Because of their wide range of interest in the applications, multiphase flows in porous media
have been the object of countless scientific studies. In particular, there has been an extensive
effort in order to develop reliable and efficient tools for the simulation of such flows. In many
practical situations, the characteristic size of the pores (typically of the order the µm for regular
sandstones) is much smaller than the characteristic size of the domain of interest. The direct
numerical simulation of fluid flows at the pore scale is therefore not tractable. The use of
homogenized models of Darcy type is therefore commonly used to simulate porous media flows.

1
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The derivation of such models is the purpose of a very extended literature. We refer for instance
to [3] for an extended introduction to the modeling of porous media flows. But let us stress
that, as far as we know, there is no rigorous mathematical derivation of homogenized models for
multiphase porous media flows.

Because of the very large friction of the fluid with the porous matrix, the energy is dissipated
and inertia is often naturally neglected in the Darcy type models. The resulting models there-
fore have a formal gradient flow structure, as highlighted in [10] for immiscible incompressible
multiphase porous media flows. This was then rigorously established in [11] that the equations
governing such flows can be reinterpreted as a gradient flow in some appropriate Wasserstein
space. The goal of this paper is to explore how this new point of view can be used to simulate
multiphase flows in porous media.

1.1. Incompressible immiscible multiphase flows. As a first step, let us recall the equa-
tions governing multiphase porous media flows. We remain synthetic here and refer to the
monograph [3] for a rather complete presentation of the models. The porous medium is repre-
sented by a convex bounded open subset Ω of Rd (d ≤ 3). Within this porous medium, N + 1
phases are flowing. Denoting by s = (s0, . . . , sN ) the saturations, i.e., the volume ratios of the
various phases in the fluid, the following total saturation relations has to be fulfilled:

(1a) s0 + s1 + · · ·+ sN = 1.

In what follows, we denote by

∆ =
{
s ∈ RN+

∣∣ s0 + s1 + · · ·+ sN = 1
}
,

and by

X =
{
s : Ω→ RN

∣∣ s(x) ∈∆ for a.e. x ∈ Ω
}
.

As a consequence of (1a), the composition of the fluid is fully characterized by the knowledge of

s∗ = (s1, . . . , sN ) ∈∆∗ =

{
(s1, . . . , sN ) ∈ RN+

∣∣∣∣∣
N∑

i=1

si ≤ 1

}
.

Concerning the evolution, each phase is convected with its own speed

(1b) ω∂tsi + ∇ · (sivi) = 0,

where ω stands for the porosity of the medium Ω and is assumed to be constant in the sequel for
simplicity. Then a straightforward rescaling in time allows to choose ω = 1. We further assume
a no flux condition across the boundary ∂Ω for each phase, hence the mass is conserved along
time. This motivates the introduction of the set

A =

{
s ∈ L1

+(Ω)N
∣∣∣∣
∫

Ω

sidx =

∫

Ω

s0
idx

}
,

where s0 =
(
s0
i

)
: Ω→∆ is a prescribed initial data.

The phase speeds vi are prescribed by the Darcy law [14]

(1c) vi = − κ

µi
(∇pi − ρig) , i ∈ {0, . . . , N}.

In (1c), κ denotes the permeability of the porous medium. For simplicity, it is assumed to be
constant and positive. We refer to [11] for the case of space-dependent anisotropic permeability
tensors. The fluid viscosity and density are denoted by µi > 0 and ρi ≥ 0, respectively, whereas
g = −gez denotes the gravity. The unknown phase pressures p = (pi)0≤i≤N are related to the
saturations by N capillary pressure relations

(1d) pi − p0 = πi(s
∗), ∀i ∈ {1, . . . , N}.
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The capillary pressure functions π = (πi)1≤i≤N are assumed to derive from a strictly convex and

$-concave potential Π : ∆∗ → R+ for some $ > 0, i.e.,

(2) 0 < Π(ŝ∗)−Π(s∗)− π(s∗) · (ŝ∗ − s∗) ≤ $

2
|ŝ∗ − s∗|2, ∀s∗, ŝ∗ ∈∆∗, with s∗ 6= ŝ∗.

This implies that π : ∆∗ → RN is strictly monotone (thus one-to-one) and Lipschitz continuous:

0 <
(
π(ŝ∗)− π(s∗)

)
·
(
ŝ∗ − s∗

)
≤ $|ŝ∗ − s∗|2, ∀s∗, ŝ∗ ∈∆∗, with s∗ 6= ŝ∗,

and thus

0 ≤ D2Π(s∗) ≤ $IN , ∀s∗ ∈∆∗.

The last inequalities have to be understood in the sense of the symmetric matrices. The function
Π is extended by +∞ outside of ∆∗.

As established in [11], the problem (1) can be interpreted as the Wasserstein gradient flow of
the energy

(3) E(s) =

∫

Ω

[Π(s∗) + s ·Ψ + χ∆(s)] dx, ∀s ∈ A.

In formula (3), the exterior gravitational potential Ψ = (Ψi)0≤i≤N is given by

(4) Ψi(x) = −ρig · x, ∀x ∈ Ω.

Remark 1.1. In fact in (3) one can consider a large class of arbitrary potential Ψ, see [11] for
details.

The constraint (1a) is incorporated in the energy rather than in the geometry thanks to the
term

χ∆(s) =

{
0 if s ∈∆,

+∞ otherwise.

We refer to [8, 5, 28] for a presentation of the multiphase optimal transportation problem for
which the constraint (1a) is directly incorporated in the geometry. In order to be more precise in
our statements, we need to introduce some extra material concerning the Wasserstein distance
to be used to equip A. This is the purpose of the next section.

Remark 1.2. In the previous work [11], the uniform convexity of the capillary potential Π was
required. In (2), we relax this assumption into a mere strict convexity requirement. This can be
done by slightly adapting the proofs of [11].

1.2. Wasserstein distance. For i ∈ {0, . . . , N} we define

Ai =

{
si ∈ L1(Ω;R+)

∣∣∣∣
∫

Ω

sidx = mi

}
.

Given si, ŝi ∈ Ai, the set of admissible transport plans between si and ŝi is given by

Γi(si, ŝi) =
{
γi ∈M+(Ω× Ω)

∣∣∣ γi(Ω× Ω) = mi, γ
(1)
i = si and γ

(2)
i = ŝi

}
,

whereM+(Ω×Ω) stands for the set of Borel measures on Ω×Ω and γ
(k)
i is the kth marginal of

the measure γi. The quadratic Wasserstein distance Wi on Ai is then defined as

(5) W 2
i (si, ŝi) = min

γi∈Γ(si,ŝi)

∫∫

Ω×Ω

µi
κ
|x− y|2dγi(x,y).

Equivalently, the continuity equation (1b) allows to give the following dynamical characterization:
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Proposition 1.3 (Benamou-Brenier formula [4]). For si,0, si,1 ∈ Ai we have

(6) W 2
i (si,0, si,1) = min

si,v

∫ 1

0

∫

Ω

µi
κ
|vt(x)|2dsi,t(x)dt,

where the minimum runs over curves of measures t 7→ si,t ∈ Ai with endpoints si,0, si,1 and
velocity fields t 7→ vt ∈Md(Ω) such that

∂tsi,t + ∇ · (si,tvt) = 0

in the sense of distributions.

Remark 1.4. As originally developped in [4], the right variables to be used in the Benamou-
Brenier formula (6) is not the velocity v, but in fact the momentum m = sv, since the action

A(s,m) = |m|2
s = s|v|2 becomes then jointly convex in both arguments.

A third equivalent formulation is the Kantorovich dual problem:

Proposition 1.5. There holds

(7)
1

2
W 2
i (si, ŝi) = max

φ,ψ

{∫
φ(x)dsi(x) +

∫
ψ(y)dŝi(y)

}
,

where the maximum runs over all pairs (φ, ψ) ∈ L1(dsi) × L1(dŝi) such that φ(x) + ψ(y) ≤
µi
2κ |x− y|2. Any maximizer is called a (pair of optimal) Kantorovich potential.

The viscosity µi and permeability κ appear in (5)–(7) as scaling factors in the cost function
µi|x − y|2/κ, and this is required for consistency with Darcy’s law (1c). For more general
heterogeneous permeability tensors K(x) one could use instead the intrinsic distance d2

i (x,y)
induced on Ω by the Riemannian tensor µiK−1(x), see [27] for a general approach of Wasserstein
distances with variable coefficients and [11] in the particular context of multiphase flows in porous
media.

With the phase Wasserstein distances (Wi)0≤i≤N at hand, we can define the global Wasserstein
distance W on A := A0 × · · · × AN by setting

W (s, ŝ) =

(
N∑

i=0

Wi(si, ŝi)
2

)1/2

, ∀s, ŝ ∈ A.

1.3. Approximation by minimization scheme. As already mentioned, the problem (1) is the
Wasserstein gradient flow of our singular energy (3), see our earlier works [10, 11]. Rather than
discussing the meaning of gradient flows in the Wasserstein setting, we refer to the monograph
[2] for an exposition of gradient flows in abstract metric spaces [2] and to [35, 36] for a detailed
overview. As is now well understood from the work of Jordan, Kinderlehrer, and Otto [25], one
possible way to formalize this gradient flow structure is to implement the JKO scheme (also
referred to as DeGiorgi’s minimizing movement, see [15]). Given an initial datum s0 ∈ A with
energy E(s0) <∞ and a time step τ > 0, the strategy consists in:

(i) construct a time discretization sn(.) ≈ s(nτ, .) by solving recursively

(8) sn+1 = argmin
s∈A

{
1

2τ
W 2(s, sn) + E(s)

}
;

(ii) define the piecewise-constant interpolation

sτ (t) := sn+1 if t ∈ (nτ, (n+ 1)τ ];

(iii) retrieve a continuous solution s(t) = lim
τ→0

sτ (t) in the limit of small time steps.



SIMULATION OF MULTIPHASE POROUS MEDIA FLOWS 5

This is a variant in the Wasserstein space of the implicit variational Euler scheme: indeed, in
Euclidean spaces x ∈ Rd and for smooth functions E : Rd → R, the Euler-Lagrange equation
corresponding to minimizing x 7→ 1

2τ |x− xn|2 +E(x) is nothing but the finite difference approx-

imation xn+1−xn
τ = −∇E(xn+1). We refrain from giving more details at this stage and refer

again to [2, 35, 37].
Due to lower semi-continuity and convexity, it is easy to prove that the minimization problem

(8) is well-posed, hence the discrete solution sτ is uniquely and unambiguously defined. But we
still need to construct approximate phase pressures pτ = (p1,τ , p2,τ ). Their construction makes
use of the backward Kantorovich potentials (see [11, Section 3]).

Lemma 1.6. There exist pressures pn+1
i and Kantorovich potentials φn+1

i (from sn+1
i to sni )

such that

(9)
φn+1
i

τ
= pn+1

i + Ψi a.e. in {sn+1
i > 0} for i = 0, . . . , N,

and

(10) pn+1
i − pn+1

0 = πi(s
n+1,∗) a.e. in Ω for i = 1, . . . , N.

From classical optimal transport theory [35], vn+1
i := κ

µi

∇φn+1
i

τ should be interpreted as the

discrete velocity driving the i-th phase, which will automatically give ∂tsi +∇ · (sivi) = 0 in the
limit τ → 0. Hence (9) is a discrete counterpart of Darcy law (1c). The capillary relation (1d)
hold as well at the discrete level thanks to relations (10), whereas the total saturation constraint
(1a) is automatically enforced in (8) thanks to E(sn+1) < ∞. For the sake of brevity we omit
the details and refer again to [11].

1.4. Main properties of the approximation. Since our system (1) of PDEs is highly nonlin-
ear, taking the limit s(t) = lim

τ→0
sτ (t) will require sufficient compactness both in time and space.

In this section we sketch the main arguments leading to such compactness.
Compactness in time is derived from the classical total square distance estimate below, which

is a characteristic feature of any JKO variational discretization. Testing s = sn as a competitor
in (8) gives first

1

2τ
W 2(sn+1, sn) + E(sn+1) ≤ E(sn).

This implies of course the energy monotonicity E(sn+1) ≤ E(sn), but summing over n, we also
get the total square distance estimate in the form

(11)
1

τ

∑

n≥0

W 2(sn+1, sn) ≤ 2
(
E(s0)− inf

A
E
)
.

By definition of the piecewise-constant interpolation, an easy application of the Cauchy-Schwarz
inequality gives then the approximate equicontinuity

W (sτ (t1), sτ (t2)) ≤ C|t2 − t1 + τ | 12 , ∀ 0 ≤ t1 ≤ t2,
uniformly in τ , which yields the desired compactness in time (see [2, Proposition 3.10] or [18,
Theorem C.10]).

Compactness in space will be obtained exploiting the flow interchange technique from [29].
Roughly speaking, this amounts to estimating the dissipation of the driving functional E along
a well-behaved auxiliary gradient flow, driven by an auxiliary functional and starting from the
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minimizer sn+1. More explicitly, we define the ε-perturbation s̃ε = (s̃0,ε, . . . , s̃N,ε) as solutions
to the independent heat equations

{
∂s̃i,ε
∂ε = κ∆s̃i,ε for small ε > 0,
s̃i|ε=0 = sn+1

i .

The key observation is that, for each i = 0 . . . N , the above heat equation is a gradient flow in
the Wasserstein space (Ai,Wi) with driving functional µiH, where the Boltzmann entropy

(12) H(s) =

∫

Ω

s(x) log (s(x)) dx.

In addition to the usual regularizing effects, this heat equation is particularly well-behaved here

in the sense that it preserves the total saturation constraint
N∑
i=0

s̃i,ε =
N∑
i=0

sn+1
i = 1 and, since Ω

is convex, the auxiliary driving functional H is displacement convex in (Ai,Wi) [37, 31]. If

Fnτ (s) =
1

2τ
W 2(s, sn) + E(s)

denotes the JKO functional, then by optimality of the minimizer sn+1 in (8) we must have

lim sup
ε→0+

d

dε
Fnτ (s̃ε) ≥ 0.

The energy term E(s̃ε) =
∫

Ω
Π(s̃∗ε ) can easily be differentiated under the integral sign (with

respect to ε), while the variation of the firstW 2(s̃ε, s
n) term can be estimated using the evolution

variational inequality [2] for the well-behaved H-flow s̃ε (this metric characterization precisely
requires some displacement convexity of the auxiliary flow, see [19, Theorem 2.23]). Omitting
again the details, one gets in the end the dissipation estimate

τ
N∑

i=0

‖∇πi((sn+1)∗)‖L2(Ω) ≤ C
(
τ +W 2(sn+1, sn) +

N∑

i=0

H(sni )−H(sn+1
i )

)
,

see [11, Section 2.2] for the details. Exploiting the previous total square distance estimate and
summing over n = 0 . . . bT/τc (or equivalently integrating in time), we control next

(13) ‖π(s∗τ )‖L2(0,T ;H1) ≤ C
(
T +

N∑

i=0

H(s0
i ) + 1

)
= CT

for arbitrary T > 0 and fixed initial datum s0. It is worth recalling at this stage that, due to our
assumption (2), π(s∗) = ∇s∗Π(s∗) is a strictly monotone thus invertible map of s∗ due to the
strict convexity of Π. The compactness w.r.t. the space variable of (sτ )τ>0 then follows from
(13).

Remark 1.7. A formal but more PDE-oriented explanation of the above flow-interchange simply
consists in taking log(si) as a test function in the weak formulation of system (1). The delicate
technical part is to justify this computation and mimic this formal chain rule in the discrete time
setting in order to retrieve enhanced regularity of the JKO minimizers.

Exploiting the above compactness, one can argue as in [11] and finally prove the following
convergence results. The existence of a weak solution to the problem (1) is a direct byproduct.

Theorem 1.8. For any discrete sequence τk → 0 and up extraction of a subsequence if needed,
we have convergence

sτk → s strongly in all Lq((0, T )× Ω),
π(s∗τk) ⇀ π(s∗) weakly in L2(0, T ;H1(Ω)),

pτ ⇀ p weakly in L2(0, T ;H1(Ω)),
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and the limit (s,p) is a weak solution of (1).

2. Numerical approximation of the flow

We present here the ALG2-JKO scheme and the upstream mobility finite volume scheme. The
first method is based on the variational JKO scheme (8) described in subsection 1.3 whereas the
second method is based on the PDE formulation of the problem (1) given by (1a)-(1b)-(1c)-(1d).
Both methods are well adapted for gradient flows equations, and more precisely we will check
the following key properties for the numerical solutions:

• preservation of the positivity
• conservation of the mass and saturation constraints,
• energy dissipation along solutions.

2.1. The ALG2-JKO scheme. This algorithm relies on the seminal work of Benamou and
Brenier [4] where an augmented Lagrangian approach was used to compute Wasserstein distances.
In [6], this approach was extended to the computation of Wasserstein gradient flows. The method
is very well suited for computing solutions to constrained gradient flows, as it will appear in the
numerical simulations presented in Section 3.

2.1.1. The augmented Lagrangian formulation. Roughly speaking, the ALG2-JKO scheme con-
sists in rewriting the single JKO step (8) as a more fashionable (and effectively implementable)
convex minimization problem. In order to do so, let us first introduce the convex lower-
semicontinuous 1-homogeneous action function given, for all (s,m) ∈ R× Rd, by

(14) A(s,m) :=





|m|2
2s if s > 0,

0 if s = 0 and m = 0,
+∞ otherwise.

We recall that m = sv is the momentum variable in the continuity equation ∂ts+ ∇ · (sv) = 0
and |m|2/s = s|v|2 is a kinetic energy, see Remark 1.4. As originally observed in [4], the function
A can be seen as the support function

A(s,m) = sup
(a,b)∈K2

{as+ b ·m}(15)

of the convex set K2, where Kα is defined for α > 0 as

(16) Kα :=

{
(a, b) ∈ R× Rd : a+

1

α
|b|2 ≤ 0

}
.

Taking advantage of the Benamou-Brenier formula (6), and given the previous JKO step sn, (8)
can be recast as

min
s,m

{
N∑

i=0

µi
κ

∫ 1

0

∫

Ω

A(si,t(x),mi,t(x)) dxdt+ τE(st=1)

}
,(17)

where the infimum runs over curves of measures t 7→ st = (s0,t, . . . , sN,t) ∈ A and momenta
t 7→mt = (m0,t, . . . ,mN,t) ∈Md(Ω)N+1, subject to N + 1 linear constraints

(18)





∂tsi,t + ∇ · (mi,t) = 0 in D′,
mi,t · ν = 0 on ∂Ω,
si|t=0 = sni ,

i = 0, . . . , N.

Note that only the initial endpoint st=0 = sn is prescribed for the curve (st)t∈[0,1]. The terminal
endpoint is free and contributes to the objective functional (17) through the E(st=1) term, and
the JKO minimizer will be retrieved as sn+1 = st=1. Note also that the minimizing curve
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(st)t∈[0,1] in (17)–(18) will automatically be a Wasserstein geodesic between the successive JKO

minimizers st=0 = sn and st=1 = sn+1.
As a first step towards a Lagrangian formulation, we rewrite the constraint (18) as a sup

problem with multipliers φi(t,x)

(19) sup
φ

{
N∑

i=0

∫

Ω

φi(1, ·)si,1 −
∫

Ω

φi(0, ·)sni −
∫ 1

0

∫

Ω

(∂tφisi,t + ∇φi ·mi,t)

}

=

{
0 if (18) holds,
+∞ else,

and minimizing (17) under the constraint (18) can thus be written inf
s,m

sup
φ
{. . . }. Swapping

inf sup = sup inf as in [6] and using that the Legendre transform of µi
κ A is the charateristic

function (convex indicator) of the convex set K2µi/κ defined in (16),

(µi
κ
A
)∗

(a, b) = χK2µi/κ
(a, b) =

{
0 if (a, b) ∈ K2µi/κ,
+∞ else,

the problem (17)-(18) finally becomes after a few elementary manipulations

inf
φ

{
N∑

i=0

∫

Ω

φi(0, ·)sni + E∗τ (−φ(1, ·)) : (∂tφi,∇φi) ∈ K2µi/κ

}
.

Here E∗τ denotes the Legendre transform of Eτ := τE . This dual problem can be reformulated as

inf
φ

{
F (φ) +G(q) : q = Λφ

}
,

where

Λφ = (∂tφ,∇φ,−φ(1, ·)) and q = (a, b, c)

are functions with values in (R× Rd × R)N+1,

F (φ) =
N∑

i=0

∫

Ω

φi(0, ·)sni ,

G(q) =
N∑

i=0

∫ 1

0

∫

Ω

χK2µi/κ
(ai, bi) + E∗τ (c),

and χK2µi/κ
stands again for the characteristic function of K2µi/κ. Introducing a Lagrange

multiplier

σ = (s,m, s̃1)

for the constraint Λφ = q, finding a minimizer sn+1 in the JKO scheme (8) is thus equivalent
to finding a saddle-point of the Lagrangian

L(φ, q,σ) := F (φ) +G(q) + σ · (Λφ− q).(20)

Here we slightly abuse the notations: s = (st)t∈[0,1] and m = (mt)t∈[0,1] are time-depending
curves while s̃1 ∈ A is independent of time. The scalar product in (20) is

σ · (Λφ− q) =

N∑

i=0

(∫ 1

0

∫

Ω

(si(∂tφi − ai) +mi · (∇φi − bi))−
∫

Ω

s̃1,i(φi(1, ·) + ci)
)
.
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We stress that the free variable s̃1 is a priori independent of the curve (st)t∈[0,1], but that the
saddle-point will ultimately satisfy st=1 = s̃1. In the Lagrangian (20), the original unknowns
(s,m, s̃1) become the Lagrange multipliers for the constraint q = Λφ, i.e., respectively

a = ∂tφ, b = ∇φ, and c = −φ(1, ·).
For some fixed regularization parameter r > 0, we introduce now the augmented Lagrangian

Lr(φ, q,σ) := F (φ) +G(q) + σ · (Λφ− q) +
r

2
‖Λφ− q‖2,(21)

where the extra regularizing term is given by the L2 norm

r

2
‖Λφ− q‖2 =

r

2

N∑

i=0

(∫ 1

0

∫

Ω

(|∂tφi − ai|2 + |∇φi − bi|2) +

∫

Ω

|φi(1, ·) + ci|2
)
.

Observe that being a saddle-point of (20) is equivalent to being a saddle-point of (21), see
for instance [22]. Thus in order to solve one step of the JKO scheme (8), it suffices to find a
saddle-point of the augmented Lagrangian Lr.

2.1.2. Algorithm and discretization. The augmented Lagrangian algorithm ALG2 aims at finding
a saddle-point of Lr and consists in a splitting scheme. Starting from (φ0, q0,σ0), we generate

a sequence (φk, qk,σk)k≥0 by induction as follows

Step 1: minimize with respect to φ:

φk+1 = argmin
φ

(
F (φ) + σk · Λφ+

r

2
|Λφ− qk|2

)
,

Step 2: minimize with respect to q:

qk+1 = argmin
q

(
G(q)− σk · q +

r

2
|Λφk+1 − q|2

)
,

Step 3: maximize with respect to σ, which amounts here to updating the multiplier by the
gradient ascent formula

σk+1 = σk + r(Λφk+1 − qk+1).

Since step 3 is a mere pointwise update we only describe in details the first two steps. In order to
keep the notations light we sometimes write si(t,x) = si,t(x), and likewise for any other variable
depending on time.

• The first step corresponds to solving N + 1 independent linear elliptic problems in time
and space, namely

−r∆t,xφ
k+1
i = ∇t,x · ((ski ,mk

i )− r(aki , bki )) in (0, 1)× Ω

with the boundary conditions




r∂tφ
k+1
i (0, ·) = sni (·)− ski (0, ·) + raki (0, ·) in Ω,

r
(
∂tφ

k+1
i (1, ·) + φk+1

i (1, ·)
)

= s̃k1,i(·)− ski (1, ·) + r
(
aki (1, ·)− cki (·)

)
in Ω,(

r∇φk+1
i +mk

i − rbki
)
· ν = 0 on ∂Ω.

• The second step splits into two convex pointwise subproblems. The first one corresponds
to projections onto the parabolas K2µi/κ:

(ak+1
i , bk+1

i )(t,x) = PK2µi/κ

(
(∂tφ

k+1
i ,∇φk+1

i )(t,x) +
1

r
(ski ,m

k
i )(t,x)

)
, ∀ i = 0, . . . , N.
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This projection PK2µi/κ
onto K2µi/κ is explicitly given by (see [33])

PK2µi/κ
(α,β) =

{
(α,β), if (α,β) ∈ K2µi/κ,(
α− λ, µiβ

κλ+µi

)
, otherwise,

where λ is the largest real root of the cubic equation

(α− λ)(µi/κ+ λ)2 +
µi
2κ
|β|2 = 0.

The second subproblem should update c. To this end, we need to solve the pointwise
proximal problem: for each x ∈ Ω

ck+1(x) = argmin
c∈RN+1

{
r

2

N∑

i=0

|φk+1
i (1,x)− 1

r
s̃k1,i(x) + ci|2 + E∗τ (x, c)

}
,(22)

where E∗τ (x, ·) is the Legendre transform of the energy density Eτ (x, ·) = τE(x, ·) in its
second argument (E being implicitly defined as E(s) =

∫
Ω
E(x, s(x)) dx).

Notice that the energy functional E only plays a role in the minimization with respect to the
internal c variable, namely the second subproblem (22) in Step 2. In Section 3 we will try to
make this step explicit for our two particular applications.

In order to implement this algorithm in a computational setting we use P2 finite elements
in time and space for φ, and P1 finite elements for σ and q. The variables ∇t,xφ

k+1
i =

(∂tφ
k+1
i ,∇φk+1

i ) are understood as the projection onto P1 finite elements and the algorithm was
implemented using FreeFem++ [24]. The convergence of this algorithm is known in finite dimen-

sion [22], i.e., the iterates (φk, qk,σk) are guaranteed to converge to a saddle point (φ, q,σ) as
k →∞. Once the saddle-point is reached, the output σ = (s,m, s̃1) is a minimizer for the prob-
lem (17)-(18) and the solution of the JKO scheme (8) is simply recovered as sn+1 = s̃1 = s|t=1.

Numerically, the Benamou-Brenier formula involves an additional time dimension to be effec-
tively discretized in each elementary JKO step, and this can be seen as a drawback. However
the successive JKO densities are close due to the small time step τ → 0 (indeed W (sn+1, sn) =
O(
√
τ) from the total square distance estimate (11)) and, in practice, only a very few inner

timesteps are needed.

2.1.3. Some properties of the approximate solution. As previously mentioned, the above La-
grangian framework can be practically implemented by simply projecting the (infinite dimen-
sional) problem onto P1/P2 finite elements. Provided that the iteration procedure (Steps 1 to 3
in Section 2.1.2) converges as k → ∞, as guaranteed from [22], the saddle-point σ = (s,m, s̃1)
satisfies by construction:

(i) (si,mi) remains in the domain Dom(A) of the action functional A defined in (14);
(ii) the continuity equation ∂tsi,t + ∇ · (mi,t) = 0 holds with zero-flux boundary condition.

As a consequence of (i) the scheme preserves the positivity, i.e., sn+1
i ≥ 0, whereas (ii) ensures

the mass conservation
∫

Ω
sn+1
i =

∫
Ω
sni .

Moreover, the fully discrete ALG2-JKO scheme preserves by construction the gradient flow
structure, hence the scheme is automatically energy diminishing. Since the energy functional
(3) includes the χ∆ term accounting for the saturation constraint

∑
si = 1, one can and should

include this convex indicator term in the discretized energy. This contraint is then passed on to
the proximal operator to be used in the implementation, see Section 3 for details. As a result
the saturation constraint is satisfied.
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2.2. Upstream mobility Finite Volume scheme. The ALG2-JKO scheme described in the
previous section will be compared to the widely used upstream mobility Finite Volume scheme [34,
7, 21]. As a first step, let us detail how Ω is discretized.

2.2.1. The finite volume mesh. The domain Ω is assumed to be polygonal. Then following [20], an
admissible mesh consists in a triplet

(
T,E, (xK)K∈T

)
. The elements K of T are open polygonal

convex subsets of Ω called control volumes. Their boundaries are made of elements σ ∈ E of
codimension 1 (edges if d = 2 or faces if d = 3). Let K,L be two distinct elements of T, then
K∩L is either empty, or reduced to a point (a vertex), or there exists σ ∈ E denoted by σ = K|L
such that K ∩ L = σ. In particular, two control volumes share at most one edge. We denote by
EK =

{
σ ∈ E

∣∣ ⋃
σ∈EK σ = ∂K

}
the set of the edges associated to an element K ∈ T, and by

NK = {L ∈ T | there exists σ = K|L ∈ E } the set of the neighboring control volumes to K. We
also denote by

Eext = {σ ∈ E | σ ⊂ ∂Ω } , Eint = E \ Eext, Eint,K = Eint ∩ EK , ∀K ∈ T.

The last element (xK)K∈T of the triplet corresponds to the so called cell-centers. To each control
volume K ∈ T, we associate an element xK ∈ Ω such that for all L ∈ NK , the straight line
(xK ,xL) is orthogonal to the edge K|L. This implicitly requires that xK and xL are distinct,
and we denote by dσ = |xK − xL| for σ = K|L the distance between the cell centers of the
neighboring control volumes K and L. For σ ∈ EK ∩ Eext, we denote by xσ the projection of
xK on the hyperplane containing σ, and by dσ = |xK − xσ|. We also require that the vector
xL − xK is oriented in the same sense as the normal nK,σ to σ ∈ EK outward w.r.t. K. We
refer to Figure 1 for an illustration of the notations used hereafter.

•

•

xL

xK

K

L

σ = K|L

dσ nK,σ

Figure 1. Here is an example of admissible mesh in the sense of [20]

Beyond cartesian grids, there are two classical ways to construct admissible meshes in the
above sense when d = 2. The first one consists in the classical Delaunay triangulation, the cell-
center xK of K ∈ T being the center of the circumcircle of K. The second classical construction
consists in choosing the cell centers (xK) at first, and then to construct T as the associated
Voronöı diagram.

In what follows, we denote by mK the d-dimensional Lebesgue measure of the control volume
K ∈ T, while mσ denotes the (d− 1)-dimensional Lebesgue measure of the edge σ ∈ E. We also
denote by aσ = mσ

dσ
the transmissivity of the edge σ.

In order to simplify the presentation, we restrict our presentation to the case of uniform time
discretizations with time step τ > 0. The extension to the case of time discretizations with
varying time steps does lead to any particular difficulty.
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2.2.2. Definition of the Finite Volume scheme. The Finite Volume scheme relies on the discretiza-
tion of the Euler-Lagrange equations (1) rather than on the minimizing movement scheme (8).
The main unknowns to the problems are located at the cell centers (xK)K∈T. They consist in
discrete saturations sni,K ' si(xK , nτ) and discrete pressures pni,K ' pi(xK , nτ). In what follows,

we denote by snK =
(
sni,K

)
0≤i≤N (resp. pnK =

(
pni,K

)
0≤i≤N ) and snT = (snK)K∈T.

The first equation of the scheme is a straightforward consequence of (1a), i.e.,

(23a)

N∑

i=0

sni,K = 1, ∀K ∈ T, ∀n ≥ 1.

This motivates the introduction of the discrete counterpart XT of X defined by

XT = {sT | sK ∈∆ for all K ∈ T} ,

so that (23a) amounts to requiring that snT belongs to XT for all n (the nonnegativity of the
saturations will be established later on). The capillary pressure relations (1d) are discretized
into

(23b) pni,K − pn0,K = πi(s
n
K), ∀i ∈ {1, . . . , N}, ∀K ∈ T, ∀n ≥ 1.

Integrating (1b) over the control volume K ∈ T (recall here that the porosity ω was artificially
set to 1) and using Stokes’ formula, one gets the natural approximation

(23c)
sni,K − sn−1

i,K

τ
mK +

∑

σ∈EK
sni,σv

n
i,K,σ = 0, ∀i ∈ {0, . . . , N}, ∀K ∈ T, ∀n ≥ 1.

Here, vni,K,σ is an approximation of
∫
σ
vi(γ, nτ) · nK,σdγ, where vi is related to pi through to

Darcy law (1c). Thanks to the orthogonality condition on the mesh, the choice

(23d) vni,K,σ = aσ
κ

µi

(
pni,K + Ψi,K − pni,L −Ψi,L

)
, ∀σ = K|L ∈ Eint,

is consistent — we use the shortened notation Ψi,K = Ψi(xK) —. In accordance with the
no-flux boundary conditions, we impose that

vni,K,σ = 0, ∀σ ∈ EK ∩ Eext, ∀n ≥ 1.

It remains to define the approximate saturations sni,σ for σ ∈ Eint. We use here the very classical
upwind choice [34, 7, 21], i.e.,

(23e) sni,σ =

{(
sni,K

)+
if vni,K,σ ≥ 0,(

sni,L
)+

otherwise,
∀σ = K|L ∈ Eint.

Note that even though the mapping (snT,p
n
T) 7→ snE =

((
sni,σ
)

0≤i≤n

)
σ∈Eint

is discontinuous, the

quantity sni,σv
n
i,K,σ depends in a continuous way of the main unknowns.

The scheme (23) amounts to a nonlinear system of equations to be solved a each time step.
This will be practically done thanks to Newton-Raphson method. But before, we establish some
properties of the FV scheme, namely the energy decay, the entropy control, the non-negativity
of the saturations, or the existence of a solution (snT,p

n
T) to the scheme.
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2.2.3. Some properties of the approximate solution. The first key property of the FV scheme
that we point out is the non-negativity of the saturations:

sni,K ≥ 0 ∀i ∈ {0, . . . , N}, ∀K ∈ T, ∀n ≥ 1.

In order to establish this estimate, it suffices to rewrite (23c) as

sni,K +
τ

mK

∑

σ∈Eint,K

σ=K|L

[(
sni,K

)+ (
vni,K,σ

)+ −
(
sni,L

)+ (
vni,K,σ

)−]
= sn−1

i,K

thanks to (23e). In the previous expression, we used the convention a− = max(0,−a) ≥ 0.
Assume for contradiction that sni,K is negative, then so does the left-hand side, while the right-

hand side is nonnegative by induction. Together with (23a), this shows that

(24) snT ∈ XT, ∀n ≥ 1.

The scheme is mass conservative for the N + 1 phases since

vni,K,σ + vni,L,σ = 0 hence sni,σv
n
i,K,σ + sni,σv

n
i,L,σ = 0, for σ = K|L.

Together with the no-flux boundary conditions, this shows that the mass is conserved along time:

(25)
∑

K∈T
sni,KmK =

∑

K∈T
sn−1
i,K mK =

∑

K∈T
s0
i,KmK , ∀n ≥ 1, ∀i ∈ {0, . . . , N}.

Then the discrete solution snT remains in the discrete counterpart AT of A defined as the elements
sT of RT

+ such that
∑
K∈T si,KmK =

∑
K∈T s0

i,KmK for all i ∈ {0, . . . , N}.
Multiplying the scheme (23c) by τ

(
pni,K + Ψi,K

)
and summing over K ∈ T yields

N∑

i=0

∑

K∈T

(
sni,K − sn−1

i,K

) (
pni,K + Ψi,K

)
mK

+ τ
N∑

i=0

κ

µi

∑

σ∈Eint

aσs
n
i,σ

(
pni,K + Ψi,K − pni,L −Ψi,L

)2
= 0.

The second term in the above expression is clearly nonnegative. concerning the first term, one
can use the constraint (23a) to rewrite as

N∑

i=0

∑

K∈T

(
sni,K − sn−1

i,K

)
pni,KmK =

N∑

i=1

∑

K∈T

(
sni,K − sn−1

i,K

) (
pni,K − pn0,K

)
mK

≥
∑

K∈T

(
Π(sn,∗K )−Π(sn−1,∗

K )
)
mK ,

the last inequality being a consequence of the convexity of Π. This establishes that the scheme
is energy diminishing: denoting by

E(snT) =
∑

K∈ T

(
Π(sn,∗K ) +

N∑

i=0

sni,KΨi,K

)
mK , n ≥ 0,

one has

(26) E(snT) + τ
N∑

i=0

κ

µi

∑

σ∈Eint

aσs
n
i,σ

(
pni,K + Ψi,K − pni,L −Ψi,L

)2 ≤ E(sn−1
T ), ∀n ≥ 1.
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The last a priori estimate we want to point out is the discrete counterpart of the flow in-
terchange estimate. It is obtained by multiplying (23c) by τµi log(sni,K) and by summing over

i ∈ {0, . . . , N} and K ∈ T, leading to
(27)
N∑

i=0

µi
∑

K∈T

(
sni,K − sn−1

i,K

)
log(sni,K)mK + τ

N∑

i=0

κ
∑

σ∈Eint

aσs
n
i,σv

n
i,K,σ

(
log(sni,K)− log(sni,L)

)
= 0.

As already discussed in Remark 1.7 this corresponds to taking log si as a test-function in the
weak formulation of the continuous PDEs. The first term of (27) can be estimated thanks to an
elementary convexity inequality

N∑

i=0

µi
∑

K∈T

(
sni,K − sn−1

i,K

)
log(sni,K)mK ≥ H(snT)−H(sn−1

T ), ∀n ≥ 1

with

H(snT) =

N∑

i=0

µi
∑

K∈T

(
h(sni,K)− h(sn−1

i,K )
)
mK , h(s) = s log(s)− s+ 1 ≥ 0.

Note that the entropy functional H is bounded on XT. The second term of (27) can be estimated
as follows. First, the concavity of s 7→ log(s) yields

sni,L
(
log(sni,K)− log(sni,L)

)
≤ sni,K − sni,L ≤ sni,K

(
log(sni,K)− log(sni,L)

)
, σ = K|L,

so that the upwind choice (23e) for sni,σ ensures that

aσs
n
i,σv

n
i,K,σ

(
log(sni,K)− log(sni,L)

)
≥ aσvni,K,σ(sni,K − sni,L), σ = K|L.

Using the expression (23d) of vni,K,σ and the relation (23a) on the saturations, one gets that

N∑

i=0

∑

σ∈Eint

aσs
n
i,σv

n
i,K,σ

(
log(sni,K)− log(sni,L)

)
≥ A+B,

where

A =
N∑

i=1

∑

σ∈Eint

σ=K|L

aσ(πi(s
n,∗
K )− πi(sn,∗L ))(sni,K − sni,L),

B =
N∑

i=0

∑

σ∈Eint

σ=K|L

aσ(Ψi,K −Ψi,L)(sni,K − sni,L) =
N∑

i=0

∑

K∈T
sni,K

∑

L∈NK

aσ(Ψi,K −Ψi,L).

Recalling the definition (4) of the external potential and denoting by Ψi,σ = Ψi(xσ), one has
∑

L∈NK

aσ(Ψi,K −Ψi,L) +
∑

σ∈Eext∩EK
aσ(Ψi,K −Ψi,σ) = 0.

Since 0 ≤ sni,K ≤ 1, this implies that

B ≥ τκ|∂Ω||g|.
On the other hand, the assumption (2) on the capillary pressure potential ensures that

A ≥ 1

$

N∑

i=1

∑

σ∈Eint

σ=K|L

aσ
(
πi(s

n,∗
K )− πi(sn,∗L )

)2
, ∀σ = K|L ∈ Eint.
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Hence collecting the previous inequalities in (27) provides the following discrete L2
loc(H1)-estimate

one the capillary pressures

(28)
M∑

n=1

τ
N∑

i=1

∑

σ∈Eint

σ=K|L

aσ
(
πi(s

n,∗
K )− πi(sn,∗L )

)2 ≤ C(1 +Mτ).

Clearly, (28) is the discrete counterpart of the estimate (13) obtained thanks to the flow inter-
change technique. The derivation of a discrete L2

loc(H1) estimate on the phase pressures from (28)
and (26) requires one additional assumption on the capillary pressure functions (πi)1≤i≤n. More
precisely, we assume that

(29) πi only depends on si:
∂

∂sj
πi(s

∗) = 0 if i 6= j.

Since Π is convex, the functions πi are increasing. Assumption (29) is needed to establish that,
at least for fine enough grids, there holds

N∑

i=0

sni,σ ≥ α > 0, ∀n ≥ 1, ∀σ ∈ Eint,

for some uniform α. Thanks to this estimate, one can follow the lines of [11, Proposition 3.4 &
Corollary 3.5] (see also [13]) to derive the estimate

(30)
M∑

n=1

τ
N∑

0=1

∑

σ∈Eint

σ=K|L

aσ
(
pni,K − pni,L)

)2 ≤ C(1 +Mτ).

The phase pressures being defined up to an additive constant (recall that they are related to
Kantorovich potentials), one has to fix this degree of freedom. This can be done by enforcing

∑

K∈T
pn0,KmK = 0, ∀n ≥ 1.

Based on the a priori estimates (24) and (30), we can make use of a topological degree
argument (see for instance [16]) to claim that there exists (at least) one solution to the scheme.
Moreover, assuming some classical regularity on the mesh T (see for instance [1]), one can prove
the piecewise constant approximate solutions converge towards a weak solution when the size
of the mesh T and the time step τ tend to 0. This convergence results together with the
properties (24)–(30) as well as the wide popularity of this scheme in the engineering community
makes this scheme a reference for solving (1). In the next section, we show that the ALG2-
JKO scheme presented in Section 2.1 produces very similar results: same qualitative results,
conservation of the mass of each phase and preservation of the positivity.

3. Numerical experiments

In this section, we compare the numerical results produced by the ALG2-JKO scheme pre-
sented in Section 2.1 with the upstream mobility Finite Volume scheme of Section 2.2. In the
sequel the regularization parameter r introduced in the augmented Lagrangian formulation (21)
is fixed to r = 1 for simplicity, which gives satisfactory numerical results. The case of a three
phase flow (typically water, oil and gas) is presented in Section 3.2, whereas a two-phase flow
is simulated in Section 3.1. In both cases, we do not have analytical solutions at hand and the
results are compared thanks to snapshots.

Note the both time discretizations are of order 1. The extension to order two methods is a
challenging task. Concerning the ALG2-JKO scheme, one possibility could be to use the order 2
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approximation based on the midpoint rule proposed in [26], but there is no rigorous foundation to
this work up to now as far as we know. An alternative approach would be to use the variational
BDF2 approach proposed in [30]. But the variational problem to be solved at each time step is no
longer convex-concave, so that its practical resolution becomes more involving. Concerning the
finite volume scheme, there is (up to our knowledge) no time integrator of order 2 that ensures
the decay of a general energy. Going to higher order time discretizations yields also difficulties
concerning the preservation of the positivity. This explains why the backward Euler scheme is
very popular in the context of the simulation of multiphase porous media flows.

3.1. Two-phase flow with Brooks-Corey capillarity. As a first example we consider a two-
phase flow, where water (s0) and oil (s1) are competing within the background porous medium.
For the capillary pressure, we choose the very classical Brooks-Corey (or Leverett) model

(31) p1 − p0 = π1(s1) = α(1− s1)−1/2.

We refer to [3] for an overview of the classical capillary pressure relation for two-phase flows.
As in Section 1.1, the corresponding energy reads explicitly

E(s0, s1) =

∫

Ω

Ψ0s0 +

∫

Ω

Ψ1s1 − 2α

∫

Ω

(1− s1)1/2 +

∫

Ω

χ∆(s0, s1).

As already mentioned, only the second subproblem (22) in step 2 of the ALG2-JKO algorithm
depends on the choice of the energy functional. For the above particular case, this reads: for
each x ∈ Ω and setting c := −φk+1(1,x) + s̃k1(x), solve

ck+1(x) = argmin
c∈R3

{
1

2
|c− c|2 + E∗τ (x, c)

}
,

where E∗τ (x, ·) is the Legendre transform of Eτ (x, ·) defined by

Eτ (x, c0, c1) = τΨ0(x)c0 + τΨ1(x)c1 − 2τα(1− c1)1/2 + χ∆(c0, c1) for all c0, c1 ∈ R.

This minimization problem is equivalent to computing

ck+1(x) = ProxE∗
τ (x,·)(c),

where the proximal operator Proxf of a given convex, lower semicontinuous function f : RN+1 →
R ∪ {+∞} is defined by

Proxf (y) := argmin
y∈RN+1

{
1

2
|y − y|2 + f(y)

}
, ∀y ∈ RN+1.

Thanks to Moreau’s identity

(32) Proxf∗(y) = y − Proxf (y) ∀y ∈ RN+1,

it suffices to compute ProxEτ in order to determine ProxE∗
τ
, and we never actually compute the

Legendre transform E∗τ (x, ·). Computing the proximal operator ck+1(x) = ProxE∗
τ (x,·)(c) thus

amounts to evaluating

(ck+1
0 (x), ck+1

1 (x)) = (c0, c1)− ProxEτ (x,·)(c0, c1).

Finally, (c̃0, c̃1) := ProxEτ (x,·)(c0, c1) is computed by solving

c̃1 = argmin
0≤c1≤1

{
1

2
|c1 + c0 − τΨ0(x)− 1|2 +

1

2
|c1 − c1 + τΨ1(x)|2 − 2τα(1− c1)1/2

}

and then setting c̃0 = 1− c̃1. More explicitly, c̃1 is the positive part of the root on (−∞, 1) of

2c− c1 + τΨ1(x) + c0 − τΨ0(x)− 1 +
τα

(1− c)1/2
= 0.
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To conclude, we set (cn+1
0 (x), cn+1

1 (x)) = (c0 − c̃0, c1 − c̃1).
On Figure 3, we compare the numerical solutions of problem (1) with Brooks-Corey cap-

illarity (31) obtained thanks to the ALG2-JKO scheme and to the upstream mobility finite
volume scheme. Simulations with the ALG2-JKO scheme are carried using a structured grid
with 5000 triangles and 2601 vertices in space and a single inner time step, and with 200 JKO
steps (τ = 0.05). Simulations with the upstream mobility finite volume scheme are performed
on the corresponding Cartesian grid with 2500 squares. The time step τ appearing in (23c) can
be also set to 0.05 here since Newton’s method converges rather easily in this test case.

Figure 2. Two-phase flow: initial oil saturation profile (left) and Brooks-Corey
capillary pressure function (31) with α = 1 (right).

As expected, the results produced by the two schemes are very similar. The dense phase (the
water) is instantaneously diffused in the whole domain because of the singularity of π1 near 1.
When time goes, oil slowly moves to the top because of buoyancy.

3.2. Three-phase flow with quadratic capillary potential. In the second test case, we
consider the case of a three-phase flow where water (s0), oil (s1), and gas (s2) are in competition
within the porous medium. Here we assume that the capillary pressure functions π1 and π2 are
linear,

p1 − p0 = π1(s1) = α1s1 and p2 − p0 = π2(s2) = α2s2.

The corresponding capillary potential Π is then given by

Π(s∗) =
α1

2
(s2

1) +
α2

2
(s2

2).

The Assumption (2) and (29) are fulfilled, so that we are in the theoretical framework of our
statements, i.e., convergence of the minimizing movement scheme and of the finite volume scheme.
However, the problem is difficult to simulate because of the rather large ratios on the viscosities.
Indeed, the phase 0 represents water, the phase 1 corresponds to oil and the phase 2 corresponds
to gas, and we set

µ0 = 1, µ1 = 50, µ2 = 0.1, and ρ0 = 1, ρ1 = 0.87, ρ2 = 0.1.

The resulting energy in the JKO scheme (8) is given by

E(s0, s1, s2) :=
2∑

i=0

∫

Ω

Ψisi +
α1

2

∫

Ω

s2
1 +

α2

2

∫

Ω

s2
2 +

∫

Ω

χ∆(s0, s1, s2),

and we denote accordingly, for x ∈ Ω and c = (c0, c1, c2) ∈ R3

Eτ (x, c) :=

2∑

i=0

τΨi(x)ci +
τα1

2
c21 +

τα2

2
c22 + χ∆(c).
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(a) t = 2.5

(b) t = 5

(c) t = 7.5

(d) t = 10

Figure 3. Oil saturation for the two-phase flow problem with Brooks-Corey
capillary pressure function (31), α = 1: numerical solution provided by the
ALG2-JKO scheme (left) and difference between the ALG2-JKO approximate
solution and the upstream mobility finite volume approximation solution (right).
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Setting again c = −φk+1(1,x) + s̃k1(x) and taking advantage of Moreau’s identity (32), the
second subproblem (22) of step 2 is equivalent to, for all x ∈ Rd,

ck+1(x) = c− ProxEτ (x,·)(c).

Evaluating the proximal operator c̃ := ProxEτ (x,·)(c) is equivalent to solving

(33) (c̃1, c̃2) = argmin
0≤ci≤1, 0≤c1+c2≤1

{
2∑

i=1

(
1

2
|ci − ci + τΨi(x)|2 + τ

αi
2
c2i

)

+
1

2
|c1 + c2 + c0 − τΨ0(x)− 1|2

}
,

with c̃0 = 1 − c̃1 − c̃2. The solution (u1, u2) of the unconstrained version of (33) is explicitly
given by

u1 =
(2 + τα2)γ1 − γ2

(2 + τα1)(2 + τα2)− 1
and u2 =

(2 + τα1)γ2 − γ1

(2 + τα1)(2 + τα2)− 1
,

where γi := ci − τΨi(x) − c0 + τΨ0(x) + 1. If (u1, u2) ∈ ∆∗ then (c̃1, c̃2) = (u1, u2) is the true
solution of (33), and c̃0 = 1− u1 − u2. Otherwise, one should seek for the minimizer of (33) on
the boundary ∂∆∗ = {s1 = 0, 0 ≤ s2 ≤ 1} ∪ {0 ≤ s1 ≤ 1, s2 = 0} ∪ {s1 + s2 = 1}. This leads to
three easy minimization problems that can be again solved explicitly, and we omit the details.
To conclude, the update of ck+1(x) is given by ck+1(x) = c− c̃.

Figures 5–7 show the evolution of the three phases with quadratic capillarity potential. Again,
the simulation with the ALG2-JKO scheme is carried out using a 50× 50 discretization in space,
with a single inner time step. There are 200 JKO steps (τ = 0.05). The convergence of the
augmented Lagrangian iterative method is rather slow: it took around 10 hours on a laptop to
produce the results with FreeFem++. But because of the large viscosity ratio, Newton’s method
had severe difficulties to converge for the upstream mobility scheme. A very small time step
(τ = 10−4) was needed, so that more that 2 days of computation on a cluster were needed to
produce the results with Matlab. Concerning the upstream mobility finite volume scheme, we
run the scheme on an unstructured Delaunday triangulation made of 5645 triangles. Once again,
both methods produce similar results, as highlighted on the figures 5–7 below.

Figure 4. Initial oil (left), water (center) and gas (right) saturation profiles.

Due to the large viscosity ratios, two distinct time scale appear in the numerical results. Since
water and gas have smaller mobilities, they move much faster than oil. This quick phenomenon
is not well captured by the ALG2-JKO scheme. The interface between oil and gas is already
almost horizontal at t = 0.1. This horizontal interface is captured by the finite volume scheme
but not by the ALG2-JKO scheme that encounters difficulties to converge for the early time
steps. The finite volume scheme also has difficulties to converge, enforcing us to consider very
small time steps. Oil is much less mobile and its interface with the two other phases remains
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(a) t=0.1

(b) t=1.25

(c) t=2.5

(d) t=5

(e) t=10

Figure 5. Three-phase flow, snapshots of the oil saturation profiles at different
times: ALG2-JKO scheme (left) and upstream mobility finites volumes (right).
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(a) t=0.1

(b) t=1.25

(c) t=2.5

(d) t=5

(e) t=10

Figure 6. Three-phase flow, snapshots of the water saturation profiles at dif-
ferent times: ALG2-JKO scheme (left) and upstream mobility finites volumes
(right).
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(a) t=0.1

(b) t=1.25

(c) t=2.5

(d) t=5

(e) t=10

Figure 7. Three-phase flow, snapshots of the gas saturation profiles at different
times: ALG2-JKO scheme (left) and upstream mobility finites volumes (right).
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almost vertical at that time. Then oil evolves slowly towards its equilibrium state, that consists
in a horizontal layer trapped between gas above and water below. This long time equilibrium is
not yet reached for t = 10.

3.3. Energy dissipation. As already highlighted, both schemes dissipate the energy along time.
The goal of this test case is to compare the energy dissipation. To this end, we consider a test
case proposed in [9]. We consider a two-phase flow with oil (i = 1) and water (i = 0) with
ρ1 = 0.87, ρ0 = 1, µ1 = 10 and µ0 = 1, while κ = 1 and ω = 1. The capillary pressure law is
given by

p1 − p0 = π1(s1) =
s1

2
,

so that the energy is defined by

E(s1) =

∫

Ω

(
(s1)2

4
+ s1(ρ0 − ρ1)g · x

)
.

We consider the initial data s0
1(x) = e−4|x|2 . At equilibrium, the saturation s∞1 minimizes E

under the constraints s∞1 ∈ [0, 1] and

(34)

∫

Ω

s∞1 =

∫

Ω

s0
1.

It is therefore given by

(35) either s∞1 ∈ {0, 1} or π1(s1) = (ρ1 − ρ0)g · x+ γ,

the constant γ being fixed thanks to (34). Similar calculations can be performed in the discrete
settings, both for the ALG2-JKO scheme and the finite volume scheme. Then one computes

Figure 8. Left: The steady state (35). Right: The relative energies computed
with the ALG2-JKO scheme (blue) and the finite volume scheme (red).

for both scheme the relative energy E(s1) − E(s∞1 ) ≥ 0, that we plot as a function of time on
Figure 8. The convergence towards the equilibrium appears to be exponential in both cases.

4. Conclusion

We proposed to apply the ALG2-JKO scheme of [6] to simulate multiphase porous media
flows. The results have been compared to the widely used upstream mobility finite volume
scheme. The ALG2-JKO scheme appears to be robust w.r.t. the capillary pressure function
and overall w.r.t. the viscosity ratios. The method is parameter free (the only parameter r
has a rather low influence and is chosen equal to 1 in the computations) and is unconditionally
converging whatever the time step. This is a great advantage when compared to the Newton
method that may require very small time steps in presence of large viscosity ratios. Moreover,
the ALG2-JKO scheme preserves the positivity of the saturations, the constraint on the sum
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of the saturations, and it is locally conservative. Its main drawback concerns the restriction to
linear mobility function so that formulas (15)–(16) hold (this can probably be extended to the
non-physical case of concave mobilities [17] but we did not push into this direction). Finally, let
us stress that the code depends only at stage (22) of the energy. Therefore, the extension of the
ALG2-JKO approach to multiphase models with different energies (like for instance degenerate
Cahn-Hilliard models [32, 12]) is not demanding once the code is written. A natural extension
to this work would be to add source terms corresponding for instance to production wells. This
would for instance require to adapt the material of [23] to our context.
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2.2.2 Variational finite volume scheme

Articles:

• A variational finite volume scheme for Wasserstein gradient flows. Nu-
merische Mathematik, Springer Verlag, 146 (3), pp 437 - 480 (2020). https:
//hal.science/hal-02189050. C.Cancès, Gallouët T.O., Todeschi. G

• From geodesic extrapolation to a variational BDF2 scheme for Wasserstein
gradient flows. Under minor revision for Mathematics of Computations (2023)
https://hal.science/hal-03790981 Gallouët T.O., Natale A. et Tode-
schi. G

Collaborators: The first paper was done in collaboration with Clément Cancès and
Gabriele Todeschi. It was the starting point of Gabriele Todeschi’s PhD Thesis: the
goal was to build variational numerical finite volume scheme. The second paper is
done with A. Natale and G. Todeschi. It is a follow up of G. Todeschi’s PhD The-
sis where we aim to build second order in time numerical scheme for Wasserstein
Gradient flows.

Main contributions:

• We used a first optimize than discretize approach in order to built, for Wasser-
stein gradient flows, a finite volume scheme which is exactly the Euler-
Lagrange condition of a discretized JKO scheme.

• We prove the convergence of this scheme under some hypothesis on the energy.

• We implemented this scheme for a wider class of energy/system of PDE and
gave numerical evidence of convergence.

• In the second work we proposed a second order in time variational finite vol-
ume scheme. To do this we had to modify the JKO step of the previous paper.

The second paper has already been included in Section 2.1 since it also contains the
work on Wasserstein extrapolation.

Research directions: With G. Todeschi and A. Natale we pursue our investigations
into higher order variational numerical scheme for Wassertein gradient flows. Our
main focus is now to build a second order in time scheme based on the metric extrap-
olation of Wasserstein geodesics, see Section 2.1 for more details on this notion.

https://hal.science/hal-02189050
https://hal.science/hal-02189050
https://hal.science/hal-03790981


A VARIATIONAL FINITE VOLUME SCHEME FOR WASSERSTEIN
GRADIENT FLOWS

CLÉMENT CANCÈS, THOMAS O. GALLOUËT, AND GABRIELE TODESCHI

Abstract. We propose a variational finite volume scheme to approximate the solutions to
Wasserstein gradient flows. The time discretization is based on an implicit linearization of the
Wasserstein distance expressed thanks to Benamou-Brenier formula, whereas space discretization
relies on upstream mobility two-point flux approximation finite volumes. The scheme is based
on a first discretize then optimize approach in order to preserve the variational structure of the
continuous model at the discrete level. It can be applied to a wide range of energies, guarantees
non-negativity of the discrete solutions as well as decay of the energy. We show that the scheme
admits a unique solution whatever the convex energy involved in the continuous problem, and
we prove its convergence in the case of the linear Fokker-Planck equation with positive initial
density. Numerical illustrations show that it is first order accurate in both time and space, and
robust with respect to both the energy and the initial profile.

1. A strategy to approximate Wasserstein gradient flows

1.1. Generalities about Wasserstein gradient flows. Given a convex and bounded open subset
⌦ of Rd, a strictly convex and proper energy functional E : L1(⌦; R+) ! [0, +1], and given an
initial density ⇢0 2 L1(⌦; R+) with finite energy, i.e. such that E(⇢0) < +1, we want to solve
problems of the form:

(1)

8
><
>:

@t%�r · (%r �E
�⇢ [%]) = 0 in QT = ⌦⇥ (0, T ),

%r �E
�⇢ [%] · n = 0 on ⌃T = @⌦⇥ (0, T ),

%(·, 0) = ⇢0 in ⌦.

Equation (1) expresses the continuity equation for a time evolving density %, starting from the
initial condition ⇢0, convected by the velocity field �r �E

�⇢ [%]. The mixed boundary condition the
system is subjected to represents a no flux condition across the boundary of the domain for the
mass: the total mass is therefore preserved.

It is now well understood since the pioneering works of Otto [34, 52, 53] that equations of the
form of (1) can be interpreted as the gradient flow in the Wasserstein space w.r.t. the energy
E [2]. A gradient flow is an evolution stemming from an initial condition and evolving at each
time following the steepest decreasing direction of a prescribed functional. Consider the space
P(⌦) of nonnegative measures defined on the bounded and convex domain ⌦ with prescribed total
mass that are absolutely continuous w.r.t. the Lebesgue measure (hence P(⌦) ⇢ L1(⌦; R+)). The
Wasserstein distance W2 between two densities ⇢, µ 2 P(⌦) is the cost to transport one into the
other in an optimal way with respect to the cost given by the squared euclidean distance, namely
the optimization problem

(2) W 2
2 (⇢, µ) = min

�2�(⇢,µ)

ZZ

⌦⇥⌦

|y � x|2d�(x, y),

1
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with the set �(⇢, µ) of admissible transport plans given by

�(⇢, µ) =
n
� 2 P(⌦⇥ ⌦) : �1 = ⇢, �2 = µ

o
,

where �1, �2 denote the first and second marginal measure, respectively.
A typical example of problem entering the framework of (1) is the linear Fokker-Planck equation

(3) @t% = �%+r · (%rV ) in QT ,

complemented with no-flux boundary conditions and an initial condition. In (3), V 2 W 1,1(⌦)
denotes a Lipschitz continuous exterior potential. In this case, the energy functional is

(4) E(⇢) =

Z

⌦

[⇢ log
⇢

e�V
� ⇢+ e�V ]dx.

The potential V is defined up to an additive constant, which can be adjusted so that the densities
e�V and ⇢0 have the same mass. Beside this simple example studied for instance in [34, 10],
many problems have been proven to exhibit the same variational structure. Porous media flows
[53, 38, 15], magnetic fluids [52], superconductivity [4, 3], crowd motions [47], aggregation processes
in biology [22, 9], semiconductor devices modelling [36], or multiphase mixtures [18, 33] are just few
examples of problems that can be represented as gradient flows in the Wasserstein space. Designing
efficient numerical schemes for approximating their solutions is therefore a major issue and our
leading motivation.

1.2. JKO semi-discretization. An intriguing question is how to solve numerically a gradient flow.
Problem (1) can of course be directly discretized and solved using one of the many tools available
nowadays for the numerical approximation of partial differential equations. The development of
energy diminishing numerical methods based on classical ODE solvers for the march in time has
been the purpose of many contributions in the recent past, see for instance [8, 16, 17, 13, 56, 51, 19].
Nevertheless, the aforementioned methods disregard the fact that the trajectory aims at optimizing
the energy decay, in opposition to methods based on minimizing movement scheme (often called
JKO scheme after [34]). This scheme can be thought as a generalization to the space P(⌦) (the
mass being defined by the initial data ⇢0) equipped with the metric W2 of the backward Euler
scheme and writes:

(5)

(
⇢0
⌧ = ⇢0,

⇢n
⌧ 2 argmin⇢

1
2⌧W 2

2 (⇢, ⇢n�1
⌧ ) + E(⇢).

The parameter ⌧ is the time discretization step. Scheme (5) generates a sequence of measures
(⇢n
⌧ )n�1. Using this sequence it is possible to construct a time dependent measure by gluing them

together in a piecewise constant (in time) fashion: ⇢⌧ (t) = ⇢n
⌧ , for t 2 (tn�1 = (n � 1)⌧, tn = n⌧ ].

Under suitable assumptions on the functional E , it is possible to prove the uniform convergence in
time of this measure to weak solutions % of (1) (see for instance [2] or [55]).

Lagrangian numerical methods appear to be very natural (especially in dimension 1) to approx-
imate the Wasserstein distance and thus the solution to (5). This was already noticed in [37], and
motivated numerous contributions, see for instance [45, 12, 46, 35, 23, 20, 39]. In our approach, we
rather consider an Eulerian method based on Finite Volumes for the space discretization. The link
between monotone Finite Volumes and optimal transportation was simultaneously highlighted by
Mielke [48] and Maas [42, 30, 25, 43, 31]. But these works only focuses on the space discretization,
whereas we are interested in the fully discrete setting. Moreover, the approximation based on up-
stream mobility we propose in Section 2.3 does not enter their framework. Last but not least, let us
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mention the so-called ALG2-JKO scheme [7, 14] where the optimization problem (5) is discretized
and then solved thanks to an augmented Lagrangian iterative method. Our approach is close to
the one of [7], with the goal to obtain a faster numerical solver.

Thanks to formal calculations, let us highlight the connection of the minimization problem in-
volved at each step of (5) with a system coupling a forward in time conservation law with a backward
in time Hamilton-Jacobi (HJ) equation. The problem can be rewritten thanks to Benamou-Brenier
dynamic formulation of optimal transport [6] as

(6) inf
⇢,v

1

2

Z tn

tn�1

Z

⌦

⇢|v|2dxdt + E(⇢(tn)),

where the density and velocity curves satisfy weakly

(7)

8
><
>:

@t⇢+r · (⇢v) = 0 in ⌦⇥ (tn�1, tn),

⇢v · n = 0 on @⌦⇥ (tn�1, tn),

⇢(tn�1) = ⇢n�1
⌧ in ⌦.

The next value ⇢n
⌧ is chosen equal to ⇢(tn) for the optimal ⇢ in (6)–(7). Using the momentum

m = ⇢v instead of v as a variable, and incorporating the constraint (7) in (6) yields the saddle-
point problem

(8) inf
⇢,m

sup
�

Z tn

tn�1

Z

⌦

|m|2
2⇢

dxdt +

Z tn

tn�1

Z

⌦

(⇢@t�+ m ·r�)dxdt

+

Z

⌦

[�(tn�1)⇢n�1
⌧ � �(tn)⇢(tn)]dx + E(⇢(tn)).

We will refer to (8) as the primal problem. The dual problem is obtained by exchanging inf and
sup in (8). Strong duality can be proven and the problem hence does not change. Optimizing first
w.r.t. m leads to m = �⇢r�, so that the dual problem writes

(9) sup
�

inf
⇢

Z tn

tn�1

Z

⌦

(@t��
1

2
|r�|2)⇢dxdt +

Z

⌦

[�(tn�1)⇢n�1
⌧ � �(tn)⇢(tn)]dx + E(⇢(tn)).

Because of the first term in (9), the infimum is equal to �1 unless �@t� + 1
2 |r�|2  0 a.e. in

⌦ ⇥ (tn�1, tn), with equality ⇢-almost everywhere since ⇢ � 0. Moreover, optimizing w.r.t. ⇢(tn)
provides that �(tn)  �E

�⇢ [⇢(tn)] with equality ⇢(tn)-almost everywhere. Hence the dual problem
can be rewritten as

(10) sup
�(tn�1)

Z

⌦

�(tn�1)⇢n�1
⌧ dx + inf

⇢(tn)


E(⇢(tn))�

Z

⌦

�(tn)⇢(tn)dx

�
,

subject to the constraints

(11)

8
><
>:

�@t�+ 1
2 |r�|2  0 in ⌦⇥ (tn�1, tn),

�(tn)  �E
�⇢ [⇢(tn)] in ⌦,

�(tn) = �E
�⇢ [⇢(tn)] ⇢(tn) a.e.

On the one hand, the monotonicity of the backward HJ equation �@t�+ 1
2 |r�|2 = f with respect

to its right-hand side f  0 implies that given �(tn), the solution (which exists) of�@t�+ 1
2 |r�|2 = 0

gives a bigger value at �(tn�1) and thus a better competitor for (10). On the other hand, in
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order to saturate the final time constraints we use the monotonicity of the backward HJ equation
�@t� + 1

2 |r�|2 = f with respect to its final time �(tn). Indeed let (⇢̄, �̄) be a saddle point of (9)
and ' be the solution of �@t' + 1

2 |r'|2 = �@t�̄ + 1
2 |r�̄|2 with '(tn) = �E

�⇢ [⇢̄(tn)] � �̄(tn). In
particular (11) gives �̄(tn) = '(tn) ⇢(tn)-almost everywhere and the monotonicity of HJ implies
'(tn�1) � �̄(tn�1). All together this inequalities yields

Z tn

tn�1

Z

⌦

(@t'�
1

2
|r'|2)⇢̄dxdt +

Z

⌦

[�(tn�1)⇢n�1
⌧ � '(tn)⇢̄(tn)]dx + E(⇢̄(tn))

�
Z tn

tn�1

Z

⌦

(@t�̄�
1

2
|r�̄|2)⇢̄dxdt +

Z

⌦

[�̄(tn�1)⇢n�1
⌧ � �̄(tn)⇢̄(tn)]dx + E(⇢̄(tn))

= sup
�

Z tn

tn�1

Z

⌦

(@t��
1

2
|r�|2)⇢̄dxdt +

Z

⌦

[�(tn�1)⇢n�1
⌧ � �(tn)⇢̄(tn)]dx + E(⇢̄(tn)).

Bearing in mind the optimality of �̄, this last inequality is then an equality and the strong duality
implies that (⇢̄,') is also a saddle point of (9). At the end of the day, the primal-dual optimality
conditions of problem (5) finally amounts to the mean field game

(12)

(
@t�� 1

2 |r�|2 = 0,

@t⇢�r · (⇢r�) = 0,
in ⌦⇥ (tn�1, tn), with

(
⇢(tn�1) = ⇢n�1

⌧ ,

�(tn) = �E
�⇢ [⇢(tn)],

in ⌦.

The optimal ⇢n
⌧ of (5) is then equal to ⇢(tn). The no-flux boundary condition reduces to r� ·n = 0

on @⌦⇥ (tn�1, tn).
The approximation of the system (12) is a natural strategy to approximate the solution to (1).

This approach was for instance at the basis of the works [7, 21]. These methods require a sub-time
stepping to solve system (12) on each interval (tn�1, tn), yielding a possibly important computa-
tional cost. The avoidance of this sub-time stepping is the main motivation of the time discretization
we propose now.

1.3. Implicit linearization of the Wasserstein distance and LJKO scheme. Let us intro-
duce in the semi-discrete in time setting the time discretization to be used in the fully discrete
setting later on. The following ansatz is at the basis of our approach: when ⌧ is small, ⇢n

⌧ is close to
⇢n�1
⌧ . Then owing to [57, Section 7.6] (see also [54]), the Wasserstein distance between two densities
⇢ and µ of P(⌦) is close to some weighted H�1 distance, namely

(13) k⇢� µkḢ�1
⇢

= W2(⇢, µ) + o(W2(⇢, µ)), 8⇢, µ 2 P(⌦).

In the above formula, we denoted by

(14) khkḢ�1
⇢

=

⇢
sup
'

Z

⌦

h' dx

���� k'kḢ1
⇢
 1

�
, with k'kḢ1

⇢
=

✓Z

⌦

⇢|r'|2dx

◆1/2

,

so that k⇢� µkḢ�1
⇢

= k kḢ1
⇢

with  solution to

(15)

(
⇢� µ�r · (⇢r ) = 0 in ⌦,

r · n = 0 on @⌦.

Indeed, in view of (14)–(15), there holds
Z

⌦

(⇢� µ)' dx = �
Z

⌦

r · (⇢r )' dx =

Z

⌦

⇢r ·r' dx  k kḢ1
⇢
k'kḢ1

⇢
,
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with equality if ' =  /k kḢ1
⇢
. Equation (15) can be thought as a linearization of the Monge-

Ampère equation.
In view of (13), a natural idea is to replace the Wasserstein distance by the weighted Ḣ�1

⇢ norm
in (5), leading to what we call the implicitly linearized JKO (or LJKO) scheme:

(16) ⇢n
⌧ 2 argmin

⇢2P(⌦)

1

2⌧

��⇢� ⇢n�1
⌧

��2

Ḣ�1
⇢ (⌦)

+ E(⇢), n � 1.

The choice of an implicit weight ⇢ in (16) appears to be particularly important when {⇢n�1
⌧ = 0}

has a non-empty interior set, which can not be properly invaded by the ⇢n
⌧ if one chooses the explicit

(but computationally cheaper) weight ⇢n�1
⌧ as in [50]. Our time discretization is close to the one

that was proposed very recently in [41] where the introduction on inner time stepping was also
avoided. In [41], the authors introduce a regularization term based on Fisher information, which
mainly amounts to stabilize the scheme thanks to some additional non-degenerate diffusion. In
our approach, we manage to avoid this additional stabilization term by taking advantage of the
monotonicity of the involved operators.

At each step n � 1, (16) can be formulated as a constrained optimization problem. To highlight
its convexity, we perform the change of variables (⇢, ) 7! (⇢, m = �⇢r ), in analogy with (6),
and rewrite step n as:

(17) inf
⇢,m

Z

⌦

|m|2
2⌧⇢

dx + E(⇢), subject to:

(
⇢� ⇢n�1

⌧ +r · m = 0 in ⌦,

m · n = 0 on @⌦.

Incorporating the constraint in the above formulation yields the following inf-sup problem:

(18) inf
⇢,m

sup
�

Z

⌦

|m|2
2⌧⇢

dx�
Z

⌦

(⇢� ⇢n�1
⌧ )� dx +

Z

⌦

m ·r� dx + E(⇢),

the supremum w.r.t. � being +1 unless the constraint is satisfied. Problem (18) is strictly convex
in (⇢, m) and concave (since linear) in �. Exploiting Fenchel-Rockafellar duality theory it is possible
to show that strong duality holds, so that (18) is equivalent to its dual problem where the inf and
the sup have been swapped. Optimizing w.r.t. to m yields the optimality condition m = �⌧⇢r�,
hence the problem reduces to

(19) sup
�

Z

⌦

⇢n�1
⌧ � dx + inf

⇢

Z

⌦

(��� ⌧

2
|r�|2)⇢ dx + E(⇢).

The problem is now strictly convex in ⇢ and concave in �. Optimizing w.r.t. ⇢ leads to the optimality
condition

(20) �n
⌧ +

⌧

2
|r�n

⌧ |2 
�E
�⇢

[⇢n
⌧ ],

with equality on {⇢n
⌧ > 0}. In the above formula, �n

⌧ denote the optimal � realizing the sup in (19).
Similarly to what has been done in the previous section for the JKO scheme, it is possible to show
again that saturating inequality (20) on {⇢n

⌧ = 0} is optimal since the mapping f 7! � solution to
�+ ⌧

2 |r�|2 = f is monotone. Finally, the optimality conditions for the LJKO problem (16) write

(21)

8
><
>:

�n
⌧ +

⌧

2
|r�n

⌧ |2 =
�E
�⇢

[⇢n
⌧ ],

⇢n
⌧ � ⇢n�1

⌧

⌧
�r · (⇢n

⌧r�n
⌧ ) = 0,
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set on ⌦, complemented with homogeneous Neumann boundary condition r�n
⌧ · n = 0 on @⌦. We

can interpret (21) as the one step resolvent of the mean-field game (12). Both the forward in time
continuity equation and the backward in time HJ equation are discretized thanks to one step of
backward Euler scheme.

1.4. Goal and organisation of the paper. As already noted, most of the numerical methods
based on backward Euler scheme disregard the optimal character of the trajectory t 7! %(t) of the
exact solution to (1). Rather than discretizing directly the PDE (1), which can be thought as
the Euler-Lagrange equation for the steepest descent of the energy, we propose to first discretize
w.r.t. space the functional appearing in the optimization problem (16), and then to optimize. The
corresponding Euler-Lagrange equations will then encode the optimality of the trajectory. The
choice of the LJKO scheme (16) rather than the classical JKO scheme (5) is motivated by the
fact that solving (21) is computationally affordable. Indeed, it merely demands to approximate
two functions ⇢n

⌧ ,�
n
⌧ rather than time depending trajectories in function space as for the JKO

scheme (12). This allows in particular to avoid inner time stepping as in [7, 21], making our
approach much more tractable to solve complex problems.

Two-Point Flux Approximation (TPFA) Finite Volumes are a natural solution for the space
discretization. They are naturally locally conservative thus well-suited to approximate conservation
laws. Moreover, they naturally transpose to the discrete setting the monotonicity properties of the
continuous operators. Monotonicity was crucial in the derivation of the optimality conditions (21),
as it will also be the case in the fully discrete framework later on. This led us to use upstream
mobilities in the definition of the discrete counterpart of the squared Ḣ1

⇢ norm. The system (21)
thus admits a discrete counterpart (36). The derivation of the fully discrete Finite Volume scheme
based on the LJKO time discretization is performed in Section 2, where we also establish the well-
posedness of the scheme, as well as the preservation at the discrete level of fundamental properties
of the continuous model, namely the non-negativity of the densities and the decay of the energy
along time. In Section 3, we show that our scheme converges in the case of the Fokker-Planck
equation (3) under the assumption that the initial density is bounded from below by a positive
constant. Even though we do not treat problem (1) in its full generality, this result shows the
consistency of the scheme. Finally, Section 4 is devoted to numerical results, where our scheme is
tested on several problems, including systems of equations of the type of (1).

2. A variational Finite Volume scheme

The goal of this section is to define the fully discrete scheme to solve (1), and to exhibit some
important properties of the scheme. But at first, let us give some assumptions and notations on
the mesh.

2.1. Discretization of ⌦. The domain ⌦ ⇢ Rd is assumed to be polygonal if d = 2 or polyhedral
if d = 3. The specifications on the mesh are classical for TPFA Finite Volumes [27]. More precisely,
an admissible mesh of ⌦ is a triplet

�
T , ⌃, (xK)K2T

�
such that the following conditions are fulfilled.

(i) Each control volume (or cell) K 2 T is non-empty, open, polyhedral and convex. We assume
that K \ L = ; if K, L 2 T with K 6= L, while

S
K2T K = ⌦. The Lebesgue measure of

K 2 T is denoted by mK > 0.
(ii) Each face � 2 ⌃ is closed and is contained in a hyperplane of Rd, with positive (d � 1)-

dimensional Hausdorff (or Lebesgue) measure denoted by m� = Hd�1(�) > 0. We assume
that Hd�1(� \�0) = 0 for �,�0 2 ⌃ unless �0 = �. For all K 2 T , we assume that there exists
a subset ⌃K of ⌃ such that @K =

S
�2⌃K

�. Moreover, we suppose that
S

K2T ⌃K = ⌃.
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Given two distinct control volumes K, L 2 T , the intersection K \L either reduces to a single
face � 2 ⌃ denoted by K|L, or its (d� 1)-dimensional Hausdorff measure is 0.

(iii) The cell-centers (xK)K2T ⇢ ⌦ are pairwise distinct and are such that, if K, L 2 T share a
face K|L, then the vector xL � xK is orthogonal to K|L and has the same orientation as the
normal nKL to K|L outward w.r.t. K.

Cartesian grids, Delaunay triangulations or Voronoï tessellations are typical examples of admissible
meshes in the above sense. We refer to [29] for a discussion on the need of such restrictive grids. Since
no boundary fluxes appear in our problem, the boundary faces ⌃ext = {� ⇢ @⌦} are not involved
in our computations. Nonzeros fluxes may only occur across internal faces � 2 ⌃ = ⌃ \ ⌃ext. We
denote by ⌃K = ⌃K \ ⌃ the internal faces belonging to @K, and by NK the neighboring cells of
K, i.e., NK = {L 2 T | K|L 2 ⌃K}. For each internal face � = K|L 2 ⌃, we refer to the diamond
cell �� as the polyhedron whose edges join xK and xL to the vertices of �. The diamond cell ��

is convex if xK 2 K and xL 2 L. Denoting by d� = |xK � xL|, the measure m�� of �� is then
equal to m�d�/d, where d stands for the space dimension. The transmissivity of the face � 2 ⌃ is
defined by a� = m�/d�.

The space RT is equipped with the scalar product

hh,�iT =
X

K2T
hK�KmK , 8h = (hK)K2T ,� = (�K)K2T ,

which mimics the usual scalar product on L2(⌦).

2.2. Upstream weighted dissipation potentials. Since the LJKO time discretization presented
in Section 1.3 relies on weighted Ḣ1

⇢ and H�1
⇢ norms, we introduce the discrete counterparts to be

used in the sequel. As it will be explained in what follows, the upwinding yields problems to
introduce discrete counterparts to the norms. To bypass this difficulty, we adopt a formalism based
on dissipation potentials inspired from the one of generalized gradient flows introduced by Mielke
in [48]. This framework was used for instance to study the convergence of the semi-discrete in space
squareroot Finite Volume approximation of the Fokker-Planck equation, see [32].

Let ⇢ = (⇢K)K2T 2 RT
+, and let � = (�K)K2T 2 RT , then we define the upstream weighted

discrete counterpart of 1
2k�k2Ḣ1

⇢

by

(22) A⇤
T (⇢;�) =

1

2

X

�2⌃
�=K|L

a�⇢� (�K � �L)
2 � 0,

where ⇢� denotes the upwind value of ⇢ on � 2 ⌃:

(23) ⇢� =

(
⇢K if �K > �L,

⇢L if �K < �L,
8� = K|L 2 ⌃.

Because of the upwind choice of the mobility (23), the functional (22) is not symmetric, i.e.,
A⇤

T (⇢;�) 6= A⇤
T (⇢;��) in general, which prohibits to define a semi-norm from A⇤

T (⇢; ·). But
one easily checks that � 7! A⇤

T (⇢,�) is convex, continuous thus lower semi-continuous (l.s.c.) and
proper.

Let us now turn to the definition of the discrete counterpart of 1
2k · k2

Ḣ�1
⇢

. To this end, we

introduce the space FT ⇢ R2⌃ of conservative fluxes. An element F of FT is made of two outward
fluxes FK�, FL� for each � = K|L 2 ⌃, and one flux FK� per boundary face � 2 ⌃K . We impose
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the conservativity across each internal face

(24) FK� + FL� = 0, 8� = K|L 2 ⌃.

In what follows, we denote by F� = |FK�| = |FL,�|. There are no fluxes across the boundary faces.
The space FT is then defined as

FT =
n

F = (FK�, FL�)�=K|L2⌃ 2 R2⌃
��� (24) holds

o
.

Now, we define the subspace

RT
0 =

�
h = (hK)K2T 2 RT �� hh,1iT = 0

 

and

(25) AT (⇢; h) = inf
F

X

�2⌃

(F�)
2

2⇢�
d�m� � 0, 8h 2 RT

0 ,

where the minimization over F is restricted to the linear subspace of FT such that

(26) hKmK =
X

�2⌃K

m�FK�, 8K 2 T .

In (25), ⇢� denotes the upwind value w.r.t. F , i.e.,

(27) ⇢� =

(
⇢K if FK� > 0,

⇢L if FL� > 0,
8� = K|L 2 ⌃.

In the case where some ⇢� vanish, we adopt the following convention in (25) and in what follows:

(F�)
2

2⇢�
=

(
0 if F� = 0 and ⇢� = 0,

+1 if F� > 0 and ⇢� = 0,
8� 2 ⌃.

Remark that this condition is similar to the one implicitly used in (8) and (17). Summing (26)
over K 2 T and using the conservativity across the edges (24), one notices that there is no F 2 FT
satisfying (26) unless h 2 RT

0 . But when h 2 RT
0 , the minimization set in (25) is never empty. Note

that AT (⇢; h) may take infinite values when ⇢ vanishes on some cells, for instance AT (⇢; h) = +1
if hK > 0 and ⇢K = 0 for some K 2 T .

Formula (25) deserves some comments. This sum is built to approximate
R
⌦

|m|2
2⇢ dx. The flux

F� approximates |m ·n�|, and thus encodes the information on m only in the one direction (normal
to the face �) over d. But on the other hand, the volume d�m� is equal to dm�� which allows
to hope that the sum is a consistent approximation of the integral. This remark has a strong link
with the notion of inflated gradients introduced in [24, 26]. The convergence proof carried out in
Section 3 somehow shows the non-obvious consistency of this formula.

At the continuous level, the norms k ·kḢ1
⇢

and k ·kH�1
⇢

are in duality. This property is transposed
to the discrete level in the following sense.

Lemma 2.1. Given ⇢ � 0, the functionals h 7! AT (⇢; h) and � 7! A⇤
T (⇢;�) are one another

Legendre transforms in the sense that

(28) AT (⇢; h) = sup
�
hh,�iT �A⇤

T (⇢;�), 8h 2 RT
0 .
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In particular, both are proper convex l.s.c. functionals. Moreover, if AT (⇢; h) is finite, then there
exists a discrete Kantorovitch potential � solving

(29) hKmK =
X

�2⌃K

�=K|L

a�⇢�(�K � �L), 8K 2 T ,

such that

(30) AT (⇢; h) = A⇤
T (⇢;�) =

1

2
hh,�iT .

Proof. Let ⇢ � 0 be fixed. Incorporating the constraint (26) in (25), and using the definition of ⇢�
and the twice conservativity constraint (24), we obtain the saddle point primal problem

AT (⇢; h) = inf
F

sup
�

X

�2⌃
�=K|L

"
((FK�)

+)
2

2⇢K
+

((FK�)
�)

2

2⇢L

#
m�d�

+
X

K2T
hK�KmK �

X

�2⌃
�=K|L

m�FK�(�K � �L).

The functional in the right-hand side is convex and coercive w.r.t. F and linear w.r.t. �, so that
strong duality holds. We can exchange the sup and the inf in the above formula to obtain the dual
problem, and we minimize first w.r.t. F , leading to

FK� = ⇢�
�K � �L

d�
, 8� = K|L 2 ⌃.

Substituting FK� by ⇢� �K��L

d�
in the dual problem leads to (28), while the constraint (26) turns to

(29). The fact that A⇤
T (⇢, ·) is also the Legendre transform of AT (⇢, ·) follows from the fact that

it is convex l.s.c., hence equal to its relaxation.
When AT (⇢; h) is finite, then the supremum in (28) is achieved, ensuring the existence of the

corresponding discrete Kantorovitch potentials �. Finally, multiplying (29) by the optimal �K and
by summing over K 2 T yields hh,�iT = 2A⇤

T (⇢;�). Substituting this relation in (28) shows the
relation AT (⇢; h) = A⇤

T (⇢;�). ⇤

Our next lemma can be seen as an adaptation to our setting of a well known properties of optimal
transportation, namely ⇢ 7! 1

2W 2
2 (⇢, µ) is convex, which is key in the study of Wasserstein gradient

flows.

Lemma 2.2. Let µ 2 RT
+, the function ⇢ 7! AT (⇢; µ�⇢) is proper and convex on (µ+RT

0 )\RT
+.

Proof. The function ⇢ 7! AT (⇢; µ � ⇢) is proper since it is equal to 0 at ⇢ = µ. Then it follows
from (28) that

(31) AT (⇢; µ� ⇢) = sup
�
hµ� ⇢,�iT �A⇤

T (⇢;�).

Since ⇢ 7! A⇤
T (⇢;�) is linear, AT (⇢; µ�⇢) is defined as the supremum of linear functions, whence

it is convex. ⇤
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2.3. A variational upstream mobility Finite Volume scheme. The finite volume discretiza-
tion replaces the functions ⇢n

⌧ ,�
n
⌧ at time step n � 1 defined on ⌦ with the vectors ⇢n 2 RT

+ and
�n 2 RT . In each cell K, the restriction of each of these functions is approximated by a single
real number ⇢n

K ,�n
K , which can be thought as its mean value located in the cell center xK . Given

⇢0 2 RT
+, the space PT which is the discrete counterpart of P(⌦) is then defined by

PT =
�
⇢ 2 RT

+

�� h⇢,1iT = h⇢0,1iT
 

= (⇢0 + RT
0 ) \ RT

+.

It is compact. The energy E is discretized into a strictly convex functional ET 2 C1(RT
+; R+) that

we do not specify yet. We refer to Sections 3 and 4 for explicit examples.
We have introduced all the necessary material to introduce our numerical scheme, which combines

upstream weighted Finite Volumes for the space discretization and the LJKO time discretization:

(32) ⇢n 2 argmin
⇢2PT

1

⌧
AT (⇢;⇢n�1 � ⇢) + ET (⇢), n � 1.

A further characterization of the scheme is needed for its practical implementation, but the con-
densed expression (32) already provides crucial informations gathered in the following theorem.
Note in particular that our scheme automatically preserves mass and the positivity since the solu-
tions (⇢n)n�1 belong to PT .

Theorem 2.3. For all n � 1, there exists a unique solution ⇢n 2 PT to (32). Moreover, energy is
dissipated along the time steps. More precisely,

(33) ET (⇢n)  ET (⇢n) +
1

⌧
AT (⇢n;⇢n�1 � ⇢n)  ET (⇢n�1), 8n � 1.

Proof. The functional ⇢ 7! 1
⌧AT (⇢;⇢n�1�⇢)+ET (⇢) l.s.c. and strictly convex on the compact set

PT in view of Lemma 2.2 and of the assumptions on ET . Moreover, it is proper since ⇢n�1 belongs
to its domain. Therefore, it admits a unique minimum on PT . The energy / energy dissipation
estimate (33) is obtained by choosing ⇢ = ⇢n�1 as a competitor in (32). ⇤

In view of (31), and after rescaling the dual variable �  �
⌧ , solving (32) amounts to solve the

saddle point problem

(34) inf
⇢�0

sup
�

⌦
⇢n�1 � ⇢,�

↵
T �

⌧

2

X

�2⌃
�=K|L

a�⇢�(�K � �L)2 + ET (⇢).

which is equivalent to its dual problem

(35) sup
�

inf
⇢�0

⌦
⇢n�1 � ⇢,�

↵
T �

⌧

2

X

�2⌃
�=K|L

a�⇢�(�K � �L)2 + ET (⇢).

Our strategy for the practical computation of the solution to (32) is to solve the system correspond-
ing to the optimality conditions of (35). So far, we did not take advantage of the upwind choice
of the mobility (23) (we only used the linearity of (⇢,�) 7! (⇢�)�2⌃ in the proofs of Lemmas 2.1
and 2.2, which also holds true for a centered choice of the mobilities). The upwinding will be key
in the proof of the following theorem, which, roughly speaking, states that there is no need of a
Lagrange multiplier for the constraint ⇢ � 0.
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Theorem 2.4. The unique solution (⇢n,�n) to system

(36)

8
>>><
>>>:

mK�
n
K +

⌧

2

X

�2⌃K

a�
�
(�n

K � �n
L)+

�2
=
@ET
@⇢K

(⇢n),

(⇢n
K � ⇢n�1

K )mK + ⌧
X

�2⌃K

a�⇢
n
�(�

n
K � �n

L) = 0,
8K 2 T ,

where ⇢n
� denotes the upwind value, i.e.,

⇢n
� =

(
⇢n

K if �n
K > �n

L,

⇢n
L if �n

K < �n
L,

8� = K|L 2 ⌃,

is a saddle point of (35).

System (36) is the discrete counterpart of (21), whose derivation relied on the monotonicity of
the inverse of the operator � 7! �+ ⌧

2 |r�|2. Before proving Theorem 2.4, let us show that the space
discretization preserves this property at the discrete level. To this end, we introduce the functional
G = (GK)K 2 C1(RT ; RT ) defined by

GK(�) := �K +
⌧

2mK

X

�2⌃K

�=K|L

a�
�
(�K � �L)+

�2
, 8K 2 T .

Lemma 2.5. Given f 2 RT , there exists a unique solution to G(�) = f , and it satisfies

(37) min f  �  max f .

Moreover, let �, e� be the solutions corresponding to f and ef respectively, then

(38) f � ef =) � � e�.

Proof. Given f � ef and �, e� corresponding solutions, let K⇤ be the cell such that

�K⇤ � �̃K⇤ = min
K2T

�
�K � �̃K

�
.

Then, for all the neighboring cells L of K⇤, it holds �K⇤� �̃K⇤  �L� �̃L and therefore �K⇤��L 
�̃K⇤ � �̃L which implies

(39)
⌧

2mK

X

�2⌃K⇤
�=K⇤|L

a�
�
(�K⇤ � �L)+

�2  ⌧

2mK

X

�2⌃K⇤
�=K⇤|L

a�

⇣
(�̃K⇤ � �̃L)+

⌘2

.

Recall f � ef so GK⇤(�) � GK⇤(�̃) together with (39) it yields �K⇤ � �̃K⇤ . Finally as in K⇤

the difference �K � �̃K is minimal, we obtain �K � �̃K for all K 2 T . The uniqueness of the
solution � of G(�) = f follows directly. The maximum principle (37) is also a straightforward
consequence of (38) as one can compare � to (min f)1 and (max f)1 which are fixed points of
G. Finally, existence follows from Leray-Schauder fixed-point theorem [40] as the bounds (37) are
uniform whatever ⌧ � 0. ⇤

With Lemma 2.5 at hand, we can now prove Theorem 2.4.
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Proof of Theorem 2.4. Uniqueness of the solution ⇢n to (32) was already proved in Theorem 2.3.
Owing to (33), AT (⇢n;⇢n�1 � ⇢n) is finite. So Lemma 2.1 ensures the existence of a discrete
Kantorovitch potential e�n

satisfying (after a suitable rescaling by ⌧�1)

(40) (⇢n
K � ⇢n�1

K )mK + ⌧
X

�2⌃K

a�⇢
n
�(
e�n

K � e�n
L) = 0, 8K 2 T .

The above condition is the optimality condition w.r.t. � in (35). To compute the optimality
condition w.r.t. ⇢ in (35) let us rewrite the objective using the definition of ⇢� and G :

⌦
⇢n�1 � ⇢,�

↵
T �

⌧

2

X

�2⌃
�=K|L

a�⇢�(�K � �L)2 + ET (⇢)

= ET (⇢) +
⌦
⇢n�1 � ⇢,�

↵
T �

⌧

2

X

�2⌃
�=K|L

h
a�⇢K

�
(�K � �L)+

�2
+ aL⇢L

�
(�L � �K)+

�2i

= ET (⇢) +
⌦
⇢n�1 � ⇢,�

↵
T �

⌧

2

X

K

X

�2⌃K

�=K|L

a�⇢K

�
(�K � �L)+

�2

= ET (⇢) +
⌦
⇢n�1,�

↵
T � h⇢,�iT �

X

K

mK⇢K

2
664

⌧

2mK

X

�2⌃K

�=K|L

a�
�
(�K � �L)+

�2

3
775

= ET (⇢) +
⌦
⇢n�1,�

↵
T � h⇢, G(�)iT .

Thus (35) rewrites

(41) sup
�

inf
⇢�0

ET (⇢) +
⌦
⇢n�1,�

↵
T � h⇢, G(�)iT .

Denote by
Zn = {K 2 T | ⇢n

K = 0}, Pn = {K 2 T | ⇢n
K > 0} = (Zn)

c
,

Using (41) the optimality conditions w.r.t. ⇢ of (35) thus reads

(42) mK
e�n

K +
⌧

2

X

�2⌃0,K

a�
�
(e�n

K � e�n
L)+

�2
=
@ET
@⇢K

(⇢n), 8K 2 Pn

and

(43) mK
e�n

K +
⌧

2

X

�2⌃0,K

a�
�
(e�n

K � e�n
L)+

�2  @ET
@⇢K

(⇢n), 8K 2 Zn.

By definition, (⇢n, e�n
) is a saddle point of (35), so equivalently of (41) and by strong duality is it

also a saddle point of

(44) inf
⇢�0

sup
�

ET (⇢) +
⌦
⇢n�1,�

↵
T � h⇢, G(�)iT .

In particular e�n
is optimal in

(45) sup
�

ET (⇢n) +
⌦
⇢n�1,�

↵
T � h⇢

n, G(�)iT .
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To prove Theorem 2.4, we have to prove that, given ⇢n, we can saturate the inequality in both
(42) and (43) while preserving the optimality in (45). Lemma 2.5 gives the existence of a solution
�n 2 RT to

(46) G(�n) =

✓
1

mK

@ET
@⇢K

(⇢n)

◆

K2T
.

Note that (42) implies
GK(�n) = GK(e�n

) 8K 2 Pn

so

(47) h⇢n, G(�n)iT =
D
⇢n, G(e�n

)
E

T
.

The combination of (42) and (43) is exactly G(�n) � G(e�n
), thus Lemma 2.5 gives �n � e�n

.
Consequently,

(48)
⌦
⇢n�1,�n

↵
T �

D
⇢n�1, e�n

E
T

since ⇢n�1 � 0. Incorporating (47) and (48) in (45) shows that �n is a better competitor than e�n
.

Therefore, (⇢n,�n) is a saddle point of (35) and satisfies (36). Finally, owing to Lemma 2.5, the
solution �n to (46) is unique, concluding the proof of Theorem 2.4. ⇤

2.4. Comparison with the classical backward Euler discretization. The scheme (32) is
based on a “first discretize then optimize” approach. We have built a discrete counterpart of 1

2W 2
2

and a discrete energy ET , then the discrete dynamics is chosen in an optimal way by (32). In
opposition, the continuous equation (1) can be thought as the Euler-Lagrange optimality condition
for the steepest descent of the energy. A classical approach to approximate the optimal dynamics
is to discretize directly (1), leading to what we call a “first optimize then discretize” approach. It is
classical for the semi-discretization in time of (1) to use a backward Euler scheme. If one combines
this technic with upstream weighted Finite Volumes, we obtain the following fully discrete scheme:

(49) (⇢̌n
K � ⇢n�1

K )mK + ⌧
X

�2⌃K

a�⇢̌
n
�(�̌

n
K � �̌n

L) = 0, with �̌n
K =

1

mK

@ET
@⇢K

(⇢̌n), 8K 2 T .

This scheme has no clear variational structure in the sense that, to our knowledge, ⇢̌n is no longer
the solution to an optimization problem. However, it shares some common features with our
scheme (32): it is mass and positivity preserving as well as energy diminishing.

Proposition 2.6. Given ⇢n�1 2 PT , there exists at least one solution (⇢̌n, �̌
n
) 2 PT ⇥ RT to

system (49), which satisfies

(50) ET (⇢̌n) +
1

⌧
AT (⇢̌n;⇢n�1 � ⇢̌n) + ⌧A⇤

T (⇢̌n; �̌
n
)  ET (⇢n�1).

Proof. Summing (49) over K 2 T provides directly the conservation of mass, i.e., h⇢̌n,1iT =
h⇢n�1,1iT . Assume for contradiction that Kn = {K 2 T | ⇢̌n

K < 0} 6= ;, then choose K? 2 Kn

such that �̌n
K? � �̌n

K for all K 2 Kn. Then it follows from the upwind choice of the mobility in (49)
that X

�2⌃K?

�=K|L

a�⇢̌
n
�(�̌

n
K? � �̌n

L)  0,
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so that ⇢̌n
K? � ⇢n�1

K? � 0, showing a contradiction. Therefore, Kn = ; and ⇢̌n � 0. These two a
priori estimates (mass and positivity preservation) are uniform w.r.t. ⌧ � 0, thus they are sufficient
to prove the existence of a solution (⇢̌n, �̌

n
) to (49) thanks to a topological degree argument [40].

Let us now turn to the derivation of the energy / energy dissipation inequality (50). Multiply-
ing (49) by �̌n

K and summing over K 2 T provides

h⇢̌n � ⇢n�1, �̌
niT + 2⌧A⇤

T (⇢̌n; �̌
n
) = 0.

The definition of �̌
n

and the convexity of ET yield h⇢̌n � ⇢n�1, �̌
niT � ET (⇢̌n)� ET (⇢n�1). Thus

to prove (50), it remains to check that

(51)
1

⌧
AT (⇢̌n;⇢n�1 � ⇢̌n) = ⌧A⇤

T (⇢̌n; �̌
n
) =

1

⌧
A⇤

T (⇢̌n; ⌧ �̌
n
).

In view of (29), ⌧ �̌
n

is a discrete Kantorovitch potential sending ⇢n�1 on ⇢̌n for the mobility
corresponding to ⇢̌n. Therefore (51) holds as a consequence of (30). ⇤

Next proposition provides a finer energy / energy dissipation estimate than (33), which can
be thought as discrete counterpart to the energy / energy dissipation inequality (EDI) which is a
characterization of generalized gradient flows [2, 48].

Proposition 2.7. Given ⇢n�1 2 PT , let ⇢n be the unique solution to (32) and let ⇢̌n be a solution
to (49), then

ET (⇢n) + ⌧A⇤
T (⇢n;�n) + ⌧A⇤

T
⇣
⇢̌n; �̌

n
⌘
 ET (⇢n�1),

where �̌
n

is defined by mK �̌
n
K = @ET

@⇢K
(⇢̌n) for all K 2 T .

Proof. Since ⇢̌n belongs to PT , it is an admissible competitor for (32), thus

(52) ET (⇢n) +
1

⌧
AT (⇢n;⇢n�1 � ⇢n)  ET (⇢̌n) +

1

⌧
AT (⇢̌n;⇢n�1 � ⇢̌n).

Combining this with (50) and bearing in mind that 1
⌧AT (⇢n;⇢n�1 � ⇢n) = ⌧A⇤

T (⇢n;�n) thanks
to (30), we obtain the desired inequality (52). ⇤

3. Convergence in the Fokker-Planck case

In this section, we investigate the limit of the scheme when the time step ⌧ and the size of
the mesh hT tend to 0 in the specific case of the Fokker-Planck equation (3). The size of the
mesh is defined by hT = maxK2T hK with hK = diam(K). To this end, we consider a sequence�
Tm, ⌃m, (xK)K2Tm

�
m�1

of admissible discretizations of ⌦ in the sense of Section 2.1 and a sequence
(⌧m)m�1 of time steps such that limm!1 ⌧m = limm!1 hTm

= 0. We also make the further
assumptions on the mesh sequence: there exists ⇣ > 0 such that, for all m � 1,

(53a) hK  ⇣d�  ⇣2hK , 8� 2 ⌃K , 8K 2 Tm,

(53b) dist(xK , K)  ⇣hK , 8K 2 Tm,

and

(53c)
X

�2�K

m��
 ⇣mK , 8K 2 Tm.
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Let T > 0 be an arbitrary finite time horizon, then we assume for the sake of simplicity that
⌧m = T/Nm for some integer Nm tending to +1 with m. For the ease of reading, we remove the
subscript m � 1 when it appears to be unnecessary for understanding.

Given V 2 C2(⌦), we define the discrete counterpart of the energy (4) by

ET (⇢) =
X

K2T
mK

h
⇢K log

⇢K

e�VK
� ⇢K + e�VK

i
, 8⇢ 2 RT

+,

where VK = V (xK) for all K 2 T . In view of the above formula, there holds

(54)
@ET
@⇢K

(⇢) = mK(log(⇢K) + VK) 8K 2 T .

Given an initial condition %0 2 P(⌦) with positive mass, i.e.
R
⌦
%0dx > 0, and such that E(%0) <1,

it is discretized into ⇢0 =
�
⇢0

K

�
K2T defined by

(55) ⇢0
K =

1

mK

Z

K

%0dx � 0, 8K 2 T .

Note that the energy ET is not in C1(RT
+) since its gradient blows up on @RT

+. However, the
functional ET is continuous and strictly convex on RT

+, hence the scheme (32) still admits a unique
solution ⇢n for all n � 1 thanks to Theorem 2.3, since its proof does not use the differentiability of
the energy. Thanks to the conservativity of the scheme and definition (55) of ⇢0, one has

h⇢n,1iT = h⇢0,1iT =

Z

⌦

%0dx > 0, 8n � 1.

Let us show that ⇢n > 0 for all n � 1. To this end, we proceed as in [55, Lemma 8.6].

Lemma 3.1. Assume that %0 has positive mass, then the iterated solutions (⇢n)n�1 to scheme (32)
satisfy ⇢n > 0 for all n � 1. Moreover, there exists a unique sequence (�n)�1 of discrete Kan-
torovitch potentials such that the following optimality conditions are satisfied for all K 2 T and all
n � 1:

�n
K +

⌧

2mK

X

�=K|L2⌃K

a�
�
(�n

K � �n
L)+

�2
= log(⇢n

K) + VK ,(56)

(⇢n
K � ⇢n�1

K )mK + ⌧
X

�=K|L2⌃

a�⇢
n
�(�

n
K � �n

L) = 0.(57)

Proof. Define ⇢ = 1
|⌦|
R
⌦
%0dx and ⇢ = ⇢1 2 PT , and by ⇢n

✏ =
�
⇢n

K,✏

�
K2T = ✏⇢ + (1 � ✏)⇢n 2 PT

for some arbitrary ✏ 2 (0, 1). Since ⇢n is optimal in (32), there holds

(58)
X

K2T
mK

⇥
⇢n

K log ⇢n
K � ⇢n

K,✏ log ⇢n
K,✏

⇤

X

K2T
mK

�
⇢n

K,✏ � ⇢n
K

�
VK

+ AT (⇢n
✏ ;⇢

n�1 � ⇢n
✏ )�AT (⇢n;⇢n�1 � ⇢n).

The convexity of ⇢ 7! AT (⇢,⇢n�1 � ⇢) implies that

AT (⇢n
✏ ;⇢

n�1 � ⇢n
✏ )  ✏AT (⇢;⇢n�1 � ⇢) + (1� ✏)AT (⇢n;⇢n�1 � ⇢n),

while the boundedness of V provides
X

K2T
mK

�
⇢n

K,✏ � ⇢n
K

�
VK  ✏kV kL1(⌦)k%0kL1(⌦).
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Therefore, the right-hand side in (58) can be overestimated by
X

K2T
mK

⇥
⇢n

K log ⇢n
K � ⇢n

K,✏ log ⇢n
K,✏

⇤
 C✏

for some C depending on ⇢n,⇢n�1 and V but not on ✏. Setting Zn = {K 2 T | ⇢n
K = 0} and

Pn = {K 2 T | ⇢n
K > 0} = (Zn)

c, we have
X

K2Zn

mK

⇥
⇢n

K log ⇢n
K � ⇢n

K,✏ log ⇢n
K,✏

⇤
= ✏

X

K2Zn

mK⇢ log ✏⇢,

and, thanks to the convexity of ⇢ 7! ⇢ log ⇢ and to the monotonicity of ⇢ 7! log ⇢,
X

K2Pn

mK

⇥
⇢n

K log ⇢n
K � ⇢n

K,✏ log ⇢n
K,✏

⇤
� ✏

X

K2Pn

mK(⇢n
K � ⇢)(1 + log(⇢n

K,✏))

� ✏
X

K2Pn

mK(⇢n
K � ⇢)(1 + log(⇢)) � �C✏.

Then dividing by ✏ and letting ✏ tend to 0, we obtain that

limsup
✏!0

X

K2Zn

mK⇢ log ✏⇢  C,

which is only possible if Zn = ;, i.e., ⇢n > 0. This implies that ET is differentiable at ⇢n, hence
the optimality conditions (36) hold, which rewrites as (56)–(57) thanks to (54). The uniqueness of
the discrete Kantorovitch potential �n for all n � 1 is then provided by Theorem 2.4. ⇤

Lemma 3.1 allows to define two functions ⇢T ,⌧ and �T ,⌧ by setting

⇢T ,⌧ (x, t) = ⇢n
K , �T ,⌧ (x, t) = �n

K if (x, t) 2 K ⇥ (tn�1, tn].

It follows from the conservativity of the scheme and definition (55) of ⇢0 that
Z

⌦

⇢T ,⌧ (x, tn)dx = h⇢n,1iT = h⇢0,1iT =

Z

⌦

%0dx > 0,

so that ⇢T ,⌧ (·, t) belongs to P(⌦) for all t 2 (0, T ).
The goal of this section is to prove the following theorem.

Theorem 3.2. Assume that %0 � ⇢? for some ⇢? 2 (0, +1) and that E(%0) < +1, and let�
Tm, ⌃m, (xK)K2Tm

�
m�1

be a sequence of admissible discretizations of ⌦ such that hTm
and ⌧m

tend to 0 while conditions (53) hold. Then up to a subsequence, (⇢Tm,⌧m
)m�1 tends in L1(QT )

towards a weak solution % 2 L1((0, T ); L1(⌦)) \ L2((0, T ); W 1,1(⌦)) of (3) corresponding to the
initial data %0.

The proof is based on compactness arguments. At first in Section 3.1, we derive some a pri-
ori estimates on the discrete solution. These estimates will be used to obtain some compactness
on ⇢Tm,⌧m

and �Tm,⌧m
in Section 3.2. Finally, we identify the limit value as a weak solution in

Section 3.3.

Remark 3.3. We restrict our attention to the case of the linear Fokker-Planck equation for sim-
plicity. The linearity of the continuous equation plays no role in our study. What is important is
the fact that the discrete and continuous solutions are uniformly bounded away from 0 so that the
weighted Ḣ1

⇢ norm controls the non-weighted Ḣ1 norm. Such a uniform lower bound can also be
derived for the porous medium equation without drift.
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3.1. Some a priori estimates. First, let us show that if the continuous initial energy E(%0) is
bounded, then so does its discrete counterpart ET (⇢0).

Lemma 3.4. Given %0 2 P(⌦) such that E(%0) < +1, and let ⇢0 be defined by (55), then there
exists C1 depending only on ⌦, V and %0 (but not on T ) such that ET (⇢n)  C1 for all n � 0.

Proof. It follows from (33) that ET (⇢n)  ET (⇢0) for all n � 1. Rewriting ET (⇢0) as

(59) ET (⇢0) = T1 + T2 + T3

with

T1 =
X

K2T
mK [⇢0

K log ⇢0
K � ⇢0

K ], T2 =
X

K2T
mK⇢

0
KVK , and T3 =

X

K2T
mKe�VK ,

we deduce from the definition (55) of ⇢0 and Jensen’s inequality that

(60) T1 
Z

⌦

[%0 log %0 � %0]dx.

Since V is continuous, there exists exK 2 K such that
R

K
e�V dx = mKe�V (exK). Therefore,

(61) T3 =

Z

⌦

e�V dx +
X

K2T
mK [e�V (xK) � e�V (exK)] 

Z

⌦

e�V dx + ekV �k1krV k1diam(⌦).

Similarly, it follows from the mean value theorem that there exists x̌K 2 K such that mKV (x̌K)⇢0
K =R

K
%0V dx. Hence,

(62) T2 =

Z

⌦

%0V dx +
X

K2T
mK⇢

0
K [V (xK)� V (x̌K)] 

Z

⌦

%0V dx + krV k1diam(⌦)

Z

⌦

%0dx.

Combining (60)–(62) in (59) shows that ET (⇢0)  E(%0) + C for some C depending only on V , ⌦
and %0. ⇤

Our next lemma shows that if %0 is bounded away from 0, then so does ⇢T ,⌧ .

Lemma 3.5. Using the convention log(0) = �1, one has

min
K2T

[log(⇢n
K) + VK ] � min

K2T

⇥
log(⇢n�1

K ) + VK

⇤
, 8n � 1.

In particular, if %0 � ⇢? for some ⇢? 2 (0, +1), then there exists ↵ > 0 depending only on V and
⇢? (but not on T , ⌧ and n) such that ⇢n � ↵1 for all n � 1.

Proof. It follows directly from (56) that log(⇢n
K) + VK � �n

K for all K 2 T . Let K? 2 T be such
that �n

K?
 �n

K for all K 2 T , then the conservation equation (57) ensures that ⇢n
K?
� ⇢n�1

K?
. On

the other hand, since X

�=K?|L2⌃K?

a�
�
(�n

K?
� �n

L)+
�2

= 0,

the discrete HJ equation (56) provides that

�n
K? = log(⇢n

K?
) + VK?

= min
K2T

[log(⇢n
K) + VK ] � log(⇢n�1

K?
) + VK?

� min
K2T

⇥
log(⇢n�1

K ) + VK

⇤
.

Assume now that %0 � ⇢?, then for all K 2 T and all n � 0,

log(⇢n
K) � min

L2T
[log(⇢0

L) + VL]� VK � min
L2T

log(⇢0
L)� 2kV k1 � log(⇢?)� kV +k1 � kV �k1.

Therefore, we obtain the desired inequality with ↵ = ⇢?e
�kV +k1�kV �k1 . ⇤
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Our third lemma deals with some estimates on the discrete gradient of the discrete Kantorovitch
potentials (�n)n.

Lemma 3.6. Let (⇢n,�n) be the iterated solution to (36), then

(63)
NX

n=1

⌧
X

�=K|L2⌃

a�⇢
n
�(�

n
K � �n

L)2  C1.

Moreover, if %0 � ⇢? 2 (0, +1), then there exists C2 (depending on ⌦, V and %0) such that

(64)
NX

n=1

⌧
X

�=K|L2⌃

a�(�
n
K � �n

L)2  C2.

Proof. Since ET (⇢) � 0 for all ⇢ 2 PT , summing (33) over n 2 {1, . . . , N} yields
NX

n=1

1

⌧
AT (⇢n;⇢n�1 � ⇢n)  ET (⇢0).

Thanks to (30), the left-hand side rewrites
NX

n=1

1

⌧
AT (⇢n;⇢n�1 � ⇢n) =

NX

n=1

⌧
X

�=K|L2⌃

a�⇢
n
�(�

n
K � �n

L)2,

so that it only remains to use Lemma 3.4 to recover (63).
Finally, if %0 is bounded from below by some ⇢? > 0, then Lemma 3.5 shows that ⇢n

K � ↵
for some ↵ depending only on ⇢? and V . Therefore, since ⇢n

� is either equal to ⇢n
K or to ⇢n

L for
� = K|L 2 ⌃, then (64) holds with C2 = C1

↵ . ⇤

The discrete solution ⇢T ,⌧ is piecewise constant on the cells. To study the convergence of the
scheme, we also need a second reconstruction ⇢⌃,⌧ of the density corresponding to the edge mobil-
ities. It is defined by

(65) ⇢⌃,⌧ (x, t) =

(
⇢n
� if (x, t) 2 �� ⇥ (tn�1, tn], � 2 ⌃,

⇢n
K if (x, t) 2 K \

�S
�2⌃K

��

�
⇥ (tn�1, tn], K 2 T .

Lemma 3.7. There exists C3 depending only on ⇣ and %0 such that

(66)
Z

⌦

⇢⌃,⌧ (x, t)dx  C3, 8t > 0.

Moreover, there exists C4 depending only on ⇣, V and %0 such that

(67)
Z

⌦

⇢⌃,⌧ (x, t) log ⇢⌃,⌧ (x, t)dx  C4, 8t > 0.

Proof. Since t 7! ⇢⌃,⌧ (·, t) is piecewise constant, it suffices to check that the above properties at
each tn, 1  n  N . In view of the definition of ⇢⌃,⌧ , one has

Z

⌦

⇢⌃,⌧ (x, tn)dx 
X

K2T

X

�2⌃K\⌃ext

⇢n
KmK +

X

�2⌃

⇢n
�m��

.
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The first term can easily be overestimated by
R
⌦
⇢T ,⌧ (x, tn)dx =

R
⌦
%0dx. Since ⇢n

�  ⇢n
K +⇢n

L, the
second term in the above expression can be overestimated by

X

�2⌃

⇢n
�m��


X

K2T
⇢n

K

 X

�2⌃K

m��

!
.

Using the regularity property of the mesh (53c), we obtain that
X

�2⌃

⇢n
�m��

 ⇣
Z

⌦

%0dx,

so that (66) holds with C3 = (1 + ⇣)
R
⌦
%0dx.

Reproducing the above calculations, one gets that
Z

⌦

⇢⌃,⌧ (x, t) log ⇢⌃,⌧ (x, t)dx  (1 + ⇣)

Z

⌦

⇢T ,⌧ (x, t) log ⇢T ,⌧ (x, t)dx

= (1 + ⇣)

 
ET (⇢n) +

X

K2T
mK [⇢n

K(1� VK)� e�VK ]

!
.

Since ET (⇢n)  ET (⇢0)  C1 and since V is uniformly bounded, we obtain that (67) holds with
C4 = (1 + ⇣) (C1 + k(1� V )+k1). ⇤

The last lemma of this section can be thought as a discrete
�
L1((0, T ); W 1,1(⌦))

�0 estimate on
@t⇢T ,⌧ . This estimate will be used to apply a discrete nonlinear Aubin-Simon lemma [5] in the next
section.

Lemma 3.8. Let ' 2 C1
c (QT ), then define 'n

K = 1
mK

R
K
'(x, tn)dx for all K 2 T . There exists

C5 depending only on ⇣, T, %0, d, such that

NX

n=1

X

K2T
mK(⇢n

K � ⇢n�1
K )'K  C5kr'kL1(QT ).

Proof. Multiplying (57) by 'n
K and summing over K 2 T and n 2 {1, . . . , N} yields

A :=

NX

n=1

X

K2T
mK(⇢n

K � ⇢n�1
K )'K = �

NX

n=1

⌧
X

�=K|L2⌃

a�⇢
n
�(�

n
K � �n

L)('n
K � 'n

L).

Applying Cauchy-Schwarz inequality on the right-hand side then provides

(68) A2 

0
@

NX

n=1

⌧
X

�=K|L2⌃

a�⇢
n
�(�

n
K � �n

L)2

1
A
0
@

NX

n=1

⌧
X

�=K|L2⌃

a�⇢
n
�('

n
K � 'n

L)2

1
A .

The first term in the right-hand side is bounded thanks to Lemma 3.6. On the other hand, the
regularity of ' ensures that there exists exK 2 K such that '(xK , tn) = 'n

K for all K 2 T . Thanks
to the regularity assumptions (53a)–(53b) on the mesh, there holds

|'n
K � 'n

L|  kr'k1|exK � exL|  (1 + 2⇣(1 + ⇣))kr'k1d�, � = K|L.
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Hence, the second term of the right-hand side in (68) can be overestimated by
NX

n=1

⌧
X

�=K|L2⌃

a�⇢
n
�('

n
K � 'n

L)2  (1 + 2⇣(1 + ⇣))2kr'k21
NX

n=1

⌧
X

�=K|L2⌃

m�d�⇢
n
�

 (1 + 2⇣(1 + ⇣))2dkr'k21
ZZ

QT

⇢⌃,⌧dxdt

 (1 + 2⇣(1 + ⇣))2C3Tdkr'k21,

the last inequality being a consequence of Lemma 3.7. Combining all this material in (68) shows
the desired estimate with C5 = (1 + 2⇣(1 + ⇣))

p
C1C3Td. ⇤

3.2. Compactness of the approximate solution. The goal of this section is to show enough
compactness in order to be able to pass to the limit m!1. For the sake of readability, we remove
the subscript m unless necessary.

Owing to Lemma 3.4, one has ET (⇢n)  C1 for all n 2 {1, . . . , N}. Proceeding as in the proof
of Lemma 3.7, this allows to show that

(69)
Z

⌦

⇢T ,⌧ (x, t) log ⇢T ,⌧ (x, t)dx  C6, 8t 2 (0, T ]

for some C6 depending only on %0, ⇣ and V . Combining de La Vallée Poussin’s theorem with
Dunford-Pettis’ one [58, Ch. XI, Theorem 3.6], there exists % 2 L1((0, T ); L1(⌦)) such that, up to
a subsequence,

(70) ⇢Tm,⌧m
tends to % weakly in L1(QT ) as m tends to +1.

Since ⇢ 7! ⇢ log ⇢ is convex, f 7!
RR

QT
f log fdxdt is l.s.c. for the weak convergence in L1(QT ) (see

for instance [11, Corollary 3.9]), so that (69) yields

(71)
ZZ

QT

% log %dxdt  C6T.

Moreover, since ⇢T ,⌧ � ↵ thanks to Lemma 3.5, then % � ↵ too.
Our goal is to show that % is the unique weak solution to the Fokker-Planck equation (3) corre-

sponding to the initial data %0. Even though the continuous problem is linear, (70) is not enough
to pass to the limit in our nonlinear scheme. Refined compactness have to be derived in this section
so that one can identify % as the solution to (3) in the next section. To show enhanced compactness
(and most of all the consistency of the scheme in the next section), we have to assume that the
initial data is bounded away from 0.

Proposition 3.9. Assume that %0 � ⇢? 2 (0, +1), then, up to a subsequence,

⇢Tm,⌧m �!
m!1

% strongly in L1(QT ),(72)

log ⇢Tm,⌧m
�!

m!1
log % strongly in L1(QT ),(73)

�Tm,⌧m
�!

m!1
log %+ V strongly in L1(QT ).(74)

Proof. Our proof of (72)–(73) relies on ideas introduced in [49] that were adapted to the discrete
setting in [5]. Define the two convex and increasing conjugated functions defined on R+:

⌥ : x 7! ex � x� 1 and ⌥⇤ : y 7! (1 + y) log(1 + y)� y,
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then the following inequality holds for any measurable functions f, g : QT ! R:

(75)
ZZ

QT

|fg|dxdt 
ZZ

QT

⌥(|f |)dxdt +

ZZ

QT

⌥⇤(|g|)dxdt.

Now, notice that since ⇢T ,⌧ is bounded from below thanks to Lemma 3.5 and bounded in L1(QT ),
then log ⇢T ,⌧ is bounded in Lp(QT ) for all p 2 [1,1) and ⌥(| log(⇢T ,⌧ )|) is bounded in L1(QT ). As
a consequence, there exists ` 2 L1((0, T ); Lp(⌦)) such that

(76) log ⇢Tm,⌧m
�!

m!1
` weakly in L1(QT ).

Since f 7!
RR

QT
⌥(|f |) is convex thus l.s.c. for the weak convergence, we infer that ⌥(|`|) belongs

to L1(QT ). Moreover, in view of (71), ⌥⇤(%) belongs also to L1(QT ). Therefore, thanks to (75),
the function %` is in L1(QT ).

Define the quantities

rn
K =

⌧

2mK
a�

X

�2⌃K

�
(�n

K � �n
L)+

�2 � 0, 8K 2 T , 8n 2 {1, . . . , N},

and by rT ,⌧ 2 L1(QT ) the function defined

rT ,⌧ (x, t) = rn
K if (x, t) 2 K ⇥ (tn�1, tn],

Thanks to Lemma 3.6, krT ,⌧kL1(QT )  1
2C2⌧ . As a consequence, rTm,⌧m

tends to 0 in L1(QT ) as
m tends to +1.

Let ⇠ 2 Rd be arbitrary, we denote by ⌦⇠ = {x 2 ⌦ | x + ⇠ 2 ⌦}. Then using (56) and the
triangle inequality, we obtain that for all m � 1, there holds

Z T

0

Z

⌦⇠

|log ⇢Tm,⌧m(x + ⇠, t)� log ⇢Tm,⌧m(x, t)| dxdt  A1,m(⇠) + A2,m(⇠) + A3,m(⇠),

where, denoting by VT (x) = VK if x 2 K, we have set

A1,m(⇠) =

Z T

0

Z

⌦⇠

|rTm,⌧m(x + ⇠, t)� rTm,⌧m(x, t)|dxdt,

A2,m(⇠) =

Z T

0

Z

⌦⇠

|�Tm,⌧m
(x + ⇠, t)� �Tm,⌧m

(x, t)|dxdt,

A3,m(⇠) = T

Z

⌦⇠

|VTm(x + ⇠)� VTm(x)|dx.

Since (rTm,⌧m
)m�1 and (VTm

)m�1 are compact in L1(QT ) and L1(⌦) respectively, it follows from
the Riesz-Frechet-Kolmogorov theorem (see for instance [11, Exercise 4.34]) that there exists ! 2
C(R+; R+) with !(0) = 0 such that

(77) A1,m(⇠) + A3,m(⇠)  !(|⇠|), 8⇠ 2 Rd, 8m � 0.



22 C. CANCÈS, T. O. GALLOUËT, AND G. TODESCHI

On the other hand, the function �T ,⌧ belongs to L1((0, T ); BV (⌦)) and the integral in time of its
total variation in space can be estimated as follows:

ZZ

QT

|r�Tm,⌧m
| =

NX

n=1

⌧
X

�=K|L2⌃

m�|�n
K � �n

L|



0
@d|⌦|T

NX

n=1

⌧
X

�=K|L2⌃

m�(�
n
K � �n

L)2

1
A

1/2

 C7.

with C7 =
p

d|⌦|TC2. This implies in particular that A2,m(⇠)  C7|⇠| for all m � 1. Combining
this estimate with (77) in (56) yields

(78) sup
m�1

Z T

0

Z

⌦⇠

| log ⇢Tm,⌧m
(x + ⇠, t)� log ⇢Tm,⌧m

(x, t)|dxdt �!
|⇠|!0

0.

The combination of (78) with Lemma 3.8 is exactly what one needs to reproduce the proof of [5,
Proposition 3.8], which shows that the product of the weakly convergent sequences (⇢Tm,⌧m

)m and
(log ⇢Tm,⌧m

)m converges towards the product of their weak limits:

(79)
ZZ

QT

⇢Tm,⌧m
log ⇢Tm,⌧m

'dxdt �!
m!1

ZZ

QT

%`'dxdt, 8' 2 C1
c (QT ).

Let us now identify ` as log(%) thanks to Minty’s trick. Let  > 0 and ' 2 C1
c (QT ; R+) be arbitrary,

then thanks to (79),

0 
ZZ

QT

(⇢Tm,⌧m
� ) (log ⇢Tm,⌧m

� log )'dxdt �!
m!1

ZZ

QT

(%� ) (`� log )'dxdt.

As a consequence, (%� ) (`� log ) � 0 a.e. in QT for all  > 0, which holds if and only if
` = log %. To finalize the proof of (72)–(73), define

cm = (⇢Tm,⌧m
� %)(log ⇢Tm,⌧m

� log %) 2 L1(QT ; R+), 8m � 1.

Then (79) implies that
ZZ

QT

cm'dxdt �!
m!1

0, 8' 2 C1
c (QT ), ' � 0.

As a consequence, cm tends to 0 almost everywhere in QT , which implies that ⇢Tm,⌧m
tends almost

everywhere towards % (up to a subsequence). Then (72)–(73) follow from Vitali’s convergence
theorem (see for instance [58, Chap. XI, Theorem 3.9]).

Finally, one has �T ,⌧ = log ⇢T ,⌧ +VT �rT ,⌧ . In view of the above discussion, the right-hand side
converges strongly in L1(QT ) up to a subsequence towards log % + V , then so does the left-hand
side. This provides (74) and concludes the proof of Proposition 3.9. ⇤

Next lemma shows that ⇢⌃,⌧ shares the same limit % as ⇢T ,⌧ .

Lemma 3.10. Assume that %0 � ⇢? 2 (0, +1), then

k⇢⌃m,⌧m � ⇢Tm,⌧mkL1(QT ) �!m!1
0.
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Proof. Thanks to Lemma 3.7, it follows from the de La Vallée-Poussin and Dunford Pettis theorems
that (⇢⌃m,⌧m)m�1 is relatively compact for the weak topology of L1(QT ). Combining this with (70),
we infer that, up to a subsequence, (⇢⌃m,⌧m

� ⇢Tm,⌧m
)m�1 converges towards some w weakly in

L1(QT ). Thanks to Vitali’s convergence theorem, it suffices to show that from any subsequence of
(⇢⌃m,⌧m

� ⇢Tm,⌧m
)m�1, one can extract a subsequence that tends to 0 a.e. in QT (so that the whole

sequence converges towards w = 0), or equivalently

(80) klog ⇢⌃m,⌧m � log ⇢Tm,⌧mkL1(QT ) �!m!1
0,

since both (⇢⌃m,⌧m)m�1 and (⇢Tm,⌧m)m�1 are bounded away from 0 thanks to Lemma 3.5. Bearing
in mind the definition (65) of ⇢⌃m,⌧m

, and one has

klog ⇢⌃,⌧ � log ⇢T ,⌧kL1(QT ) 
NX

n=1

⌧
X

�=K|L2⌃

m�� | log ⇢n
K � log ⇢n

L|.

Using (56) and the triangle inequality, one gets that

klog ⇢⌃,⌧ � log ⇢T ,⌧kL1(QT )  R1 + R2 + TR3,

with

R1 =
NX

n=1

⌧
X

�=K|L2⌃

m��
|�n

K � �n
L|, R2 =

NX

n=1

⌧
X

�=K|L2⌃

m��
|rn

K � rn
L|,

and
R3 =

X

�=K|L2⌃

m�� |VK � VL|.

Using again that dm��
= d�m�  ⇣hT m� thanks to (53a), one has

R1 
⇣

d
hT

NX

n=1

⌧
X

�=K|L2⌃

m�|�n
K � �n

L|  C7⇣

d
hT �!

m!1
0.

Since |rn
K � rn

L|  rn
K + rn

L, the regularity assumption (53c) on the mesh implies that

R2 
NX

n=1

⌧
X

K2T

X

�2⌃K

m��rn
K  ⇣krT ,⌧kL1(QT ) �!

m!1
0.

Since V is Lipschitz continuous, |VK �VL|  krV k1d�  ⇣krV k1hT for all � = K|L 2 ⌃ thanks
to (53a). Therefore,

R3  ⇣krV k1|⌦|hT �!
m!1

0,

so that (80) holds, concluding the proof of Lemma 3.10. ⇤

3.3. Convergence towards a weak solution. Our next lemma is an important step towards the
identification of the limit % as a weak solution to the continuous Fokker-Planck equation (3). Define
the vector field F⌃,⌧ : QT ! Rd by

F⌃,⌧ (x, t) =

(
d⇢n
�
�n

K��n
L

d�
nK� if (x, t) 2 �� ⇥ (tn�1, tn],

0 otherwise.
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Lemma 3.11. Assume that %0 � ⇢? 2 (0, +1), then, up to a subsequence, the vector field F⌃m,⌧m

converges weakly in L1(QT )d towards �r% � %rV as m tends to +1. Moreover, p% belongs to
L2((0, T ); H1(⌦)), while % belongs to L2((0, T ); W 1,1(⌦)).

Proof. Let us introduce the inflated discrete gradient G⌃,⌧ of �T ,⌧ defined by

G⌃,⌧ (x, t) =

(
d
�n

L��n
K

d�
nK� if (x, t) 2 �� ⇥ (tn�1, tn],

0 otherwise,

so that F⌃,⌧ = �⇢⌃,⌧G⌃,⌧ . Thanks to Lemma 3.6,

kG⌃,⌧k2L2(QT )d = d
NX

n=1

⌧
X

�=K|L2⌃

a�(�
n
K � �n

L)2  dC2,

thus we know that, up to a subsequence, G⌃,⌧ converges weakly towards some G in L2(QT )d as
m tends to +1. Since �T ,⌧ tends to log %+ V , cf. (74), then the weak consistency of the inflated
gradient [24, 26] implies that G = r(log %+ V ).

Define now H⌃,⌧ =
p
⇢⌃,⌧G⌃,⌧ , then using again Lemma 3.6,

kH⌃,⌧k2L2(QT )d = d
NX

n=1

⌧
X

�=K|L2⌃

a�⇢
n
�(�

n
K � �n

L)2  dC1,

so that there exists H 2 L2(QT )d such that, up to a subsequence, H⌃,⌧ tends to H weakly in
L2(QT )d. But since p⇢⌃,⌧ converges strongly towards p% in L2(QT ), cf. Lemma 3.7, and since
G⌃,⌧ tends weakly towards r(log %+V ) in L2(QT )d, we deduce that H⌃,⌧ tends weakly in L1(QT )d

towards p%r(log % + V ) = 2rp% +
p
%rV = H. In particular, p% belongs to L2((0, T ); H1(⌦)).

Now, we can pass in the limit m! +1 in F⌃,⌧ = �p⇢⌃,⌧H⌃,⌧ , leading to the desired result. ⇤

In order to conclude the proof of Theorem 3.2, it remains to check that any limit value % of the
scheme is a solution to the Fokker-Planck equation (3) in the distributional sense.

Proposition 3.12. Let % be a limit value of (⇢Tm,⌧m
)m�1 as described in Section 3.2, then for all

' 2 C1
c (⌦⇥ [0, T )), one has

(81)
ZZ

QT

%@t'dxdt +

Z

⌦

%0'(·, 0)dx�
ZZ

QT

(%rV +r%) ·r'dxdt = 0.

Proof. Given ' 2 C1
c (⌦⇥ [0, T )), we denote by 'n

K = '(xK , tn). Then multipying (57) by �'n�1
K

and summing over K 2 T and n 2 {1, . . . , N} leads to

B1 + B2 + B3 = 0,

where we have set

B1 =
NX

n=1

⌧
X

K2T
mK

'n
K � 'n�1

K

⌧
⇢n

K , B2 =
X

K2T
mK'

0
K⇢

0
K ,

and

B3 = �
NX

n=1

⌧
X

�=K|L2⌃

a�⇢
n
� (�n

K � �n
L)
�
'n�1

K � 'n�1
L

�
.
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Since ⇢T ,⌧ converges in L1(QT ) towards %, cf. Proposition 3.9, and since ' is smooth,

B1 �!
m!1

ZZ

QT

%@t'dxdt.

It follows from the definition (55) of ⇢0
K that the piecewise constant function ⇢0

T , defined by ⇢0
T (x) =

⇢0
K if x 2 T , converges in L1(⌦) towards %0. Therefore, since ' is smooth,

B2 �!
m!1

Z

⌦

%0'(·, 0)dx.

Let us define

B0
3 =

ZZ

QT

F⌃,⌧ ·r'dxdt.

Then it follows from Lemma 3.11 that

B0
3 �!

m!1
�
ZZ

QT

(%rV +r%) ·r'dxdt.

To conclude the proof of Proposition 3.12, it only remains to check that

|B3 �B0
3| 

NX

n=1

⌧
X

�=K|L2⌃

a�⇢
n
� |�n

K � �n
L|
�����'

n�1
K � 'n�1

L +
1

⌧m��

Z tn

tn�1

Z

��

d�r' · nKL

����� dxdt.

Since ' is smooth and since d�nKL = xK � xL thanks to the orthogonality condition satisfied by
the mesh,

�����'
n�1
K � 'n�1

L +
1

⌧m��

Z tn

tn�1

Z

��

d�r' · nKL

����� dxdt  C'd�(⌧ + d�)

for some C' depending only on '. Therefore,

|B3 �B0
3|  C'(⌧ + d�)

NX

n=1

⌧
X

�=K|L2⌃

m�⇢
n
� |�n

K � �n
L| .

Applying Cauchy-Schwarz inequality, one gets that

|B3 �B0
3|  C'(⌧ + d�)C1d k⇢⌃,⌧kL1(QT ) �!m!1

0

thanks to Lemma 3.7. ⇤

4. Numerical results

To check the correctness and reliability of our formulation we performed some numerical tests.
Before that, we are going to present some details on the solution of the nonlinear system involved
in the scheme.
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4.1. Newton method. Due to the explicit formulation of the optimality condition of the saddle
point problem (35), it appears extremely convient to use a Newton method for their solution. Given
un�1 = (�n�1,⇢n�1) 2 R2T solution of the scheme at the time step n � 1, the Newton method
aims at constructing a sequence of approximations of un as un,k+1 = un,k + dk, dk = (dk

�, dk
⇢)

being the Newton direction, solution to the block-structured system of equations

(82) Jkdk =


Jk

�,� Jk
�,⇢

Jk
⇢,� Jk

⇢,⇢

� 
dk
�

dk
⇢

�
=


fk
�

fk
⇢

�
.

In the above linear system, fk
� and fk

⇢ are the discrete HJ and continuity equations evaluated in
un,k, and Jk

�,�, Jk
�,⇢, Jk

⇢,� and Jk
⇢,⇢ are the four blocks of the Hessian matrix Jk of the discrete

functional in (35) evaluated in un,k. The sequence converges to the unique solution un as soon
as the initial guess is sufficiently close to it, which is ensured for a sufficiently small time step by
taking un,0 = un�1. The algorithm stops when the `1 norm of the discrete equations is smaller
than a prescribed tolerance or if the maximum number of iterations is reached. It is possible to
implement an adaptative time stepping: if the Newton method converges in few iterations the time
step ⌧ increases; if it reaches the maximum number of iterations the time step is decreased and
the method restarted. Issues could arise if the iterate un,k reaches negative values, especially if the
energy is not defined for negative densities. To avoid this problem two possible strategies may be
implemented: the iterate may be projected on the set of positive measure by taking un,k = (un,k)+;
the method may be restarted with a smaller time step.

In case of a local energy functional, as it is the case for the Fokker-Planck and many more
examples, the block Jk

⇢,⇢ is diagonal and therefore straightforward to invert. System (82) can be
rewritten in term of the Schur complement and solved for dk

� as

(83)
⇥
Jk

�,� � Jk
�,⇢ (Jk

⇢,⇢)�1 Jk
⇢,�

⇤
dk
� = fk

� � Jk
�,⇢ (Jk

⇢,⇢)�1 fk
⇢,

while dk
⇢ = (Jk

⇢,⇢)�1 (fk
⇢ � Jk

⇢,� dk
�).

Proposition 4.1. The Schur complement Sk = Jk
�,� � Jk

�,⇢ (Jk
⇢,⇢)�1 Jk

⇢,� is symmetric and neg-
ative definite.

Proof. Sk is symmetric since Jk
�,� and Jk

⇢,⇢ are, while Jk
�,⇢ = (Jk

⇢,�)T . The matrix Jk
⇢,⇢ is positive

definite since the problem is strictly convex, whereas Jk
�,� is negative definite if ⇢n,k

K > 0, 8K 2
T , since the problem is strictly concave, but it is semi-negative definite if the density vanishes
somewhere. Therefore, it is sufficient to show that the matrix Jk

�,⇢ = (Jk
⇢,�)T = M + Ak is

invertible. M is a diagonal matrix such that (M)K,K = mK , whereas

(Ak)K,K = ⌧
X

�=K|L2⌃K

a�(�
n,k
K � �n,k

L )+ � 0,

and, for L 6= K,

(Ak)K,L = �⌧a�(�n,k
L � �n

K)+  0 if � = K|L, (Ak)K,L = 0 otherwise.

Therefore the columns of Ak sum up to 0, so that (Jk
�,⇢) is a column M-matrix [28] and thus

invertible. ⇤

In case the matrix Jk
⇢,⇢ is simple to invert it is then possible to decrease the computational

complexity of the solution of system (82). Moreover, it is possible to exploit for the solution of
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Figure 1. Sequence of regular triangular meshes.

system (83) solvers which are computationally more efficient, since the system is symmetric and
negative definite.

4.2. Fokker-Planck equation. We first tackle the gradient flow of the Fokker-Planck energy,
namely eq. (3). In section 3 we showed the L1 convergence of the scheme. Consider the specific
potential V (x) = �gx: for this case it is possible to design an analytical solution and test the
convergence of the scheme. Consider the domain ⌦ = [0, 1]2, the time interval [0, 0.25] and the
following analytical solution of the Fokker-Planck equation (built from a one-dimensional one):

%(x, y, t) = exp(�↵t +
g

2
x)(⇡ cos(⇡x) +

g

2
sin(⇡x)) + ⇡ exp(g(x� 1

2
)),

where ↵ = ⇡2 + g2

4 . On the domain ⌦ = [0, 1]2, the function %(x, y, t) is positive and satisfies the
mixed boundary conditions (r%+%rV ) ·n|@⌦ = 0. We want to exploit the knowledge of this exact
solution to compute the error we commit in the spatial and time integration. Consider a sequence
of meshes

�
Tm, ⌃m, (xK)K2Tm

�
with decreasing mesh size hTm

and a sequence of decreasing time

steps ⌧m such that
hTm+1

hTm
= ⌧m+1

⌧m
. In particular, we used a sequence of Delaunay triangular meshes

such that the mesh size halves at each step, obtained subdividing at each step each triangle into
four using the edges midpoints. Three subsequent partitioning of the domain are shown in figure
1. Let us introduce the following mesh-dependent errors:

✏n1 =
X

K2Tm

|⇢n
K � %(xK , n⌧)|mK , ! discrete L1 error

✏L1 = max
n

(✏1n), ! discrete L1((0, T ); L1(⌦)) error,

✏L1 =
X

n

⌧ ✏n1 , ! discrete L1((0, T ); L1(⌦)) error,

where %(xK , n⌧m) is the value in the cell center of the triangle K of the analytical solution at time
n⌧m, n running from 0 to the total number of time steps Nm. The upstream Finite Volume scheme
with backward Euler discretization of the temporal derivative, namely scheme (49), is known to
exhibit order one of convergence applied to this problem, both in time and space. This means that
the L1((0, T ); L1(⌦)) and L1((0, T ); L1(⌦)) errors halve whenever hT and ⌧ halve. We want to
inspect whether scheme (36) recovers the same behavior.

For the sequence of meshes and time steps, for m going from one to the total number of meshes,
we computed the solution to the linear Fokker-Planck equations and the errors, using both schemes
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Table 1. Time-space convergence for the two schemes. Integration on the time
step [0, 0.25].

FV LJKO
h dt ✏L1 r ✏L1 r ✏L1 r ✏L1 r

0.2986 0.0500 0.1634 / 0.0350 / 0.1463 / 0.0334 /
0.1493 0.0250 0.0856 0.932 0.0176 0.997 0.0651 1.169 0.0145 1.120
0.0747 0.0125 0.0434 0.979 0.0087 1.015 0.0449 0.535 0.0066 1.134
0.0373 0.0063 0.0218 0.996 0.0043 1.009 0.0297 0.598 0.0033 1.007
0.0187 0.0031 0.0109 0.999 0.0022 1.004 0.0174 0.770 0.0017 0.943
0.0093 0.0016 0.0054 1.000 0.0011 1.001 0.0095 0.870 0.0009 0.947

Table 2. Time-space convergence for scheme (36). Integration on the time step
[0.5, 0.25].

LJKO
h dt ✏L1 r ✏L1 r

0.2986 0.0500 0.1186 / 0.0216 /
0.1493 0.0250 0.0618 0.9411 0.0109 0.9857
0.0747 0.0125 0.0307 1.0110 0.0053 1.0311
0.0373 0.0063 0.0152 1.0116 0.0026 1.0213
0.0187 0.0031 0.0076 1.0078 0.0013 1.0119
0.0093 0.0016 0.0038 1.0042 0.0006 1.0062

(49) and (36). The results are shown in Table 1. For each mesh size and time step m, it is
represented the error together with the rate with respect to the previous one. Scheme (36) exhibits
the same order of convergence of scheme (49). It is noticeable that the rate of convergence of the
former scheme senses a big drop and then recovers order one, especially in the L1((0, T ); L1(⌦))
error. This is due to the fact that the initial condition %(xK , 0) is too close to zero, and in particular
equal to zero on the set 1 ⇥ [0, 1], and scheme (36) tends to be repulsed away from zero due to
the singularity of the gradient of the first variation of the energy. In Table 2 we repeated the
convergence test for the time interval [0.05, 0.25]: the convergence profile sensibly improves.

To further investigate and compare the behavior of the two schemes, we computed also the
energy decay along the trajectory. We call dissipation the difference E(%) � E(%1), where %1 is
the final equilibrium condition, the long time behavior. Since we are discretizing a gradient flow,
its dissipation is a useful criteria to assess the goodness of the scheme. The long time value of the
energy is equal to:

E( lim
t!1

%) =

Z

⌦

lim
t!1

(% log %� %gx)dx

= exp(
g

2
)(
⇡ log(⇡)

g
+
⇡

2
� ⇡

g
) + exp(�g

2
)(�⇡ log(⇡)

g
� ⇡

2
+
⇡

g
).
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It is possible to define the equilibrium solution also on the discrete dynamics on the grid. Namely,
the equilibrium solution ⇢1 for the discrete dynamics is

⇢1K = M exp(�VK), VK = V (xK), 8K 2 T ,

as it can be easily checked to be the unique minimizer of the discrete energy ET =
P

K2T E(⇢K)mK

subject to the constraint of the conservation of the mass,
@

@⇢K

�
ET + �

X

K2T
(⇢K � ⇢0

K)mK

�
|⇢1K =

�
log ⇢1K + 1 + VK + �

�
mK = 0, 8K 2 T

=) ⇢1K = exp(�(1 + �)� VK) = M exp(�VK), 8K 2 T ,

with � lagrange multiplier associated with the constraint. M is the constant that makes ⇢1 have
the same total mass:

M =

P
K2T ⇢

0
KmKP

K2T exp�VK mK
.

It is immediate to observe that this is indeed the equilibrium solution for scheme (49), since with
such density the potential is constant:

�K =
�ET (⇢)

�⇢K
|⇢1K = log ⇢1K + 1 + VK = log M � VK + 1 + VK = log M + 1, 8K 2 T .

For the scheme (36) instead, as it appears clear from Lemma 2.1, whenever ⇢n
K = ⇢n�1

K , 8K 2 T ,
as it is the case for an equilibrium solution, the potential is constant. From the potential equation
one gets again

�K =
�ET (⇢)

�⇢K
|⇢1K = log M + 1, 8K 2 T .

In Figure 2 it is represented the semilog plot of the dissipation of the system in the time interval
[0, 3], computed for the two schemes, ET (⇢) � ET (⇢1), and the real solution, E(%) � E(%1). In
Figure 2a it is noticeable that scheme (36) dissipates the energy faster than the other, being indeed
a bit more diffusive. This is an expected behavior since the scheme is built to maximize the decrease
of the energy and this is actually one of the main strength of the approach. In Figure 2b, one can
see that the two dissipations tend to the real one when a finer mesh and a smaller time step are
used, for both schemes, despite the fact that (36) still dissipates faster. In the end, in Figure 2c
it is remarkable that for a very small time step the dissipations tend to coincide, as it is expected.
For the time parameter going to zero the two schemes coincide.

4.3. Porous medium equation. The porous medium equation,

@t% = �%m +r · (%rV ),

has been proven in [53] to be a gradient flow in Wasserstein space with respect to the energy

(84) E(⇢) =

Z

⌦

1

m� 1
⇢mdx +

Z

⌦

⇢V dx,

for a given m strictly greater than one. Our aim is to show that scheme (36) works regardless of
the uniform bound from below on the density. For this reason, we use an initial density ⇢0 with
compact support and a confining potential V (x) = 1

2 ||x � 0.5||22. The equilibrium solution of the
gradient flow should then be the Barenblatt profile %1(x) = max(( M

2⇡ )
m�1

m � m�1
2m ||x�0.5||22, 0)

1
m�1 ,

with M total mass of the initial condition.
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In Figure 3 the evolution of an initial density close to a dirac in the center of the domain
⌦ = [0, 1]2 is shown for the case m = 4. In Figure 4 it is represented the dissipation of the energy,
ET (⇢) � ET (⇢1), in semi-logarithmic scale, where ⇢1

K = %1(xK), 8K 2 T . The energy ET is
the straightforward discretization of (84), as it has been done for the Fokker-Planck energy. As
expected, the solution converges towards the Barenblatt profile.

4.4. Thin film equation. In order to show that scheme (36) can be employed also on more complex
problems, we consider the Wasserstein gradient flow with respect to the energy

E(⇢) =
1

2

Z

⌦

|r⇢|2dx +

Z

⌦

⇢V dx,

which gives rise to a phenomenon modeled by the thin film equation

@t% = �r · (%r(�%)) +r · (%rV ),

a particular case of a family of nonlinear fourth order equations [44]. The energy E(⇢) is discretized
as

ET (⇢) =
1

2

X

�2⌃

⇣⇢L � ⇢K

d�

⌘2

d�m� +
X

K2T
⇢KV (xK)mK ,

where again we made use of the inflated gradient definition for the discretization of the Dirich-
let energy. Notice that even though the continuous energy functional E(⇢) is local, the discrete
counterpart is not. The matrix Jk

⇢,⇢ in (83) is not diagonal and the Schur complement technique
for the solution of the linear system (82) is not necessarily convenient anymore. In figure 5 it is
represented the evolution of an initial density with quadratic profile and compact support in the
domain ⌦ = [0, 1]2. The potential is V (x) = (x� 1)(y � 1).

4.5. Salinity intrusion problem. We want to show now that scheme (36) can be used for the
solutions of systems of equations of the type of (1). We consider the problem of salinity intrusion in
an unconfined aquifer. Under the assumption that the two fluids, the fresh and the salt water, are
immiscible and the domains occupied by each fluid are separated by a sharp interface, the problem
can be modeled via the system of equations

(85)

(
@tf �r · (⌫fr(f + g + b)) = 0 in ⌦⇥ (0, T ),

@tg �r · (gr(⌫f + g + b)) = 0 in ⌦⇥ (0, T ),

completed with the no-flux boundary conditions

rf · n = rg · n = 0 on @⌦⇥ (0, T ),

and initial conditions f(t = 0) = f0, g(t = 0) = g0, with f0, g0 2 L1(⌦), f0, g0 � 0. The quantities
f , g, and b represent respectively the thickness of the fresh water layer, the thickness of the salt
water layer and the height of the bedrock. Therefore the quantity b+ g represents the height of the
sharp interface separating the two fluids. The parameter ⌫ =

⇢f

⇢s
is the ratio between the constant

mass density of the fresh and salt water. Equation (85) has been proven in [38] to be a Wasserstein
gradient flow with respect to the energy

(86) E(f, g) =

Z

⌦

⇣⌫
2
(b + g + f)2 +

1� ⌫
2

(b + g)2
⌘
dx.

The discretization of (86) is again straightforward. In figure 6 it is represented an evolution of
the two surfaces of salt and fresh water (see [1] for a full description of the test case). Given the
particular configuration of the bedrock b, the two surfaces are represented respectively by b + g
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and b + g + f . Also this case is not covered from the theoretical analysis we performed on the
convergence of the scheme but still scheme (36) works. As already said, from numerical evidences
the scheme works under much more general and mild hypotheses.
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Figure 2. Comparison of the dissipation of the system computed with the two nu-
merical schemes (36) (LJKO) and (49) (FV), and in the real case. Semi-logarithmic
plot.
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(a) t=0 (b) t=0.0001

(c) t=0.01 (d) t=1

Figure 3. Evolution of an initial density close to a dirac according to the porous
medium equation. In each picture the scaling is different for the sake of the repre-
sentation.
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Figure 4. Dissipation of the energy for the porous medium equation. Semi-
logarithmic plot.

(a) t=0 (b) t=0.0015 (c) t=0.008

(d) t=0.014 (e) t=0.02 (f) t=0.3

Figure 5. Evolution of an initial quadratic density according to the thin film
equation. In each picture the scaling is different for the sake of the representation.
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(a) t=0 (b) t=0.1

(c) t=0.5 (d) t=10

Figure 6. Evolution of the two interfaces of salt (red) and fresh (blue) water.
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2.3 Euler flows

Articles:

• A Lagrangian scheme à la Brenier for the incompressible Euler equa-
tions. Found Comput Math 18: 835 (2018). https://doi.org/10.1007/
s10208-017-9355-y. Gallouët T.O. and Mérigot Q.

• Convergence of a Lagrangian discretization for barotropic fluids and
porous media flow. SIAM Journal on Mathematical Analysis (2021) https:
//hal.science/hal-03234144. Gallouët T.O., Mérigot Q., Natale A.

Collaborators: The first paper is a collaboration with Q. Mérigot. It combines
reinterpretation of Y. Brenier’s old ideas and Q. Mérigot’s new method that allows
to deal numerically with semi-discrete Optimal Transport. It was done when I was
a post-doc of Y. Brenier. The second paper is a collaboration with Q. Mérigot and
A. Natale. At this moment A. Natale was a post-doc under our supervision.

Main contributions:

• We constructed and implemented a Lagrangian numerical scheme for the In-
compressible Euler equations.

• We proved its convergence towards smooth solutions thanks to a relative en-
tropy methods. This is not new for Lagrangian methods. Numerically we
also observed a good behavior of the scheme with more rough initial condi-
tions and wider class models based on the Incompressible Euler equations
(with gravity, non homogenous fluid).

• In the second paper we constructed the same type of Lagragian scheme but
for compressible Euler equations.

• We proved the convergence of the scheme towards smooth solutions thanks
to a relative entropy methods.

• We proved that the same approached works also for the Wasserstein gradient
flows associated to the same energy. The proof of convergence is very similar.

• We implemented the scheme in both cases: Euler flows and Wasserstein gra-
dient flows.

https://doi.org/10.1007/s10208-017-9355-y
https://doi.org/10.1007/s10208-017-9355-y
https://hal.science/hal-03234144
https://hal.science/hal-03234144
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Research directions: Research directions around these questions are numerous
and well adapted for Phd subjects. It is one of the main axes of the new Inria
ParMA team, that I will held, based at the Laboratoire Mathématiques d’Orsay
(Paris Saclay University).
The main strength of these Lagrangian methods is that they are based on the physi-
cal energy and a nice geometrical structure for the PDE either Gradient flows Euler
Flows or Conservative flows (where the velocity is given by the rotation of the
Wasserstein gradient of the energy. So the next step is too add more physics in the
model throughout the energy, deduce the numerical scheme and try to adapt the
proof. let us mention some extensions.

• Fluid-structure interactions in the incompressible case. The scheme is very
suited for this interaction. We have to adapt the projection step taking into
account the structure. The proof of convergence works well for exemple if the
motion of the structure is given. Numerically the simulations works well also
with the full model (the motion of the structure is not given), a nice imple-
mentation is to approximate the whole space (fluid+structure) with particules
and enforce a constraint for the points coming from the structure. This work
is in progress.

• Incompressible Navier Stokes equation. The Lagrangian scheme interact per-
fectly with finite volume scheme such as the one presented in Section 2.2.2.
Indeed the Laguerre cells makes an admissible finite volume tesselation and
the quantity required to compute a finite volume approximation of the Lapla-
cian of the velocity are all given by the Laguerre cells. Numerical simulations
are very convincing see for instance the implementation done by B. Lévy in
[14]. From a theoretical point of view the finite volume discretization being
not consistant the proof of convergence is not straightforward but it seems to
work using a nice decomposition. This work is also in progress.

• Adding some interaction terms. The next step would be to add some interac-
tions terms in order to approximate for example Keller-Segel equations. I did
not look too much in this direction yet but the recent work of D. Bresch and
co-authors and S. Serfaty and co-authors [7, 2] are dealing with success with
relative entropy methods and interaction terms. A natural idea would be to
adapt the way they treat these interaction terms in the gronwall argument in
our context. I will submit this subject for a Phd student.

• Particules approximation of the semi-geostrophic equation. The semi
geostrophic equation can be recast as a conservative flow in the Wasser-
stein space. Numerical simulations can be done using a scheme based on
semi-discrete Optimal Transport. The proof of convergence for this scheme
presents some novel difficulties. This is an ongoing research conducted in
collaboration with Q. Mérigot and D. Bourne.
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Abstract. We approximate the regular solutions of the incompressible Euler equations
by the solution of ODEs on finite-dimensional spaces. Our approach combines Arnold’s
interpretation of the solution of the Euler equations for incompressible and inviscid flu-
ids as geodesics in the space of measure-preserving di↵eomorphisms, and an extrinsic
approximation of the equations of geodesics due to Brenier. Using recently developed
semi-discrete optimal transport solvers, this approach yields a numerical scheme which
is able to handle problems of realistic size in 2D. Our purpose in this article is to estab-
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1. Introduction

The purpose of this article is to investigate a discretization of Euler’s equation for
incompressible and inviscid fluids in a domain ⌦ ✓ Rd with Neumann boundary conditions:

8
>>>>><
>>>>>:

@tv(t, x) + (v(t, x) · r) v(t, x) = �rp(t, x), for t 2 [0, T ], x 2 ⌦ ,

div (v(t, x)) = 0 for t 2 [0, T ], x 2 ⌦ ,

v(t, x) · n = 0 for t 2 [0, T ], x 2 @⌦ ,

v(0, x) = v0.

(1.1)

As noticed by Arnold [2], when expressed in Lagrangian coordinates, Euler’s equations can
be interpreted as the equation of geodesics in the infinite-dimensional group of measure-
preserving di↵eomorphisms of ⌦. To see this, consider the flow map � : [0, T ] ⇥ ⌦ ! ⌦
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induced by the vector field v, that is:
8
>><
>>:

d
dt�(t, x) = v (t,�(t, x)) for t 2 [0, T ], x 2 ⌦ ,

�(0, ·) = id,

@t�(0, ·) = v0.

(1.2)

Using the formula d
dt det D�(t, x) = div (v(t, x)) det D�(t, x), the incompressibility con-

straint div (v(t, x)) = 0 and the initial condition �(0) = id, one can check that �(t, ·)
belongs to the set of volume preserving maps S, defined by

S =
n

s 2 L2(⌦, Rd) | s# Leb = Leb
o

,

where Leb is the restriction of the Lebesgue measure to the domain ⌦ and where the
pushforward measure s# Leb is defined by the formula s# Leb(A) = Leb(s�1(A)) for every
measurable subset A of ⌦. Euler’s equations (1.1) can therefore be reformulated as

8
>>>>><
>>>>>:

d2

dt2
�(t) = �rp(t,�(t, x)) for t 2 [0, T ], x 2 ⌦ ,

�(t, ·) 2 S for t 2 [0, T ],

�(0, ·) = id,

@t�(0, ·) = v0.

(1.3)

To obtain (1.3) one simply needs to derive (1.2). This equation can be formally interpreted
as the equation of geodesics in S. In particular the pressure term in the evolution equation
in (1.3) expresses that the acceleration of � should be orthogonal to the tangent plane to
S at �. Indeed, note that the condition �(t, ·) 2 S in (1.1) encodes the infinitesimal
conditions div v(t, ·) = 0 and v(t, x) · n(x) = 0 in (1.3). This suggests that the tangent
plane to S at a point � 2 S should be the set {v �� | v 2 Hdiv(⌦)}, where Hdiv(⌦) denotes
the set of divergence-free vector fields

Hdiv(⌦) =

⇢
v 2 L2(⌦, Rd) |

Z

⌦
v · r' = 0, 8' 2 C1

c (⌦)

�
.

In addition, by the Helmoltz-Hodge decomposition, the orthogonal subspace to Hdiv(⌦)
in L2(⌦, Rd) is the space of gradients of functions. Therefore the evolution equation in

(1.3) expresses that d2

dt2
�(t) ? T�(t)S , in other words that t 7! �(t, ·) is a geodesic

of S. Note however that a solution to (1.3) does not need to be a minimizing geodesic
between �(0, ·) and �(T, ·). The problem of finding a minimizing geodesic on S between two
measure preserving maps amounts to solving equations (1.3), where the initial condition
@t�(0, ·) = v0 is replaced by a prescribed coupling between the position of particles at
initial and final times. It leads to generalized and non-deterministic solutions introduced
by Brenier [6], where particles are allowed to split and cross. Shnirelman showed that this
phenomenon can happen even when the measure-preserving maps �(0, ·) and �(T, ·) are
di↵eomorphisms of ⌦ [23].

Previous work: discretization of geodesics in S. The first numerical experiments to
recover generalized minimizing geodesics have been performed by Brenier in 1D [9]. He
also proposed a scheme to compute the solutions of the Cauchy problem (1.3) in [5]. In
Brenier’s discretization, the measure-preserving maps are approximated by permutations
of a decomposition of the domain into cubes. The numerical implementation of this idea
relies on the resolution of a linear assignment problem at every timestep, whose cost is
unfortunately prohibitive for domains in dimension higher than one.

The discretization we consider in this article is a variant of this approach which is more
tractable computationally and leads to slightly better convergence estimates. As in [8],
the measure-preserving property (or incompressibility) is enforced through a penalization
term involving the squared distance to the set of measure-preserving maps S. This squared
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distance can be computed e�ciently thanks to recently developed numerical solvers for op-
timal transport problems between probability densities and finitely-supported probability
measures [3, 20, 13, 18]. This alternative discretization has already been used successfully
to compute minimizing geodesics between measure-preserving maps in [21], allowing the
recovery of non-deterministic solutions to Euler’s equations predicted by Shnirelman and
Brenier in dimension two. The object of this article is to study whether this strategy can
be used to construct Lagrangian schemes for the more classical Cauchy problem for the
Euler’s equations (1.1), able to cope with problems of realistic size in dimension two.

Discretization in space: approximate geodesics. The construction of approximate
geodesics presented here is strongly inspired by a particle scheme introduced by Brenier [8].
We first approximate the Hilbert space M = L2(⌦, Rd) by finite dimensional subspaces.
Let N be an integer and let PN be a tessellation of ⌦ into N subsets (!i)1iN satisfying

8
><
>:

8i 2 {1, . . . , N}, Leb(!i) =
1

N
Leb(⌦)

hN := max
1iN

diam(!i) 
C

N1/d

where C > 0 is independent of N . We consider MN ✓ M the space of functions from ⌦
to Rd which are constant on each of the subdomains (!i). To construct our approximate
geodesics, we consider the squared distance to the set S ✓ M of measure-preserving maps:

d2
S : m 2 Mn 7! min

s2S
km � sk2

M.

The approximate geodesic model is described by the di↵erential equation in the finite-
dimensional space MN : 8

<
:

m̈(t) +
rd2

S(m(t))

2✏2
= 0, for t 2 [0, T ] ,

(m(0), ṁ(0)) 2 M2
N

(1.4)

Note that the squared distance d2
S is semi-concave, so that its restriction to the finite-

dimensional space MN is di↵erentiable at almost every point. This di↵erential system is
induced by the Hamiltonian H : MN ⇥ MN ! R

H(m, ṁ) =
1

2
kṁk2

M +
d2

S(m)

2✏2
. (1.5)

We now rewrite the di↵erential system (1.4) in terms of projection on the sets S and
MN . Since the space of measure-preserving maps S is closed but not convex, any point
in M admits a projection on S, but this projection is usually not uniquely defined. To
simplify the exposition we will nonetheless associate to any point m 2 M one of its
projection PS(m), i.e. any point in S such that kPS(m) � mkM = dS(m). We also denote
PMN

: M ! MN the orthogonal projection on the linear subspace MN ✓ M, which is a
linear map. We can rewrite Eq. (1.4) in terms of these two projection operators:8

<
:

m̈(t) +
m(t)�PMN

�PS(m(t))

✏2
= 0, for t > 0 ,

(m(0), ṁ(0)) 2 M2
N

(1.6)

From Proposition 5.2, the double projection PMN
� PS(m) is uniquely defined for almost

every m 2 MN .

Remark 1.1. Equation (1.6) can be rewritten as a system of N particles in interaction,
whose positions are denoted M1(t), . . . , MN (t) 2 Rd. Denoting 1!i the indicator function
of the set !i ✓ ⌦, we introduce

W : (M1, . . . , MN ) 2 (Rd)N 7! d2
S(
X

i

Mi1!i),

and we denote Bi(M1, . . . , MN ) = rMiW (M1, . . . , MN ). As explained in Proposition 5.2,
the points (Bi(M1, . . . , MN ))i are barycenters of a decomposition of ⌦ into N cells which
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depend on the solution to the optimal transport problem between Leb and the empirical
measure 1

N

P
1iN �Mi . With these notations, Equation (1.6) is then equivalent to

(
M̈i(t) + 1

✏2
(Mi(t) � Bi(M1(t), . . . , MN (t))) = 0, for t > 0 and i 2 {1, . . . , N},

(M(0), Ṁ(0)) 2 (Rd)N ⇥ (Rd)N
(1.7)

Loosely speaking, equations (1.4)–(1.6) describe a physical system where each particle
Mi(t) is subject to the force of a spring with sti↵ness 1

✏ attached to the point Bi(M1(t), . . . , MN (t))
which varies in time and depends on the position of all the particles. Equation (1.7) is
also the Hamiltonian system associated to H : (Rd)N ⇥ (Rd)N ! R

H(M, Ṁ) =
1

2

NX

i=1

|Ṁi|
2
+ W(M), (1.8)

In the case of an non-homogeneous fluid with varying volume masse, such as a mixture of
oil and water, an analogue discretization would involve a system of particles with di↵erent
masses ⇢i. This corresponds to replacing the Hamiltonian by

H(M, Ṁ) =
1

2

NX

i=1

⇢i|Ṁi|2 + W(M). (1.9)

In this last formulation, it is also possible to add potential terms, such as gravitation. This
will be the case for the simulation of the Rayleigh-Taylor instability in subsection 5.4.

We first prove that the system of equations (1.4) can be used to approximate regular
solutions to Euler’s equations (1.1). Our proof of convergence uses a modulated energy
technique which is similar to that used in [8] and requires C1,1 regularity assumptions on
the solution to Euler’s equations. See also [10, 12] for related works.

Theorem 1.2. Let ⌦ be a bounded domain of Rd with Lipschitz boundary. Let v, p be a
strong solution of Euler’s equations (1.1), let � be the flow map induced by v (see (1.2))
and assume that v, p, @tv, @tp,rv and rp are Lipschitz on ⌦, uniformly on [0, T ]. Suppose
in addition that there exists a C1 curve m : [0, T ] ! MN satisfying the initial conditions

m(0) = PMN
(id), ṁ(0) = PMN

(v(0, ·)),
which is twice di↵erentiable and satisfies the second-order equation (1.4) for all times in
[0, T ], possibly up to a countable number of exceptions. Then,

max
t2[0,T ]

kṁ � v(t,�(t, ·))k2
M  C1

h2
N

"2
+ C2"

2 + C3hN (1.10)

where the constants C1, C2 and C3 only depend on ⌦, on the L1 norm (in space) of the
velocity v(t, ·) and on the Lipschitz norms (in space) of the velocity and its first derivatives
rv(t, ·), @tv(t, ·) and of the pressure and its derivatives p(t, ·), rp(t, ·), @tp(t, ·).

The values of C1, C2 and C3 are given more precisely at the end of Section 3. Note
that the hypothesis on the solution m to the di↵erential equation (1.4) is introduced here
mainly for technical reasons. Removing it is not of our main concern in this paper since
we also give a proof of convergence of the fully discrete numerical scheme regardless of this
assumption. It is likely that solutions to (1.4) satisfying this hypothesis can be constructed
through di Perna-Lions or Bouchut-Ambrosio theory [1, 4, 19], see also [10, Appendix].

Remark 1.3. Remark that (1.10) implies the convergence of the associated flows. In
particular integrating inequality (1.10) one can show that

max
t2[0,T ]

km(t) � �(t)k2
M  2h2

N + 2T

✓
C1

h2
N

"2
+ C2"

2 + C3hN

◆
.
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Discretization in space and time. To obtain a numerical scheme we also need to
discretize in time the Hamiltonian system (1.6). For simplicity of the analysis, we consider
a simple first-order scheme called symplectic Euler scheme with timestep ⌧ > 0. The
double projection PMN

� PS(m) is defined as above. The discrete solution consists of two
sequences Mn, V n in the finite-dimensional space MN , given by:

8
><
>:

(M0, V 0) 2 MN

V n+1 = V n � ⌧
✏2

(Mn � PMN
� PS(M

n))

Mn+1 = Mn + ⌧V n+1

(1.11)

Note that numerically, the piecewise-constant map Mn : ⌦ ! Rd (resp. the piecewise-
constant vector field V n : ⌦ ! Rd) is simply encoded by an ordered list of N points
(resp. N vectors), so that this scheme can be considered as describing a dynamical system
involving N particles. We have the following theorem, where we denote tn = n⌧ .

Theorem 1.4. Let ⌦ be a bounded domain of Rd with Lipschitz boundary, let ✏ and ⌧ be
positive numbers and let N 2 N. Let v, p be a strong solution of (1.1), let � be the flow
map induced by v (see (1.2)) and assume that v, p, @tv, @tp,rv and rp are Lipschitz on
⌦, uniformly on [0, T ]. Let (Mn, V n)n�0 be a sequence generated by (1.11) from

M0 = PMN
(id), V 0 = PMN

(v(0, ·)).
Assuming ⌧  " and hN  ", we have

max
n2N\[0,T/⌧ ]

kV n � v(tn,�(tn, ·))k2
M  C


✏2 + hN +

h2
N

✏2
+
⌧

✏2

�
,

where the constant C only depends on ⌦, on the L1 norm (in space) of the veloc-
ity v(t, ·) and on the Lipschitz norms (in space) of the velocity and its first derivatives
rv(t, ·), @tv(t, ·) and of the pressure and its derivatives p(t, ·),rp(t, ·), @tp(t, ·).

In order to use the numerical scheme (1.11), one needs to be able to compute the double
projection operator PMN

� PS or equivalently the gradient of the squared distance d2
S for

(almost every) m in MN . Brenier’s polar factorization problem [7] implies that the squared
distance between a map m : ⌦ ! R and the set S of measure-preserving maps is equal to
the squared Wasserstein distance [24] between the restriction of the Lebesgue measure to
⌦, denoted Leb, and its pushforward m# Leb under the map m:

d2
S(m) = min

s2S
km � sk2 = W2

2(m# Leb, Leb).

Moreover, since m is piecewise-constant over the partition (!i)1iN , the push-forward
measure m# Leb if finitely supported. Denoting by Mi 2 Rd the constant value of the
map m on the subdomain !i we have

m# Leb =
X

1iN

Leb(!i)�Mi =
1

N

X

1iN

�Mi .

Thus, computing the projection operator PS amounts to the numerical resolution of an
optimal transport problem between the Lebesgue measure on ⌦ and a finitely supported
measure. Thanks to recent work [3, 20, 13, 18], this problem can be solved e�ciently in
dimensions d = 2, 3. We give more details in Section 5.

Remark 1.5. The idea of using optimal transport to impose incompressibility contraints
has recently been exploited as a heuristic for computational fluid dynamics simulations in
computer graphics [14]. From the simulations presented in [14], it seems that the scheme
behaves better numerically, and it also has the extra advantage of not depending on a
penalization parameter ". However, it comes with no mathematical convergence analysis,
and even its (formal) consistence is not obvious. It would therefore be interesting to extend
the convergence analysis presented in Theorem 1.4 to the scheme presented in [14]. This
however probably requires new ideas, as our technique of proof relies heavily on the fact
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that the space-discretization is hamiltonian, an assumption which does not seem to hold
for the discretization of [14].

Remark 1.6. Our discretization (1.4) resembles (and derives from) a space-discretization
of Euler’s equations (1.1) introduced by Brenier in [8]. The domain is also decomposed
into subdomains (!i)1iN , and one considers the set SN ✓ S, which consists of measure-
preserving maps s : ⌦ ! ⌦ that are induced by a permutation of the subdomains. Equiv-
alently, one requires that there exists a permutation s : {1, . . . , N} ! {1, . . . , N} such
that s(!i) = !s(j). The space-discretization considered in [8] leads to an ODE similar to
(1.4), but where the squared distance to S is replaced by the squared distance to SN . This
choice of discretization imposes strong contraints on the relative size of the parameters ⌧ ,
hN and ✏, namely that hN = O("8) and ⌧ = O("4). Such constraints still exist with the
discretization that we consider here, but they are milder. In Theorem 1.4 the condition
⌧ = o(✏2) is due to the time discretization of (1.6) and can be improved using a scheme
more accurate on the conservation of the Hamiltonian (1.5). However even with an exact
time discretization of the Hamiltonian, the condition ⌧ = o(✏) remains mandatory, as
explained at the end of Section 4.

2. Preliminary discussion on geodesics

To illustrate the approximate geodesic scheme we focus on the very simple example of
R seen as R ⇥ {0} ⇢ R2. The geodesic is given by the function �: [0, T ] ! R2 with

8
><
>:

�(t) = (t, 0), t 2 [0, T ],

�(0) = (0, 0),

�̇(0) = (1, 0).

(2.1)

As in (1.4) we consider the solutions of the Hamiltonian system associated to:

H(m, ṁ) =
1

2
||ṁ||2 +

1

2✏2
d2

R⇥{0}(m). (2.2)

That is 8
><
>:

m̈(t) = 1
✏2

(PR(m) � m) = 1
2✏2

rd2
R⇥{0}(m), t 2 [0, T ],

m(0) = (0, h0),

ṁ(0) = (1, h1).

(2.3)

where PR(m) is the orthogonal projection from R2 onto R⇥ {0}. Notice that we assumed
an initial error of h0 on the initial position and h1 on the initial velocity. In this case the
solution is explicit and reads

m(t) =

✓
t, h0 cos

t

✏
+ ✏h1 sin

t

✏

◆
. (2.4)

A convenient way to quantify how far m is from being a geodesic is to use a modulated
energy related to the Hamiltonian H and the solution �. We define E� by

E�(t) =
1

2
||ṁ(t) � �̇(t)||2 +

1

2✏2
d2

R⇥{0}(m(t)). (2.5)

A direct computation leads to

E�(t) =
h2

0

✏2
+ h2

1. (2.6)

This estimate shows that the velocity vector field ṁ converges towards the geodesic veloc-
ity vector fields �̇ as soon as h0 goes to 0 faster then ✏. Our construction of approximate
geodesics for the Euler equation follow this idea. Estimates (2.6) suggests that our con-
vergence results for the incompressible Euler equation in Theorem 1.2 is sharp.

3. Convergence of the approximate geodesics model

In this section we prove Theorem 1.2.
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3.1. Strategy of the proof. We use a modulated energy approach. Let v be a solution
of (1.1) and m a solution of (1.4) and for any t 2 [0, T ], denote �(t) = PS(m(t)). In other
words, �(t) is an arbitrary choice of a projection of m(t) on S. Equation (1.4) is the ODE
associated to the Hamiltonian H : MN ⇥ MN ! R

H(m, ṁ) =
1

2
kṁk2

M +
d2

S(m)

2✏2
.

We therefore consider a energy involving this Hamiltonian, modulated with the exact
solution v:

Ev(t) =
1

2
kṁ(t) � v(t, m(t))k2

M +
d2

S(m)

2✏2
. (3.1)

The core of the proof is to obtain a control on Ev using a Gronwall estimate. As a first
step we collect some lemmas. Lemmas 3.1 and 3.2 concern the projections ⇧MN

and ⇧S
and their orthogonality properties. Lemma 3.3 is necessary to ensure that the modulated
energy introduced in (3.1) is well defined (the di�culty is that there is no reason that
m(t, ⌦) ✓ ⌦, and it is therefore necessary to extend v outside of ⌦). Then we compute
the derivative of (3.1) and modify its expression so as to identify terms of quadratic order,
which are easier to control. This leads us to (3.7), which expresses the derivative of (3.1)
as a sum of many terms. Each term is then estimated to obtain a Gronwall control. we
keep track of the constants all along the proof.

3.2. Preliminary lemma. Before proving Theorem 1.2, we collect a few useful lemmas.
As before, ⌦ is a bounded and connected domain of Rd with Lipschitz boundary.

Lemma 3.1 (Projection onto the measure preserving maps S). Let m 2 M = L2(⌦, Rd).
There exists a convex function ' : ⌦ ! R, which is unique up to an additive constant, such
that � 2 M belongs to ⇧S(m) if and only if m = r' � � up to a negligible set. Moreover,
m � � is orthogonal to the space Hdiv(⌦) � �, that is

8v 2 Hdiv(⌦),

Z

⌦
hm(x) � �(x)|v(�(x))idx = 0. (3.2)

Proof. The first part of the statement is Brenier’s polar factorization theorem [7]. We
first remark that

d2
S(m) = inf

s2S

Z
km(x) � s(x)k2dx � inf

⇡2⇧(m# Leb,Leb)

Z
kx�yk2d⇡(x, y) = W2

2(m# Leb, Leb).

To prove the reverse inequality let r' be the optimal transport map between m# Leb =P
1iN �Mi and Leb. Let Li = r'�1(Mi), by construction Leb(Li) = 1

N . For any

i 2 {1...N} let �i be a measure preserving map between !i and Li, we define a measure
preserving map � 2 S by �|!i

= �i (anything can be done on the boundaries of the cells).

By construction m = r' � � and W2
2(m# Leb, Leb) = km � �k2. The uniqueness of '

follows from the connectedness of the domain. Using a regularization argument we deduce
the orthogonality relation
Z

⌦
hm(x)|v(�(x))idx =

Z

⌦
hr'��(x)|v(�(x))idx =

Z

⌦
hr'(x)|v(x)i = �

Z

⌦
'div v(x) = 0.

⇤

Lemma 3.2 (Projection onto the piecewise constant set MN ). The projection of a function
g 2 L2(⌦, Rd) on MN is the following piecewise constant function :

⇧MN
(g) =

NX

i=1

Gi1!i , with Gi :=
1

Leb(!i)

Z

!i

g(x)dx

and where 1!i is the indicator function of the subdomain !i.
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Proof. It su�ces to remark that for any m 2 MN , m =
P

1iN Mi1!i ,

hg|miM =

Z

⌦
hm(x)|g(x)idx =

X

1iN

hMi|
Z

!i

g(x)dxi = hm|
X

i

Gi1!iiM ⇤

Lemma 3.3. Let ⌦ ⇢ Rd, let (V, k.k) be a finite-dimensional normed vector space. There
exists a linear map L : C1,1(⌦, V ) ! C1,1(Rd, V ) such that for any f 2 C1,1(⌦, V ),

(i) Lf |⌦ = f ,
(ii) kLfkC1,1(Rd,V )  C kLfkC1,1(⌦,V ).

Proof. This lemma is a particular case of Theorem 2 in [16]. We also refer to [11, 15] for
previous results. ⇤

We are now ready to prove Theorem 1.2. In the following the dot refers to the time
derivative and h.|.i to the Hilbert scalar product on M. By abuse of notation we denote
by the same name a C1,1 function defined on ⌦ and its (also C1,1) extension defined on the
whole space Rd using Lemma 3.3. The space Rd is equipped with the canonical Euclidian
norm, and the space of d ⇥ d matrices are equiped with the induced dual norm. All the
Lipschitz constants that we consider are with respect to these two norms. Finally for a
curve � : t 2 [0, T ] 7! �(t, ·) we denote Lip[0,T](�) = supt2[0,T ] Lip(�(t, ·)).

Material derivatives. Given (v, p) 2 C1([0, T ], C1,1(Rd, Rd)) ⇥ C1([0, T ], C1,1(Rd, Rd)) and
X 2 M, we define the two following functions, often called material derivatives:

(
Dtv(t, X) = @tv(t, X) + (v(t, X) · r) v(t, X),

Dtp(t, X) = @tp(t, X) + hv(t, X),rp(t, X))i .
(3.3)

Remark that Dtv and Dtp are Lipschitz operators with

Lip[0,T](Dtv)  Lip[0,T](@tv) + Lip[0,T](v)krvkL1 + Lip[0,T](rv)kvkL1

 Lip[0,T](@tv) + Lip[0,T](v) Lip[0,T](v) + Lip[0,T](rv)kvkL1
(3.4)

Lip[0,T](Dtp)  Lip[0,T](@tp) + Lip[0,T](v)krpkL1 + Lip[0,T](rp)kvkL1

 Lip[0,T](@tp) + Lip[0,T](v) Lip[0,T](p) + Lip[0,T](rp)kvkL1 .
(3.5)

3.3. Proof of Theorem 1.2. We can now go to the proof of Theorem 1.2. Note that
we need to use Lemma 3.3 to define the modulated energy Ev in (3.1) since the maps
m(t, ·) 2 MN can send points outside of ⌦ when ⌦ is not convex.

3.3.1. Time derivative. We compute d
dtEv(t) and modify the expression in order to identify

terms of quadratic order. Since the Hamiltonian H(ṁ(t), m(t)) is preserved, we find

d

dt
Ev(t) = �hm̈(t), v(t, m(t))i| {z }

I1

�hṁ(t) � v(t, m(t)), @tv(t, m(t)) + (ṁ(t) · r) v(t, m(t))i .| {z }
I2

(3.6)
Using the EDO (1.4), I1 can be rewritten as

✏2I1 = hm(t) � PMN
(�(t)), v(t, m(t))i

= hm(t) � �(t), v(t, m(t))i + h�(t) � PMN
(�(t)), v(t, m(t))i

= hm(t) � �(t), v(t, m(t)) � v(t,�(t))i| {z }
✏2I3

,

where we have used that �(t) � PMN
(�(t)) is orthogonal to MN and that m(t) � �(t)

is orthogonal to Hdiv(⌦) � �, see Lemmas 3.2 and 3.1. To handle the term I2 we use
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the material derivatives defined by (3.3). Remark that Euler equations (1.1) implies that
Dtv(t,�(t)) = �rp(t,�(t)). This leads to

I2 = �hṁ(t) � v(t, m(t)), @tv(t, m(t)) + (v(t, m(t)) · r) v(t, m(t))i
� hṁ(t) � v(t, m(t)), (ṁ(t) � v(t, m(t)) · r) v(t, m(t))i| {z }

I4

= I4 �hṁ(t) � v(t, m(t)), Dtv(t, m(t)) � Dtv(t,�(t))i| {z }
I5

+ hṁ(t) � v(t, m(t)),rp(t,�(t))i| {z }
I6

We rewrite I6 as

I6 = �hṁ(t) � v(t, m(t)),rp(t, m(t)) �rp(t,�(t))i| {z }
I7

+ hṁ(t) � v(t, m(t)),rp(t, m(t))i

= I7 +
d

dt

Z

⌦
p(t, m(t, x)))dx

| {z }
�J(t)

�
Z

⌦
@tp(t, m(t, x)) � hv(t, m(t, x)),rp(t, m(t, x))i dx

= � d

dt
J(t) + I7 �

Z

⌦
Dtp(t, m(t, x))dx

| {z }
I8

.

Remark 3.4. The quantity I5 + I7 would vanish if (v, p) was a solution to the Euler
equations on the whole space Rd. This is not the case in our setting, as the couple (v, p)
is constructed by the extension Lemma 3.3.

Collecting the above decompositions (3.6) rewrites

d

dt
Ev(t) = I3 + I4 + I5 + I7 + I8 �

d

dt
J(t). (3.7)

3.3.2. Estimates. Many of the integrals I3, I4, . . . can be easily bounded using the energy
Ev and Cauchy-Schwarz’ and Young’s inequalities. First,

I3 
����
hm(t) � �(t), v(t, m(t)) � v(t,�(t))i

✏2

����

 Lip(v(t))
km(t) � �(t)k2

M
✏2

 Lip[0,T](v)Ev(t). (3.8)

Furthermore

I4  sup
x2Rd

||rv(t, x)||kṁ(t) � v(t, m(t))k2
M  Lip[0,T](v)Ev(t), (3.9)

Where C depends only on the dimension d. To estimate I5 and later I8 we use that Dtv
and Dtp are Lipschitz operators with constants given by (3.4) and (3.5). For I5 we obtain

I5  |hṁ(t) � v(t, m(t)), Dtv(t, m(t)) � Dtv(t,�(t))i|
 Lip[0,T](Dtv)kṁ(t) � v(t, m(t))kMkm(t) � �(t)kM

 ✏Lip[0,T](Dtv)Ev(t), (3.10)

where we used dS(m(t)) = km(t) � �(t)kM  ✏
p

Ev(t) and kṁ(t)�v(t, m(t))kM 
p

Ev(t)
to get from the second to the third line. The quantity I7 can be bounded likewise:

I7  |hṁ(t) � v(t, m(t)),rp(t, m(t)) �rp(t,�(t))i|
 ✏Lip[0,T](rp)Ev(t). (3.11)
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Finally to estimate I8 and J we can assume that
R

⌦ p(t, x)dx = 0 since the pressure is
defined up to a constant. Using that �(t) is measure-preserving, this givesZ

⌦
Dtp(t,�(t, x))dx =

Z

⌦
@tp(t,�(t, x)) + hv(t,�(t, x)),rp(t,�(t, x)))i dx

=

Z

⌦
@tp(t, x))dx +

Z

⌦
hv(t, x),rp(t, x))i dx = 0,

Therefore, using Young’s inequality,

I8 
����
Z

⌦
Dtp(t, m(t, x))dx �

Z

⌦
Dtp(t,�(t, x))dx

����  Lip[0,T](Dtp)km(t) � �(t)kL1(⌦)

 1

2

||m(t) � �(t)||2L2(⌦)

2✏2
+ C(⌦) Lip[0,T](Dtp)✏2

 1

2
Ev(t) + C(⌦) Lip[0,T](Dtp)✏2, (3.12)

where in this estimates and in the following estimates C(⌦) is a constant depending only
on the Lebesgue measure of ⌦. Similarly,

|J(t)| 
����
Z

⌦
p(t, m(t, x))) � p(t,�(t, x)))dx

����  Lip[0,T](p)||m(t) � �(t)||L1(⌦)

 1

2
Ev(t) + C(⌦) Lip[0,T](p)✏2. (3.13)

We finally remark that
|J(0)|  Lip[0,T](p)hN . (3.14)

Remark 3.5. The last two estimates show that we can add d
dtJ into the Gronwall argu-

ment. It is a general fact that the derivative of a controlled quantity can be added. This
is a classical way of controlling the term of order one in the energy.

3.4. Gronwall argument. Collecting estimates (3.8), (3.9), (3.10), (3.11), (3.12), we get

d

dt
(Ev(t) + J(t))  I3 + I4 + I5 + I7 + I8



2 Lip[0,T](v) + ✏Lip[0,T](Dtv) + ✏Lip[0,T](rp) +

1

2

�
Ev(t)

+ C(⌦) Lip[0,T](Dtp)✏2

Remark that (3.13) implies that for any K > 0,

KEv(t)  KEv(t)+2KJ(t)�2KJ(t)  2KEv(t)+2KJ(t)+2KC(⌦) Lip[0,T](p)✏2. (3.15)

Therefore, setting
(eC1 = C(⌦)

�
4 Lip[0,T](v) + 2✏Lip[0,T](Dtv) + 2✏Lip[0,T](rp) + 1

�
,

eC2 = C(⌦)
⇣
Lip[0,T](Dtp) + eC1 Lip[0,T](p)

⌘
,

we obtain
d

dt
(Ev(t) + J(t))  eC1(Ev(t) + J(t)) + eC2✏

2.

We deduce from the Gronwall inequality that for any t 2 [0, T ]:

Ev(t) 
⇣
(Ev(0) + J(0)) + eC2T ✏

2
⌘

e
eC1T � J(t).

Using the estimation (3.13) one more time we obtain

Ev(t)  2
⇣
Ev(0) + Lip[0,T](p)hN + eC2T ✏

2
⌘

e
eC1T + C(⌦) Lip[0,T](p)✏2.

Finally, using that

Ev(0) =
1

2
kPM(v0) � v0k2

M +
d2

S(Id )

2✏2
 h2

N

2
+

h2
N

2✏2
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we obtain

kṁ(t) � v(t, m(t))k2
M  2Ev(t)

 2


2

✓
h2

N

2
+

h2
N

2✏2
+ Lip[0,T](p)hN + eC2T ✏

2

◆
e
eC1T

+ C(⌦) Lip[0,T](p)✏2
⇤

(3.16)

 C 0
1

h2
N

✏2
+ C 0

2✏
2 + C 0

3hN (3.17)

where 8
>><
>>:

C 0
1 = 2e

eC1T

C 0
2 =

⇣
eC2Te

eC1T + C(⌦) Lip[0,T](p)
⌘

C 0
3 = (1 + Lip[0,T](p))e

eC1T .

In order to estimate kṁ(t) � v(t,�(t))k2
M we need one additional Gronwall estimate:

kṁ(t) � v(t,�(t))k2
M  2 kṁ(t) � v(t, m(t))k2

M + 2 kv(t, m(t)) � v(t,�(t))k2
M

 2Ev(t) + 2(Lip[0,T](v))2 km(t) � �(t)k2
M

 2Ev(t) + 4(Lip[0,T](v))2 km(0) � �(0)k2
M

+ 4(Lip[0,T](v))2
����
Z t

0
(ṁ(s) � �̇(s))ds

����
2

M

 2Ev(t) + 4(Lip[0,T](v))2h2
N + 4T (Lip[0,T](v))2

Z t

0

���(ṁ(s) � �̇(s))
���

2

M
ds

 C 0
1

h2
N

✏2
+ C 0

2✏
2 + 4(Lip[0,T](v))2h2

N + C 0
3hN

+ 4T (Lip[0,T](v))2
Z t

0

���ṁ(s) � �̇(s)
���

2

M
ds (3.18)

where we used Jensen’s inequality to obtain the second to last line. We conclude thanks
to Gronwall inequality:

kṁ(t) � v(t,�(t))k2
M 

✓
C 0

1

h2
N

✏2
+ C 0

2✏
2 + 4((Lip[0,T](v))2hN + C 0

3)hN

◆
e4T (Lip[0,T](v))2T

 C1
h2

N

✏2
+ C2✏

2 + C3hN . (3.19)

We used that ✏ and hN are smaller than C(⌦) for (3.17) and (3.19). Observe that the

right-hand side of (3.17) and (3.19) goes to zero provided that hN
✏ and ✏ go to zero. This

finishes the proof of Theorem 1.2.

Remark 3.6. Using (3.4) and (3.5), the constants eC1, eC2 are bounded by:
8
><
>:

1
C(⌦)

eC1  1 + 4 Lip[0,T](v) + 2✏Lip[0,T](rp)

+2✏
�
Lip[0,T](@tv) + (Lip[0,T](v))2 + Lip[0,T](rv)kvkL1

�
,

1
C(⌦)

eC2  Lip[0,T](p) + eC1

⇥
Lip[0,T](@tp) + Lip[0,T](v) Lip[0,T](p) + Lip[0,T](rp)kvkL1

⇤
.

A close look to the explicit value of the constants eC1, eC2 and C 0
1, C

0
2, C

0
3, together with a

diagonal argument shows that our scheme can be used to approximate solutions less regular
than those supposed in Theorem 1.2. For example, it is possible to establish the following
theorem: Let v, p be a solution of Euler’s equation (1.1), where v is merely Lipschitz in
space but where there exists (vk, pk)k2N a sequence of regular (in the sense of Theorem 1.2)
solutions of (1.1) such that vk(0, ·) �! v(0, ·) in M and LipT (vk) �! LipT (v). Then there

exists Nk and ✏k, depending polynomially on the data such that kṁk(t) � v (t, mk(t))k2
M

goes to zero as k goes to infinity, where mk is the solution of (1.6) with initial conditions
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mk(0) = PMNk
(id) and ṁk(0) = PMNk

(vk(0)) and with parameter ✏ = ✏k. If one allows an

exponential dependence on the data, it is possible to approach any solution whose velocity
v belongs to the L2 closure of the regular solutions to Euler’s equation.

4. Convergence of the symplectic Euler scheme

In this section we prove a statement which is slightly more general than Theorem 1.4
(see Remark 4.3), and which allows a sort of a posteriori estimates. The proof follows the
proof of Theorem 1.2, but one has to deal with some additional term coming from the time
discretization. It combines two Gronwall estimates. The first one is a continuous Gronwall
argument on each segment [n⌧, (n+1)⌧ ], and the second one is a discrete Gronwall estimate
comparing a timestep to the next one. Both steps rely on the same modulated energy.

Theorem 4.1. Let ⌦ be a bounded domain with Lipschitz boundary and let ✏, ⌧ positive
numbers and let N 2 N. Let v, p be a strong solution of (1.1), and let � be the flow
map induced by v (see (1.2)). Assume that v, p, @tv, @tp,rv and rp are Lipschitz on
⌦, uniformly on [0, T ]. Let (Mn, V n)n�0 be a sequence generated by (1.11) with initial
conditions

M0 = PMN
(id), V 0 = PMN

(v(0, ·)).
Finally let

Hn = H(Mn, V n) =
1

2
kV nk2

M +
d2

S(M
n)

2✏2
, (4.1)

and
 = max

n2N\[0,T/⌧ ]

�
Hn � H0

�
.

Then, assuming ⌧  ✏ and hN  ", we have

max
n2N\[0,T/⌧ ]

kV n � v(tn,�(tn, ·))kM  C


✏2 + hN +

h2
N

✏2
+
⌧

✏
+ 

�
,

where the constant C only depends on ⌦, on the L1 norm (in space) of the veloc-
ity v(t, ·) and on the Lipschitz norms (in space) of the velocity and its first derivatives
rv(t, ·), @tv(t, ·) and of the pressure and its derivatives p(t, ·),rp(t, ·), @tp(t, ·).
4.1. Preliminary lemma. Given a solution of (1.11) and s 2 [0, 1] and n 2 N, we denote
the linear interpolates between two timesteps n⌧ and (n + 1)⌧ by:

(
V n+s = V n � s⌧

Mn�PMN
�PS(Mn)

✏2

Mn+s = Mn + s⌧V n+1,
(4.2)

We consider the Hamiltonian Hn+s and modulated energy En+s defined by
(

Hn+s = 1
2 kV n+sk2

M +
d2

S(Mn+s)

2✏2
,

En+s = 1
2 kV n+s � v ((n + s)⌧, Mn+s)k2

M +
d2

S(Mn+s)

2✏2
.

(4.3)

We start with a lemma quantifying the conservation of the Hamiltonian.

Lemma 4.2 (Conservation of the Hamiltonian). For any s 2 [0, 1] and n 2 N \ [0, T/⌧ ],
✓

1 � ⌧2

✏2

◆
Hn+1  Hn, (4.4)

Hn  CeT ⌧✏�2
, (4.5)

Hn+s  Hn +
⌧2

✏2
Hn+1, (4.6)

Proof. The proof is based on the 1-semiconcavity of 1
2d2

S, see Proposition 5.2 for details.

On the one hand the 1-semiconcavity of 1
2d2

S reads

d2
S(M

n+s)

2✏2
 d2

S(M
n)

2✏2
+ s⌧

⌧
V n+1,

Mn � PMN
� PS(M

n)

✏2

�
+

s2⌧2

2✏2
kV n+1k2

M,
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where we used that Mn � PMN
� PS(M

n) belongs to the superdi↵erential of the function
d2

S at Mn, and the definition of the scheme (4.2). On the other hand, (4.2) again, leads to

kV n+sk2
M

2
=

kV nk2
M

2
� s⌧

⌧
V n,

Mn � PMN
� PS(M

n)

✏2

�
+ s2⌧2

����
Mn � PMN

� PS(M
n)

✏2

����
2

M

Summing both equations and using (4.2) gives

Hn+s  Hn +
⌧2s(s � 1)

✏2
kMn � PMN

� PS(M
n)k2

M
✏2

+ s2 ⌧
2

✏2
kV n+1k2

M
2

(4.7)

Taking s = 1 in (4.7) proves (4.4). The inequality (4.5) is a direct consequence of (4.4),
while (4.6) follows from the combination of (4.4) and (4.7). ⇤

Remark 4.3. Lemma 4.2 gives an upper bound for  in Theorem 4.1 namely

 
X

n2N\[0,T/⌧ ]0

��Hn+1 � Hn
��  ⌧

✏2
TeT ⌧✏�2

✓
1

2
kV 0k2

M +
h2

N

2✏2

◆
.

Using this upper bound Theorem 4.1 becomes Theorem 1.4 and the condition  = o(1)
becomes ⌧ = o(✏2). However numerically one can expect some compensation in Hn and
thus obtain a better “a posteriori bound” for  in order to get rid of the strong assumption
⌧ = o(✏2). Figure 5.4 illustrates the conservation of the Hamiltonian in two test cases.
Notice that this estimate is not a posteriori in the usual sense since the constants in
Theorem 4.1 also depend on the unknown limiting solution. The condition ⌧ = o(✏) seems
mandatory for the proof techniques to work.

4.2. The modulated energy. Remark that with the definitions of the Hamiltonian and
modulated energy, we have

En+s = Hn+s �
⌦
V n+s, v

�
(n + s)⌧, Mn+s

�↵
+

1

2

��v
�
(n + s)⌧, Mn+s

���2

M , (4.8)

so that for any s 2 [0, 1] and any n 2 N,

En+s = En + Hn+s � Hn +

Z s

0
dn+✓d✓, (4.9)

where

dn+s =
d

ds


�
⌦
V n+s, v

�
(n + s)⌧, Mn+s

�↵
+

1

2

��v
�
(n + s)⌧, Mn+s

���2

M

�
.

To evaluate dn+s, we introduce �p = PS(M
p) and we will use the compact notation

vn+s
Mp = v((n + s)⌧, Mp), @tv

n+s
Mp = @tv((n + s)⌧, Mp), rvn+s

Mp = rv((n + s)⌧, Mp),

vn+s
�p = v((n + s)⌧,�p), @tv

n+s
�p = @tv((n + s)⌧,�p), rvn+s

�p = rv((n + s)⌧,�p).

We will also use a similar notation for the material derivative of the velocity and for the
pressure and its derivatives.

Remark 4.4. As before, the main idea of the following computation is to try to find
terms of quadratic order in the expression. To control the remaining linear term we have
to rewrite it as a derivative of a small quantity and add it in the Gronwall argument.

dn+s = �
⌧

d

ds
V n+s, vn+s

Mn+s

�
�
⌧

V n+s,
d

ds
vn+s
Mn+s

�
+

⌧
vn+s
Mn+s ,

d

ds
vn+s
Mn+s

�

= ⌧✏�2
⌦
Mn � PMN

� PS(M
n), vn+s

Mn+s

↵
| {z }

I1

�
⌧

V n+s � vn+s
Mn+s , ⌧@tv

n+s
Mn+s +

d

ds
Mn+s · rvn+s

Mn+s

�

| {z }
I2
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Recalling that �n = PS(M
n), the term I1 can be rewritten as

I1 = ⌧✏�2
⌦
Mn � PMN

(�n), vn+s
Mn+s

↵

= ⌧✏�2
⌦
Mn � �n, vn+s

Mn+s

↵
+
⌦
�n � PMN

(�n), vn+s
Mn+s

↵

= ⌧✏�2
⌦
Mn � �n, vn+s

Mn+s � vn+s
�n

↵
| {z }

I3

Here we had to control the fact that, due to the double projection, the norm of the
acceleration kMn � PMN

� PS(M
n)k2

M is not equal to the squared distance d2
S(M

n). We
used the orthogonality property of the double projection for that purpose. On the one
hand �n � PMN

(�n) is orthogonal to MN since MN is a linear subspace of M. On the
other hand Mn � �n is orthogonal to the tangent space to S at �n, see Lemma 3.1.

To handle the term I2 we use the material derivatives defined in (3.3),

I2 = �
⌧

V n+s � vn+s
Mn+s , ⌧@tv

n+s
Mn+s +

d

ds
Mn+s · rvn+s

Mn+s

�

I2 = �
⌦
V n+s � vn+s

Mn+s , ⌧@tv
n+s
Mn+s + ⌧vn+s

Mn+s · rvn+s
Mn+s

↵

�
⌧

V n+s � vn+s
Mn+s ,

✓
d

ds
Mn+s � ⌧vn+s

Mn+s

◆
· rvn+s

Mn+s

�

| {z }
I4

= I4 �⌧
⌦
V n+s � vn+s

Mn+s , Dtv
n+s
Mn+s � Dtv

n+s
�n+s

↵
| {z }

I5

+ ⌧
⌦
V n+s � vn+s

Mn+s ,rpn+s
�n+s

↵
| {z }

I6

.

We used that Dtv
n+s
�n+s = �rpn+s

�n+s . We now rewrite I6 using d
dsM

n+s = ⌧V n+1:

I6 = ⌧
⌦
V n+s � vn+s

Mn+s ,rpn+s
�n+s �rpn+s

Mn+s

↵
| {z }

I7

+⌧
⌦
V n+s � vn+s

Mn+s ,rpn+s
Mn+s

↵

= I7 +

⌧
d

ds
Mn+s,rpn+s

Mn+s

�
+ ⌧

⌦
V n+s � V n+1,rpn+s

Mn+s

↵
� ⌧

⌦
vn+s
Mn+s ,rpn+s

Mn+s

↵

= I7 +
d

ds

Z

⌦
pn+s

Mn+sdx

| {z }
�Jn+s

�⌧
Z

⌦
(@tp

n+s
Mn+s +

⌦
vn+s
Mn+s ,rpn+s

Mn+s

↵
)dx

+ (1 � s)⌧2✏�2
⌦
Mn � PMN

� PS(M
n),rpn+s

Mn+s

↵
| {z }

I8

= I7 + I8 �
d

ds
Jn+s � ⌧

Z

⌦
Dtp

n+s
Mn+sdx

| {z }
I9

,

We need to estimate all the terms in the following formula.

dn+s = I3 + I4 + I5 + I7 + I8 + I9 �
d

ds
Jn+s (4.10)

4.3. Gronwall estimates on [n⌧, (n + 1)⌧ ]. From now and for clarity we do not track
the constants anymore, and C will be a constant depending only on T , ⌦, Lip[0,T](v),
Lip[0,T](p), Lip[0,T](rp), Lip[0,T](Dtv) and Lip[0,T](Dtp). The value of the constant C can
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change between estimates. Using (4.2) and Young’s inequality we obtain for I3:

I3 = ⌧✏�2
⌦
Mn � �n, vn+s

Mn+s � vn+s
�n

↵

 ⌧ Lip[0,T](v)
kMn � �nkMkMn+s � �nkM

✏2

 ⌧C
kMn � �nkMkMn+s � MnkM

✏2
+ ⌧C

kMn � �nkMkMn � �nkM
✏2

 ⌧C

✓kMn � �nk2
M

✏2
+ ⌧✏�1 kMn � �nkM

✏
kV n+1kM

◆

 2⌧CEn + C⌧2✏�1Hn

 2⌧CEn + C⌧2✏�1(H0 + ). (4.11)

Since d
dsM

n+s = ⌧V n+1, and using the definition of V n+1 in (1.11), I4 can be rewritten as

⌧�1I4 = �
⌦
V n+s � vn+s

Mn+s ,
�
V n+1 � vn+s

Mn+s

�
· rvn+s

Mn+s

↵

= �
⌦
V n+s � vn+s

Mn+s ,
�
V n+s � vn+s

Mn+s

�
· rvn+s

Mn+s

↵
�
⌦
V n+s � vn+s

Mn+s ,
�
V n+1 � V n+s

�
· rvn+s

Mn+s

↵

 Lip[0,T](v)
��V n+s � vn+s

Mn+s

��2

M + ⌧(1 � s)✏�2
⌦
V n+s � vn+s

Mn+s , (M
n � PM(�n)) · rvn+s

Mn+s

↵

 Lip[0,T](v)En+s + ⌧(1 � s)✏�2
⌦
V n+s � vn+s

Mn+s , (M
n � �n) · rvn+s

Mn+s

↵

 C

✓
En+s + ⌧✏�1

��V n+s � vn+s
Mn+s

��
M

kMn � �nkM
✏

◆

 C
�
(1 + ⌧✏�1)En+s + ⌧✏�1En

�

 CEn+s + CEn (4.12)

Note that we used that
⌦
V n+s � vn+s

Mn+s , (�
n � PMN

(�n)) · rvn+s
Mn+s

↵
= 0, which holds true

since �n � PMN
(�n) is orthogonal to MN and since rvn+s

Mn+s is a symmetric matrix. We
also used Young’s inequality to get from the second to last line. The estimates of I5 and
I7 are similar to those in the semi-discrete case:

⌧�1I5 
��⌦V n+s � vn+s

Mn+s , Dtv
n+s
Mn+s � Dtv

n+s
�n+s

↵��
 Lip[0,T](Dtv)

��V n+s � vn+s
Mn+s

��
M

��Mn+s � �n+s
��

M

 C
��V n+s � vn+s

Mn+s

��
M

��Mn+s � �n+s
��

M

 ✏CEn+s (4.13)

The quantity I7 is of the same kind.

⌧�1I7 
��⌦V n+s � vn+s

Mn+s ,rpn+s
�n+s �rpn+s

Mn+s

↵��
 ✏CEn+s (4.14)

For the estimation of I8 we use
⌦
�n � PMN

(�n),rpn+s
Mn+s

↵
= 0 to get

I8 = (1 � s)⌧2✏�2
⌦
Mn � PMN

� PS(M
n),rpn+s

Mn+s

↵

 ⌧2✏�2||rp((n + s)⌧)||L1(⌦)||Mn � �n||M

 ⌧2✏�1 Lip[0,T](v)
||Mn � �n||M

✏

 ⌧CEn + ⌧2✏�1C. (4.15)

To estimate J and I9 recall that we have assumed that
R

⌦ p(t, x)dx = 0, which implies in
particular that

R
⌦ Dtp(t,�n(t, x))dx = 0. Therefore,

⌧�1I9  Lip[0,T](Dtp)||Mn+s � �n+s||L1(⌦)

 1

2
En+s + C✏2. (4.16)



16 THOMAS O. GALLOUËT AND QUENTIN MÉRIGOT

Similarly

|Jn+s| = |J((n + s)⌧)| 
����
Z

⌦
pn+s

Mn+s � pn+s
�n+sdx

����  Lip[0,T](p)||Mn+s � �n+s||L1(⌦)

 1

2
En+s + C✏2. (4.17)

Note also that J0  Lip[0,T](p)hN  ChN still holds see (3.14).

4.4. Gronwall argument on [n⌧, (n + 1)⌧ ]. Collecting estimates (4.11), (4.12), (4.13),
(4.14), (4.15), (4.16) and (4.17) and integrating equation (4.10) from 0 to s we obtain

Jn+s +

Z s

0
dn+✓d✓  Jn + 2⌧CEn + C⌧2✏�1(H0 + )

+ ⌧C

Z s

0
En+✓d✓ + ⌧CEn

+ ⌧✏C

Z s

0
En+✓d✓ + ⌧✏C

Z s

0
En+✓d✓

+ ⌧CEn + ⌧2✏�1C

+
⌧

2

Z s

0
En+✓d✓ + ⌧✏2C

 Jn + C⌧En + C⌧✏2 + C(H0 + )⌧2✏�1 (4.18)

+ ⌧C

Z s

0

⇣
En+✓ + Jn+✓

⌘
d✓.

Remark that we used (3.15) to add Jn+✓ at the last line. Remark also that we only kept
the first order terms using ✏  C. Plugging (4.18) into (4.9) we obtain

En+s + Jn+s  ↵(s) + �

Z ✓

0
(En+✓ + Jn+✓)ds) (4.19)

where ↵(s) = En + Jn + Hn+s � Hn + C⌧En + C⌧✏2 + C(H0 + )⌧2✏�1, � = ⌧C

so that by Gronwall lemma,

En+1 + Jn+1  ↵(1) +

Z 1

0
↵(s)� exp((1 � s)�)ds


⇥
En + Jn + C⌧En + C⌧✏2 + C(H0 + )⌧2✏�1

⇤
eC⌧

+ Hn+1 � Hn +

Z 1

0

�
Hn+s � Hn

�
C⌧ exp((1 � s)C⌧)ds

| {z }
R

Using Lemma 4.2 and in particular the upper bound (4.6) we find

R  ⌧2

✏2
Hn+1

Z s

0
C⌧eC⌧(1�✓)  C

⌧2

✏2
(H0 + )

⇥
eC⌧ � 1

⇤

so that

En+1 + Jn+1  [(1 + C⌧) (En + Jn) (4.20)

+ C⌧✏2 + C(H0 + )⌧2✏�1

+Hn+s � Hn + ⌧2✏�2(H0 + )
⇥
eC⌧ � 1

⇤⇤
eC⌧ .



A LAGRANGIAN SCHEME À LA BRENIER FOR THE INCOMPRESSIBLE EULER EQUATIONS 17

4.5. Discrete Gronwall step. From (4.20) and the discrete Gronwall inequality we de-
duce that for any n 2 N \ [0, T/⌧ ],

En + Jn 
⇥
E0 + J0 + CT ✏2 + CT (H0 + )⌧✏�1 + Hn � H0

+⌧2✏�2(H0 + )
T

⌧

⇥
eC⌧ � 1

⇤�
(1 + C⌧)n eCT

 C
⇥
E0 + J0 + ✏2 + (H0 + )⌧✏�1 +  +(H0 + )⌧2✏�2eCT

⇤
eCT

 C
⇥
E0 + J0 + ✏2 + (H0 + )⌧✏�1 + 

⇤
eCT .

We used the mean value theorem to obtain the second to last line. Using (4.17) one last
time and H0  C leads us to

En  C
⇥
E0 + J0 + ✏2 + ⌧✏�1 + 

⇤
+ C✏2

 C


✏2 + hN +

h2
N

✏2
+ +

⌧

✏

�
.

where the second line incorporates the initial error. It leads

max
n2N\[0,T/⌧ ]

kV n � v(tn, Mn)k2
M  C


✏2 + hN +

h2
N

✏2
+ +

⌧

✏

�
.

A third Gronwall estimate, similar to the one done to obtain (3.19), concludes the proof:

max
n2N\[0,T/⌧ ]

kV n � v(tn,�(tn, ·))k2
M  C


✏2 + hN +

h2
N

✏2
+ +

⌧

✏

�
..

Remark 4.5. A close look at the constant leads to a similar result as the one given
in Remark 3.6: namely the convergence of the numerical scheme towards less regular
solutions of the Euler’s equations.

Remark 4.6. The method of the proof is robust and could easily be adapted to other
numerical scheme. Any improvement to the estimate given in Lemma 4.2 (conservation of
the Hamiltonian) will lead to improved convergence estimates for the numerical scheme.

5. Numerical implementation and experiments

5.1. Numerical implementation. We discuss here the implementation of the numerical
scheme (1.11) and in particular the computation of the double projection PMN

�PS(m) for
a piecewise constant function m 2 MN . Using Brenier’s polar factorisation theorem, the
projection of m on S amounts to the resolution of an optimal transport problem between
Leb and the finitely supported measure m# Leb. Such optimal transport problems can be
solved numerically using the notion of Laguerre diagram from computational geometry.

Definition 5.1 (Laguerre diagram). Let M = (M1, . . . , MN ) 2 (Rd)N and let  1, . . . , N 2
R. The Laguerre diagram is a decomposition of Rd into convex polyhedra defined by

Lagi(M, ) =
n

x 2 Rd | 8j 2 {1, . . . , N}, kx � Mik2 +  i  kx � Mjk2 +  j}
o

.

In the following proposition, we denote ⇧S(m) = {s 2 S | km � sk = dS(m)}, and for a
bounded subset A ✓ Rd with positive measure we set bary(A) := 1

Leb(A)

R
A xdx.

Proposition 5.2. Let m 2 MN \ DN and define Mi = m(!i) 2 Rd. Assume that ⌦ is a
bounded and connected domain of Rd with Lipschitz boundary. Then, there exist scalars
( i)1iN , which are unique up to an additive constant, such that

8i 2 {1, . . . , N}, Leb(Lagi(M, )) =
1

N
Leb(⌦). (5.1)

We denote Li := Lagi(M, ). Then, a function s 2 S is a projection of m on S if and
only if it maps the subdomain !i to the Laguerre cell Li up to a negligible set, that is:

⇧S(m) = {s 2 S | 8i 2 {1, . . . , N}, Leb(s(!i)�Li) = 0}, (5.2)
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where A�B denotes the symmetric di↵erence between sets A and B. Moreover, the squared
distance d2

S is di↵erentiable at m and, setting Bi = 1
Leb(Li)

R
Li

xdx, one has

d2
S(m) =

X

1iN

Z

Li

kx � Mik2 dx,

rd2
S(m) = 2(m � PMN

� PS(m)) with PMN
� PS(m) =

X

1iN

Bi1!i .
(5.3)

Proof. The existence of a vector ( i)1iN satisfying Equation (5.1) follows from optimal
transport theory (see Section 5 in [3] for a short proof), and its uniqueness follows from
the connectedness of the domain ⌦. In addition, the map T : ⌦ ! {M1, . . . , MN} defined
by T (Li) = Mi (up to a negligible set) is the gradient of a convex function and therefore a
quadratic optimal transport between Leb and the measure 1

N Leb(⌦)
P

i �Mi . By Brenier’s
polar factorization theorem, summarized in Lemma 3.1,

s 2 ⇧S(m) () m = T � s a.e. () 8i 2 {1, . . . , N}, Leb(!i�(T � s)�1({Mi})) = 0

() 8i 2 {1, . . . , N}, Leb(s(!i)�Li) = 0,

where the last equality holds because s is measure preserving. To prove the statement on
the di↵erentiability of d2

S, we first note that the function d2
S is 1-semi-concave, since

D(m) := kmk2 � d2
S(m) = kmk2 � min

s2S
km � sk2 = max

s2S
2hm|si � ksk2

is convex. The subdi↵erential of D at m is given by @D(m) = {PMN
(s) | s 2 ⇧S(m)},

so that D (and hence d2
S) is di↵erentiable at m if and only if PMN

(⇧S(m)) is a singleton.
Now, note from Lemma 3.2 that for s 2 ⇧S(m)

PMN
(s) =

X

1iN

bary(s(!i))1!i =
X

1iN

bary(Li)1!i .

This shows that PMN
(⇧S(m)) is a singleton, and therefore establishes the di↵erentiability

of d2
S at m, together with the desired formula for the gradient. ⇤

The main di�culty to implement the numerical scheme (1.11) is the resolution of the
discrete optimal transport problem (5.1), a non-linear system of equations which must be
solved at every iteration. We resort to the damped Newton’s algorithm presented in [17]
(see also [22]) and more precisely on its implementation in the PyMongeAmpere library1.

5.1.1. Construction of the fixed tessellation of the domain. The fixed tessellation (!i)1iN

of the domain ⌦ is a collection of Laguerre cells that are computed through a simple fixed-
point algorithm similar to the one presented in [13]. We start from a random sampling
(C0

i )1iN of ⌦. At a given step k � 0, we compute ( i)1iN 2 RN such that

8i 2 {1, . . . , N}, Leb(Lagi(C, )) =
1

N
Leb(⌦),

and we then update the new position of the centers (Ck+1
i ) by setting Ck+1

i := bary(Lagi(C
k, )).

After a few iterations, a fixed-point is reached and we set !i := Lagi(C
k, ).

5.1.2. Iterations. To implement the symplectic Euler scheme for (1.6), we start with M0
i :=

bary(!i) and V 0
i := v0(M

0
i ). Then, at every iteration k � 0, we use Algorithm 1 in [17]

to compute a solution ( k
i )1iN 2 RN to Equation (5.1) with M = Mk, i.e. such that

8i 2 {1, . . . , N}, Leb(Lagi(M
k, k)) =

1

N
Leb(⌦).

1https://github.com/mrgt/PyMongeAmpere
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Figure 1. (Top row) Beltrami flow in the square, with N = 900 particles,
⌧ = 1/50 and " = .1. The particles are colored depending on their initial
position in the square. From left to right, we display the Laguerre cells and
their barycenters at timesteps k = 0, 24 and 49. The partition (!i)1iN

is induced by a regular grid. (Bottom row) Same experiment, but where
the partition (!i)1iN is optimized using the algorithm described in §5.1.1.

Finally, we update the positions (Mk+1
i )1iN and the speeds (V k+1

i )1iN by setting
8
<
:

V k+1
i = V k

i +
⌧

"2
(bary(Lagi(M

k, k)) � Mk
i )

Mk+1
i = Mk

i + ⌧V k+1
i

(5.4)

5.2. Beltrami flow in the square. Our first test case is constructed from a stationary
solution to Euler’s equation in 2D. On the unit square ⌦ = [�1

2 , 1
2 ]2, we consider the

Beltrami flow constructed from the time-independent pressure and speed:8
<
:

p0(x1, x2) =
1

2
(sin(⇡x1)

2 + sin(⇡x2)
2)

v0(x1, x2) = (� cos(⇡x1) sin(⇡x2), sin(⇡x1) cos(⇡x2))

In Figure 1, we display the computed numerical solution using a low number of particles
(N = 900) in order to show the shape of the Laguerre cells associated to the solution.

5.3. Kelvin-Helmoltz instability. For this second test case, the domain is the rectangle
⌦ = [0, 2]⇥[�.5, .5] periodized in the first coordinate by making the identification (4, x2) ⇠
(0, x2) for x2 2 [�.5, .5]. The initial speed v0 is discontinuous at x2 = 0: the upper part
of the domain has zero speed, and the bottom part has unit speed:

v0(x1, x2) =

⇢
0.5 if x2 � 0

1 if x2 < 0

This speed profile corresponds to a stationnary but unstable solution to Euler’s equation.
If the subdomains (!i)1iN are computed following §5.1.1, the perfect symmetry un-
der horizontal translations is lost, and in Figure 2 we observe the formation of vortices
whose radius increases with time. This experiment involves N = 200 000 particles, with
parameters ⌧ = 0.002 and " = 0.005, and 2 000 timesteps. As displayed in Figure 2, the
hamiltonian of the system is very well preserved despite the roughness of the solution.
This behaviour shows that the estimate of Lemma 4.2 might be overly pessimistic, and
requires further investigation.
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Figure 2. Numerical illustration of the Kelvin-Helmotz instability on a
rectangle with periodic conditions (in the horizontal coordinate) involving
a discontinuous initial speed. The parameters are given in §5.4.

5.4. Rayleigh-Taylor instability. For this last test case, the particles are assigned a
density ⇢i, and are subject to the force of the gravity ⇢iG, where G = (0,�10). This
changes the numerical scheme to8

><
>:
⇢iV

k+1
i = ⇢iV

k
i + ⌧

✓
1

"2
(bary(Lagi(M

k, k) � Mk
i ) + ⇢iG

◆

Mk+1
i = Mk

i + ⌧V k+1
i

(5.5)

The computational domain is the rectangle ⌦ = [�1, 1] ⇥ [�3, 3], and the initial distribu-
tion of particles is given by Ci = bary(!i), where the partition (!i)1iN is constructed
according to §5.1.1. The fluid is composed of two phases, the heavy phase being on top of
the light phase:

⇢i =

(
3 if Ci2 > ⌘ cos(⇡Ci1)

1 if Ci2  ⌘ cos(⇡Ci1)
,

where ⌘ = 0.2 in the experiment and where we denoted Ci1 and Ci2 the first and second
coordinates of the point Ci. Finally, we have set N = 50 000, " = 0.002 and ⌧ = 0.001 and
we have run 2000 timesteps. The computation takes less than six hours on a single core
of a regular laptop. Note that it does not seem straighforward to adapt the techniques
used in the proofs of convergence presented here to this setting, where the force depends
on the density of the particle. Our purpose with this test case is merely to show that the
numerical scheme behaves reasonably well in more complex situations.

Software. The software developed for generating the results presented in this article is
publicly available at https://github.com/mrgt/EulerLagrangianOT

Acknowledgements

We would like to thank Yann Brenier who pointed out to us the reference [8] on which
this article elaborates, and for several interesting discussions at various stages of this work.
We also thank Pierre Bousquet who indicated the reference [16] to us.
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Figure 3. Numerical illustration of the Rayleigh-Taylor instability occur-
ing when a heavy fluid (in green) is placed over a lighter fluid (in red) at
timesteps n = 0, 200, 400, . . . , 2000. The parameters are given in §5.4.
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Figure 4. (Left) Value of the Hamiltonian during iterations of the al-
gorithm, for the Kelvin-Helmoltz instability presented in §5.3 and using
the symplectic Euler integrator. (Right) Same figure but for the Rayleigh-
Taylor instability presented in §5.4, using the symplectic Euler integrator
(in blue) and using the velocity Verlet integrator (in red).
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CONVERGENCE OF A LAGRANGIAN DISCRETIZATION FOR

BAROTROPIC FLUIDS AND POUROUS MEDIA FLOW

THOMAS O. GALLOUËT, QUENTIN MÉRIGOT, AND ANDREA NATALE

Abstract. When expressed in Lagrangian variables, the equations of motion for
compressible (barotropic) fluids have the structure of a classical Hamiltonian system in
which the potential energy is given by the internal energy of the fluid. The dissipative
counterpart of such a system coincides with the porous medium equation, which can
be cast in the form of a gradient flow for the same internal energy. Motivated by
these related variational structures, we propose a particle method for both problems
in which the internal energy is replaced by its Moreau-Yosida regularization in the
L2 sense, which can be efficiently computed as a semi-discrete optimal transport
problem. Using a modulated energy argument which exploits the convexity of the
problem in Eulerian variables, we prove quantitative convergence estimates towards
smooth solutions. We verify such estimates by means of several numerical tests.

1. Introduction

The Euler equations describing the evolution of a barotropic fluid in a compact do-
main M ⊂ Rd with Lipschitz boundary and on a time interval [0, T ] are given by the
following system of equations:

(1.1)

{
∂t(ρu) +∇ · (ρu⊗ u) +∇P (ρ) = 0 ,
∂tρ+ div(ρu) = 0 ,

where ρ(t, x) ≥ 0 is the fluid density, u(t, x) ∈ Rd is the Eulerian velocity and the
function P : [0,∞) → R defines the pressure as a function of the density. The first
equation in (1.1) is generally referred to as the momentum equation, whereas the second
is the continuity equation and describes local mass conservation in the fluid. The system
is supplemented by the initial and boundary conditions:

ρ(0, ·) = ρ0 , u(0, ·) = u0 , u · n∂M = 0 on [0, T ]× ∂M ,

where n∂M is the outward normal to the boundary ∂M . Smooth solutions conserve the
total energy

(1.2)

∫

M

1

2
|u|2ρdx+

∫

M
U(ρ) dx ,

where U : [0,∞)→ R is a smooth strictly convex function, superlinear at infinity, defin-
ing the internal energy of the fluid. This is related to the pressure by the thermodynamic
relations

(1.3) P (r) = rU ′(r)− U(r) , P ′(r) = rU ′′(r).

Date: September 26, 2023.

1



2 T. O. GALLOUËT, Q. MÉRIGOT, AND A. NATALE

Different choices of the internal energy U lead to different models. The two most
classical examples are:

(1) polytropic fluids, which correspond to U(r) = rm/(m − 1) with m > 1, and
P (r) = rm (these include isentropic fluids, and the Saint-Venant system mod-
elling gravity driven shallow water flows for m = 2);

(2) isothermal fluids, which correspond to U(r) = r log(r)− r and P (r) = r.

Adding a friction term −ζρu on the right-hand side of the momentum equation, i.e.
the first equation in the system (1.1), and considering the high friction limit ζ →∞, one
formally obtains u = −∇U ′(ρ), which substituted into the continuity equation yields

(1.4) ∂tρ−∆P (ρ) = 0 .

In particular, the choice U(r) = rm/(m − 1) with m > 1 and P (r) = rm, which is
associated with polytropic fluids, yields the porous medium equation. Similarly, the
choice U(r) = r log r − r and P (r) = r corresponding to isothermal fluids, yields the
heat equation.

1.1. Lagrangian formulation. For both the compressible Euler system (1.1) and its
high friction limit (1.4), the density evolves according to the continuity equation with
respect to a time-dependent vector field u. Let S0 ⊆ M be the support of the initial
density ρ0 and X : [0, T ]×S0 →M be the flow associated with u, i.e. the time-dependent
map satisfying the flow equation

(1.5) Ẋt = u(t,Xt)

with initial condition X0 = Id|S0 , where Id is the identity map on Rd. If ρ0 and u
are sufficiently regular, then the flow equation (1.5) and the continuity equation have
both a unique strong solution, and the density is the pushforward of ρ0 by the flow, i.e.
ρ(t, ·) = Xt#ρ0, where the pushforward is defined by the condition

(1.6) (Xt#ρ0)[B] = ρ0[X−1
t (B)] for any B ⊂M.

In general, equation (1.6) defines Xt#ρ0 only as a measure on M . However, if Xt is
a smooth invertible map, Xt#ρ0 is absolutely continuous with respect to the Lebesgue
measure dx, and we identify it with its smooth density.

Using equation (1.5) and (1.6), the total energy of the fluid (1.2) can then be written
in terms of X only as follows:

(1.7)

∫

M

1

2
|Ẋt|2ρ0dx+

∫

M
U(Xt#ρ0) dx .

Let X := L2
ρ0(S0;Rd). In the smooth setting, we can interpret the energy (1.7) as a

functional on curves of smooth invertible maps in C∞(S0;M), viewed as a manifold
in X with the induced metric. The associated Euler-Lagrange equations coincide with
Newton’s second law:

(1.8) Ẍt = −∇XF(Xt) , F(σ) :=

∫

M
U(σ#ρ0) dx ,

where we identify the gradient ∇XF(Xt) with an element of X (see Remark 2.3 for a
formal computation of ∇XF(Xt)). Equation (1.8) is the Lagrangian equivalent to the
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momentum equation in (1.1), and in particular from its solutions one can retrive the
solutions to the Euler system (1.1) using the flow equation (1.5) and the definition of
pushforward (1.6).

In the case of the high friction limit (1.4), the flow evolves according to a gradient
flow dynamics, which correspond to the equation:

(1.9) Ẋt = −∇XF(Xt) .

Here, equation (1.9) is equivalent to the condition u = −∇U ′(ρ), and from its solutions
one can retrive the solutions to (1.4) by pushforward of the initial density as in (1.6).

The point of view described above for the compressible Euler system is one of the
possible generalizations of the approach developed by Arnold for the incompressible
Euler equations (see, e.g., Proposition 2.7 in [18]), which he intrepreted as the geodesic
equation on the group of volume-preserving diffeomorphisms with the L2 metric [1]. On
the other hand, the gradient flow structure in (1.9) is the Lagrangian counterpart of the
Wasserstein gradient flow interpretation of equation (1.4), developed in the celebrated
works of Otto [27] and Jordan, Kinderlehrer, and Otto [17].

In this paper, we will construct discrete versions of the systems (1.8) and (1.9) in
which the flow is approximated by a curve of (non-smooth and non-injective) maps
belonging to a finite-dimensional subpace of X. As a consequence of this extrinsic point
of view, we will regard the internal energy F in equation (1.8) as a real-valued functional
on the whole space X, which we set to +∞ when σ#ρ0 is not absolutely continuous with
respect to the Lebesgue measure dx restricted to M .

1.2. Space discretization. We now turn to the design of the Lagrangian scheme, i.e.
an evolutive system for a finite number of particles, to approximate both Euler and
gradient flows. In order to define the evolution of the particles we introduce a discrete
equivalent of the Lagrangian variational structure highlighted in the previous section.
This also allows us to preserve at the discrete level the link between the two models
described above.

Let N ∈ N∗ and consider a partition PN := (Pi)1≤i≤N of the initial support S0 ⊆M
in N regions with hN := maxi diam(Pi) . N−d. We define XN ⊂ X as the space of
functions that are constant on each subdomain Pi, i.e.

XN := {XN ∈ X | XN (ω) = Xi
N ∈ Rd for a.e. ω ∈ Pi, 1 ≤ i ≤ N} .

Then, we discretize the flow X by a curve XN : [0, T ] → XN , and for any t ∈ [0, T ]
we identify XN (t) with the vector of the position of the particles (Xi

N (t))i ∈ RdN
where Xi

N (t) ∈ Rd is the image of any point in Pi by the map XN (t) and therefore
carries a mass ρ0[Pi]. As in the continuous case the density of the fluid is given by
the pushforward ρN (t) = XN (t)#ρ0, or more explicitly by the sum of all the particles
weighted by their respective masses:

(1.10) ρN (t) =
N∑

i=1

ρ0[Pi]δXi
N (t) .
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Since ρN (t) is not absolutely continuous, the internal energy F is identically +∞ on
all of XN , and in order to define our numerical approximation, we need to replace it by
a regularized version. In this paper we consider the Moreau-Yosida regularization of F ,
which is given by

(1.11) Fε(X) := inf
σ∈X
‖X − σ‖2X

2ε
+ F(σ) ,

for any X ∈ X and for a fixed ε > 0. Note that problem (1.11) always admits minimizers
when X ∈ XN , but these are in general not unique.

In order to mimic the continuous case, the discrete dynamics is thus given by the
Euler (resp. gradient) flow of Fε in

(
XN , L2

ρ0

)
. More precisely, the space discretization

of the Euler system (1.1) reads as follows:

(1.12) ẌN (t) = −PXN
∇XFε(XN (t)) , XN (0) = IdN , ẊN (0) = u0 ◦ IdN ,

where PXN
is the L2

ρ0 projection onto XN , and we set IdN := PXN
Id|S0 . Note that

the left-hand side of equation (1.12) can be identified with the vector collecting the

acceleration of the particles (Ẍi
N (t))i ∈ RdN . The right-hand side is just the gradient

of Fε viewed as a function on XN , and it is uniquely defined for almost every point in
XN (see Proposition 5.2 for a precise statement). In particular, we have

(1.13) PXN
∇XFε(XN ) =

XN − PXN
Xε
N

ε
, Xε

N ∈ argmin
σ∈X

‖XN − σ‖2X
2ε

+ F(σ) ,

for almost any XN ∈ XN . As in the continuous setting, the total energy of the system
at time t is given by the sum of the kinetic and internal energy, where we replace now
the internal energy by its regularized version:

(1.14) Eε(t,XN ) :=
N∑

i=1

1

2
|Ẋi

N (t)|2ρ0[Pi] + Fε(XN (t)) ,

and this is conserved by smooth solutions of (1.12).

Similarly, the discrete version of the gradient flow (1.9) is given by

(1.15) ẊN (t) = −PXN
∇XFε(XN (t)) , XN (0) = IdN .

Here, the total energy at time t is simply given by the internal energy Fε(XN (t)), and
it is dissipated by smooth solutions of (1.15).

1.3. Time discretization. The variational structure of the space-discrete systems de-
scribed so far can be exploited to design a stable time discretization. The method we
describe here consists in considering different approximations of the energy in each time
step, and is modelled on the strategy proposed by Brenier in [3].

Let τ > 0 a fixed time step, NT ∈ N∗ be the number of time steps with T = τNT ,
and tn := nτ for any 0 ≤ n ≤ NT . We define a discrete-time approximation of system
(1.12), by considering the C1 curves XN : [0, T ] 7→ XN satisfying in each time interval
[tn, tn+1) the equation

(1.16) ẌN (t) = −XN (t)− PXN
Xε
N (tn)

ε
,
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where

(1.17) Xε
N (tn) ∈ argmin

σ∈X

‖XN (tn)− σ‖2X
2ε

+ F(σ) ,

and with the same initial condition as in (1.12). This system is conservative in each
interval [tn, tn+1) for the energy

(1.18) Enε (t,XN ) :=
N∑

i=1

1

2
|Ẋi

N (t)|2ρ0[Pi] +
‖XN (t)−Xε

N (tn)‖2X
2ε

+ F(Xε
N (tn)) .

The total energy Eε(t,XN ) defined in (1.14) is however dissipated in general since, by
definition of the regularized energy Fε, we have

(1.19) Eε(tn+1, XN ) ≤ Enε,τ (tn+1, XN ) = Enε,τ (tn, XN ) = Eε(tn, XN ) .

The discrete-time approximation of the gradient flow (1.15) is given by a continuous
curve XN : [0, T ] 7→ XN which on each interval [tn, tn+1) is the gradient flow on XN for
the energy:

(1.20)
‖XN (t)−Xε

N (tn)‖2X
2ε

+ F(Xε
N (tn)) .

More explicitly, a discrete solution is any C0 curve XN : [0, T ] 7→ XN which satisfies in
each time interval [tn, tn+1),

(1.21) ẊN (t) = −XN (t)− PXN
Xε
N (tn)

ε
,

with Xε
N (tn) defined as in (1.17), and the same initial condition as in (1.15). Also in

this case the internal energy Fε(XN (t)) is dissipated along the evolution, since we have

(1.22) Fε(XN (tn+1)) ≤ ‖XN (tn+1)−Xε
N (tn)‖2X

2ε
+ F(Xε

N (tn)) ≤ Fε(XN (tn)) .

1.4. Relation with previous works and convergence results. Using a Lagrangian
formulation for the discretization of problems (1.1) and (1.4) enables us to reproduce
the conservative and gradient flow structure of the corresponding models. In turn, this
allows us to construct stable numerical methods as in (1.16) and (1.21) to discretize their
solutions. Similar strategies were already explored in the 1990s, during the emergence of
particle methods, for example in the context of the discretization of the incompressible
Euler equations in the works of Buttke [4] and Russo [28]. Such methods can be seen as
instances of the more general Smoothed Particle Hydrodynamics (SPH) discretizations,
where the interaction forces amongst the particles are computed by reconstructing the
fluid density through convolution with a fixed kernel (see, e.g., the review articles [24,
26] and references therein), and which have been widely used in the context of the
discretization of fluid models.

Recent SPH methods explicitely exploit the variational structure of the models for
the construction of the method itself as in [10]. In the same article, the Authors also
established a general (non-quantitative) convergence result towards measure-valued so-
lutions of problem (1.1) for its discretization in space only. In another recent work [12],
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the Authors proved quantitative convergence estimates with modulated energy tech-
niques but limited to the case P (r) = r2 and for the discretization in space only. This
last work also highlights how the choice of the kernel is crucial to obtain convergence.

The discretization strategy we use in this paper is closely related to the one developed
by Brenier [3], who proposed a discretization of incompressible Euler which replaces the
incompressibility constraint by a potential term given by the L2 distance from the set
of measure-preserving maps, discretized as permutations of a fixed regular grid. The
potential term used by Brenier can be reinterpreted as a Moreau-Yosida regulariza-
tion (as in (1.11)) of an energy given by the convex indicator function of the Lebesgue
measure. Gallouët and Mérigot [13] later used a similar approach, but rephrased as a
particle method, which allowed them to employ efficient semi-discrete optimal trans-
port techniques to compute the discrete solution, and at the same time improved the
convergence estimates of [3] using a modulated energy approach. Note that the use of
semi-discrete optimal transport techniques to simulate fluids was first launched by the
work of Mérigot and Mirebeau [25] to solve the geodesic problem associated with the
incompressible Euler equations.

Our convergence results generalize the one in [13] to the compressible and gradient
flow setting. Differently from SPH methods, here the density is reconstructed via a
Moreau-Yosida regularization (i.e. as the push-forward of ρ0 by the regularized flow
Xε
N ), which eliminates the problem of selecting a kernel, the reconstruction being deeply

linked with the energy itself (see Proposition 5.2). On the other hand, the kernel length-
scale parameter of SPH methods is replaced here by the parameter ε in the regularized
functional (1.11).

The main results of this paper are contained in Theorem 1.1 and 1.2 below. The
central issue of the proofs is the construction of an appropriate modulated energy to
measure the discrepancy error between the discrete and continuous solution. In this
work we construct a modulated energy exploiting the convexity of the energy in the
Eulerian setting, which is lost in the Lagrangian formulation, and the particular struc-
ture of the Moreau-Yosida regularization. It should be noted that for convex energies,
modulated energy estimates of the type we use here are classical tools for the study
of problems (1.1) and (1.4) (see, e.g., Chapter 5 in [8]): namely, to prove weak-strong
stability and uniqueness results, and to establish convergence in the high friction limit
from entropy weak solutions of the Euler equations (1.1) with friction to porous media
flow (1.4) [21]. Note also that such tecnhiques are not limited to the cases we consider in
this article, and can be generalized to treat also less regular energies (see, e.g., [15, 22],
for a framework covering the Euler-Korteweg and Euler-Poisson theory).

Another important point is related to the time discretization. The method we use
in this work, described in Section 1.3, directly derives from that used by Brenier in
[3] for the incompressible Euler equations. It is specially adapted to the structure of
the Moreau-Yosida regularization, and consists in devicing a quadratic approximation of
the energy (see equation (1.20)) which dominates the regularized energy over each time-
step. This naturally implies the stability of the discrete solutions (see equations (1.19)
and (1.22)), which is an essential element for the convergence results below. Note that
symplectic integrators [16] could be another natural choice for the discretization of the
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Hamiltonian system (1.12). This choice was explored in [13] for incompressible Euler,
but it is more difficult to analyze due to the lack of an explicit control of the continuous
energy of the system. Another approach which we do not explore in this paper is the
time discretization developed in [14, 7] (see also its numerical implementation in [31])
which is better adapted to the non-smooth setting since it is designed to overcome the
non-uniqueness issues related to the notion of entropy solutions.

The convergence estimate we obtain for the discretization of (1.1) is the following:

Theorem 1.1. Suppose that (ρ, u) : [0, T ]×M → [0,∞)×Rd is a strong solution to (1.1)
such that u ·n∂M = 0 on [0, T ]×∂M , with U : [0,∞)→ R being a smooth strictly convex
and superlinear function such that (3.8) holds. Suppose that u ∈ C1([0, T ], C2,1(M,Rd)),
ρ0 ∈ C1,1(M), and that either ρ0 ≥ ρmin > 0 or that U admits a right third derivative
at 0, i.e. |U ′′′+ (0)| <∞. Suppose in addition that XN : [0, T ]→ XN is a C1 curve which

satisfies (1.16) for all times in [0, T ], with initial conditions XN (0) = IdN and ẊN (0) =
u(0, IdN (·)). Then, denoting by X the flow associated with u satisfying X(0) = Id|S0,

(1.23) sup
t∈[0,T ]

‖ẊN (t)− u(t,XN (t))‖2X + ‖XN (t)−X(t)‖2X ≤ C(
h2
N

ε
+ hN + ε+

τ

ε
) ,

where C > 0 depends only on supt∈[0,T ](‖u(t)‖C2,1 + ‖∂tu(t)‖C2,1), ‖ρ0‖C1,1, and on U ,
T and d.

For what concerns the discretization of dissipative problems of the type (1.4), several
Lagrangian discretizations based on their gradient flow structure (1.9) have already been
developed (see, e.g., the method in [6] which is close to SPH methods, or in general the
review [5] and references therein). The discretization we consider here has been studied
in [23] (in the time-continuous setting), where the Authors considered more general
energies than those we treat here, modelling for example congestion phenomena, and
proved the convergence of the discrete measures (1.10) to solutions of the associated
PDE in dimesion one. The result requires an a priori estimate on the regularized flow
Xε
N which is not proven in higher dimensions. Here we circumvent this issue using the

same arguments as in Theorem 1.1, and in particular by a careful choice of a modulated
energy and by exploiting the smoothness of the continuous solutions. The convergence
estimate we obtain for the discretization of problem (1.4) is the following:

Theorem 1.2. Suppose that ρ : [0, T ]×M → [0,∞) is a strong solution to (1.9) such
that ∇U ′(ρ) · n∂M = 0 on [0, T ] × ∂M , with U : [0,∞) → R being a smooth strictly
convex and superlinear function such that (3.8) holds. Suppose that u := −∇U ′(ρ) is of
class C2,1 in space, uniformly in time, ρ0 ∈ C1,1(M), and that either ρ0 ≥ ρmin > 0 or
that U admits a right third derivative at 0, i.e. |U ′′′+ (0)| <∞. Suppose in addition that
XN : [0, T ]→ XN is a C0 curve which satisfies (1.21) for all times in [0, T ] with initial
conditions XN (0) = IdN . Then, denoting by X the flow associated with u satisfying
X(0) = Id|S0,

(1.24) sup
t∈[0,T ]

∫ t

0
‖ẊN (s)−u(s,XN (s))‖2X ds+‖XN (t)−X(t)‖2X ≤ C(

h2
N

ε
+hN +ε+

τ

ε
) ,

where C > 0 depends only on supt∈[0,T ] ‖∇U ′(ρ(t))‖C2,1, ‖ρ0‖C1,1, and on U , T and d.
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Remark 1.3. The modulated energy we use to prove the estimates above has an ad-
ditional term, if one compares it to the left-hand sides of equations (1.23) and (1.24),
which is associated with the internal energy F and which is omitted in order to simplify
the statements. This term is discussed in detail in Section 3 and actually implies a
stronger control on the reconstructed density associated with the regularized flow Xε

N .

2. Moreau-Yosida regularization

In this section we collect some properties of the regularized energy in (1.11). We
provide an equivalent Eulerian formulation of such an energy using the L2-Wasserstein
distance on the space of positive measures of fixed mass, and we also give a charac-
terization of its gradient in terms of the pressure, which will be useful to prove our
convergence results.

We start by introducing the Eulerian counterpart to the internal energy functional
in (1.8), which we obtain by regarding this as a function of the density rather than the
Lagrangian flow map. More precisely, denoting by M+(Rd) the set of positive finite
measures on Rd, we define U :M+(Rd)→ R as follows:

(2.1) U(ρ) :=

{ ∫
M U(ρ) dx if ρ� dx M,

+∞ otherwise.

Then, the functional F : X→ R in (1.8) can be equivalently defined by

F(X) := U(X#ρ0).

We define Uε(ρ) : M+(Rd) → R as the Moreau-Yosida regularization of U with
respect to the L2-Wasserstein distance, i.e.

(2.2) Uε(ρ) := min
µ∈M+(Rd)

W 2
2 (ρ, µ)

2ε
+ U(µ) .

The quantity W2(ρ, µ) is the L2-Wasserstein distance between ρ and µ (see, e.g., Chapter
5 in [29]), and it can be defined via the following minimization problem:

W 2
2 (ρ, µ) := min

γ∈Π(ρ,µ)

∫
|x− y|2 dγ(x, y) ,

where Π(ρ, µ) is the set of positive measures on Rd × Rd with marginals ρ and µ, and
we set W 2

2 (ρ, µ) = +∞ whenever ρ and µ have different total mass. Since U is strictly
convex and superlinear, for any ρ ∈M+(Rd) (with finite second moment) the function
minimized in problem (2.2) is lower semi-continuous with respect to the Wasserstein
metric (see, e.g., Proposition 7.7 in [29]) and therefore it admits a unique minimizer
which we denote ρε. The link between the Eulerian (2.2) and Lagrangian form (1.11)
of the regularized energy is established in the following lemma.

Lemma 2.1. Let XN ∈ XN and ρN = (XN )#ρ0, with ρ0 ∈ M+(Rd) such that ρ0 �
dx M . Then, Fε(XN ) = Uε(ρN ). In particular, there exists a convex function ψ :
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Rd → R, whose gradient is uniquely defined, such that Xε
N is a minimizer associated

with XN in problem (1.11), i.e.

Xε
N ∈ argmin

σ∈X

‖XN − σ‖2X
2ε

+ F(σ) ,

if and only if XN = ∇ψ ◦Xε
N up to a negligible set. Moreover, let

ρεN := argmin
µ∈M+(Rd)

W 2
2 (ρN , µ)

2ε
+ U(µ) .

Then, ρεN = (Xε
N )#ρ0.

Proof. Let Π(ρN , µ) the set of positive measures on Rd × Rd with marginals ρN =
(XN )#ρ0 and µ. Since ρ0 is a.c., for any µ ∈ M+(Rd) with the same total mass
of ρ0, there exists a σ ∈ X such that σ#ρ0 = µ, and we can construct a measure
(XN , σ)#ρ0 ∈ Π(ρN , µ). This implies that

(2.3) min
γ∈Π(ρN ,µ)

∫ |x− y|2
2ε

dγ(x, y) + U(µ) ≤ ‖XN − σ‖2X
2ε

+ U(σ#ρ0) .

Therefore, taking the infimum over σ on both sides of (2.3) yields Uε(ρN ) ≤ Fε(XN ).

To prove the reverse inequality, consider again ρN = (XN )#ρ0 =
∑

i ρ0[Pi]δXi
N

and

let ρεN the associated minimizer of problem (2.2). By Brenier’s theorem [2], there
exists a unique transport map given by the gradient of a convex function ψ such that
(∇ψ)#ρ

ε
N = ρN and W 2

2 (ρN , ρ
ε
N ) =

∫
M |∇ψ−Id|2dρεN . This coincides with the optimal

transport map from ρεN to ρN . For any 1 ≤ i ≤ N , denote Li := (∇ψ)−1(Xi
N ) so that

ρεN [Li] = ρ0[Pi], and let σi : Pi → Li be any map such that (σi)#ρ0|Pi = ρεN |Li . Then
we can take Xε

N ∈ X to be the map defined by Xε
N |Pi = σi. Clearly, XN = ∇ψ ◦Xε

N by
construction and

Fε(XN ) ≤ ‖XN −Xε
N‖2X

2ε
+ U((Xε

N )#ρ0) =

∫

M

|∇ψ − Id|2
2ε

dρεN + U(ρεN ) = Uε(ρN ) .

Therefore, we have the equality Uε(ρN ) = Fε(XN ). Finally, using again equation (2.3)
we deduce that if Xε

N is any minimizer ρεN = (Xε
N )#ρ0. �

Using the optimality conditions of the minimization problem (2.2), one can actually
provide an explicit expression for the minimizer ρεN corresponding to an empirical mea-
sure ρN . Such a characterization is proven in Proposition 11 in [30], but we recall the
precise statement in Proposition 5.2 below. In particular, this shows that ρεN has a con-
tinuous bounded density on M . In turn, this allows us to prove the following statement
which is a slight adaptation of Lemma 6.1 in [9].

Lemma 2.2. Let XN ∈ XN and define Xε
N and ρεN as in Lemma 2.1. For any v ∈

C1(M,Rd) with v · n∂M = 0 on ∂M , we have

(2.4)

∫

S0

XN −Xε
N

ε
· v ◦Xε

N ρ0dx = −
∫

M
P (ρεN )div v dx .
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Proof. We follow the proof of Lemma 6.1 in [9] and introduce first the flow of v, i.e. for

δ > 0 we define Y : (−δ, δ) ×M → M as the solution to the flow equation Ẏs = v ◦ Ys
for s ∈ (−δ, δ) and with Y0 = Id, the identity map on M . Note that Ys : M → M is a
C1 diffeomorphism, since v is C1 and it is tangent to the boundary, and we have

(2.5) ∂s det∇Ys = (div v ◦ Ys) det∇Ys .

Then we define ρs := (Ys)#ρ
ε
N , and identifying ρεN with its density with respect to

dx M we have

(2.6) ρs =
ρεN

det∇Ys
◦ Y −1

s ,

which can be directly deduced via a change variables in the integral formulation of the
definition of the pushforward (1.6). Moreover, the function

g : s ∈ (−δ, δ)→ W 2
2 (ρN , ρs)

2ε
+ U(ρs) ∈ R

has a minimum at s = 0. Since ρεN is bounded, using equation (2.6), (2.5), and the
definition of P in (1.3) we obtain

(2.7)
d

ds

∣∣∣∣
s=0

U(ρs) =
d

ds

∣∣∣∣
s=0

∫

M
U

(
ρεN

det∇Ys

)
det∇Ys dx = −

∫

M
P (ρεN )div v dx .

We now introduce γs = (∇ψ, Ys)#ρ
ε
N , so that W 2

2 (ρN , ρs) ≤
∫
|x − y|2dγs(x, y), which

implies

W 2
2 (ρN , ρs)−W 2

2 (ρN , ρ
ε
N ) ≤

∫

M
|∇ψ − Ys|2dρεN −

∫

M
|∇ψ − Id|2dρεN

=

∫

M
(Ys − Id) · (Id + Ys − 2∇ψ)dρεN .

Therefore,

0 ≤ g(s)− g(0) ≤ 1

2ε

∫

M
(Ys − Id) · (Id + Ys − 2∇ψ)dρεN + U(ρs)− U(ρεN ) .

Dividing by s, taking the limit for s→ 0 and using equation (2.7) gives

(2.8)

∫

M

∇ψ − Id

ε
· v dρεN ≤ −

∫

M
P (ρεN )div v dx .

Since the same also holds replacing v by −v, equality holds and we obtain equation
(2.4) by a change of variables on the left-hand side of (2.8).

�

Remark 2.3. Note that using the same computation of equation (2.7), and performing
a change of variables on its right-hand side, one can formally identify ∇XF(Xt) =
∇U ′(ρt) ◦Xt in equation (1.8) and (1.9).
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3. Modulated energy

In this section we introduce the two main quantities that we will need to measure the
distance between continuous and discrete solutions of problems (1.1) and (1.4). These
are constructed as discrete versions of the classical relative kinetic and internal energy
of the system expressed in Eulerian variables. Here we adapt these definitions to our
discrete Lagrangian setting and to the regularized energy (1.11).

The relative kinetic energy in the discrete setting is defined as follows:

Definition 3.1 (Relative kinetic energy). Given a curve u : [0, T ] → C0(Rd;Rd), the
relative kinetic energy of a discrete flow XN : [0, T ] → XN with respect to u at time t
is given by

(3.1)

Ku(t,XN ) :=
1

2
‖ẊN (t, ·)− u(t,XN (t, ·))‖2X

=
1

2

N∑

i=1

|Ẋi
N (t)− u(t,Xi

N (t))|2ρ0[Pi] .

Remark 3.2. The choice of the relative kinetic energy in definition 3.1 can be motivated
as follows. The kinetic energy can be viewed as a convex function of the density ρ and
the momentum m = ρu given by

(3.2)

∫

M

|m|2
2ρ

.

Then, it is natural to measure the distance between two states (ρ,m) and (ρ̃, m̃), with
m̃ = ρ̃ũ, by considering the difference between the value of the functional (3.2) at (ρ,m)
and the linear part of its Taylor expansion at (ρ̃, m̃) in the direction (ρ − ρ̃,m − m̃).
The resulting quantity is given by

(3.3)

∫

M

1

2
|u− ũ|2ρdx ,

which is precisely the Eulerian counterpart to equation (3.1).

In the order to define the relative internal energy in the discrete setting, for any
ρ, ρ̃ ∈ C0(M, (0,∞)) we first define

(3.4) U(ρ|ρ̃) :=

∫

M
U(ρ|ρ̃) dx ,

where

(3.5) U(r|s) := U(r)− U(s)− U ′(s)(r − s) .
If |U ′+(0)| < +∞, equation (3.4) defines U(ρ|ρ̃) for any ρ, ρ̃ ∈ C0(M, [0,∞)). Since we
assume U to be strictly convex, U(ρ|ρ̃) ≥ 0 and it vanishes if and only if ρ = ρ̃.

The relative internal energy in the discrete setting is defined in order to fit the solu-
tions of the numerical schemes detailed in Section 1.3, and in particular the correspond-
ing time discretization, which we recall in the definition below.
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Definition 3.3 (Discrete relative internal energy). Let τ > 0 a fixed time step, NT ∈ N∗
be the number of time steps with T = τNT , and tn := nτ for any 0 ≤ n ≤ NT . Given a
curve ρ : [0, T ]→ C0(Rd; [0,∞)), the discrete relative internal energy of a discrete flow
XN : [0, T ]→ XN with respect to ρ at time t ∈ [tn, tn+1) is given by

(3.6) Fε,ρ(t,XN ) :=
‖XN (t)−Xε

N (tn)‖2X
2ε

+ U(ρεN (tn)|ρ(t)) ,

where Xε
N (tn) is any fixed minimizer of problem (1.11), i.e.

Xε
N (tn) ∈ argmin

σ∈X

‖XN (tn)− σ‖2X
2ε

+ F(σ) ,

and ρεN (tn) := (Xε
N (tn))#ρ0.

Remark 3.4. In the smooth Eulerian setting the relative internal energy would be given
just by the functional in equation (3.4). Importantly, even if the potential energy of the
discrete system is a convex functional on X, the discrete relative internal energy in
(3.6) does not correspond to this point of view and should rather be regarded as an
approximation of (3.4). The same holds for the definition of the relative kinetic energy
above, which does not coincide with the one obtained interpreting the kinetic energy
as convex functional on X. This time however there is no approximation since if we
replaced XN by a smooth injective flow we could recover (3.3) from (3.1) by a simple
change of variables.

The convergence proof in Section 4 will rely on a Grönwall argument based on the
discrete relative energies (3.1) and (3.6). It will require us to control the time variation
of the total discrete relative energy by itself. The advantage of adopting an Eulerian
rather than Lagrangian point of view in the definitions above is that, in the Eulerian
case, such a control can be enforced by exploiting simple algebraic properties of the
functions P and U . More precisely, we will need to control the relative pressure

(3.7) P (r|s) := P (r)− P (s)− P ′(s)(r − s)
by U(r|s). To this end, we will make the following assumption: there exists a constant
A > 0 such that

(3.8) |P ′′(r)| ≤ AU ′′(r) ∀ r > 0 .

This assumption is verified in the classical cases of interest of power laws and of the
entropy. It implies the following lemma, which is an extract of Lemma 3.3 in [15].

Lemma 3.5. Let U and P be smooth functions on [0,∞) verifying (1.3) and (3.8).
Then

(3.9) |P (r|s)| ≤ AU(r|s) ∀ r, s > 0 .

Proof. We have P (r|s) = (r− s)2
∫ 1

0 (1− θ)P ′′((1− θ)s+ θr) dθ and similarly for U(r|s).
Hence, using equation (3.8),

|P (r|s)| ≤ (r − s)2

∫ 1

0
(1− θ)|P ′′((1− θ)s+ θr)| dθ ≤ AU(r|s) .

�
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Remark 3.6. In the following, in order to treat the case of the convergence towards
solutions with vanishing density we will need to add the hypothesis that U admits a right
third derivative at 0, i.e. |U ′′′+ (0)| <∞. Note that in this setting, if equation (3.9) holds
for r, s > 0, then it holds by continuity for r, s ≥ 0.

4. Convergence of the fully discrete scheme

In this section we use the discrete relative energies introduced in Section 3 to prove
our convergence results for the space-time discretization of problems (1.1) and (1.4)
defined in Section 1.3.

Since the image of the discrete solution XN (t) (i.e. the particles’ positions) may not
be contained in the domain M , an essential ingredient of the proof is the possibility to
extend the exact solution of the continuous models outside the domain. Importantly,
besides keeping the same regularity, the extended density and veloctiy will need to
satisfy the continuity equation also outside the domain. We construct such extended
variables in the following lemma, by exploting the properties of the continuity equation
and using an extension theorem due to Fefferman [11].

Lemma 4.1. Let u : [0, T ] ×M → Rd be such that u · n∂M = 0 on [0, T ] × ∂M , and
ρ0 : M → [0,∞). If u is of class C2,1 in space, uniformly in time, and ρ0 is of class
C1,1, then there exist ũ : [0, T ]× Rd → Rd and ρ̃ : [0, T ]× Rd → R such that:

(1) ũ is an extension of u, i.e. ũ(t)|M = u(t) for all t ∈ [0, T ], and there exists a
constant C > 0 only depending on d such that

(4.1) sup
t∈[0,T ]

‖ũ(t)‖C2,1 ≤ C sup
t∈[0,T ]

‖u(t)‖C2,1 ;

moreover, if u ∈ C1([0, T ], C2,1(M,Rd)) then

(4.2) sup
t∈[0,T ]

‖∂tũ(t)‖C2,1 ≤ C sup
t∈[0,T ]

‖∂tu(t)‖C2,1 ;

(2) the couple (ρ̃, ũ) solves the continuity equation:

∂tρ̃+ div(ρ̃ũ) = 0 on [0, T ]× Rd,
and in particular the curve ρ : t ∈ [0, T ] → ρ̃(t)|M is the unique solution to
the continuity equation on [0, T ] ×M associated with u and initial conditions
ρ(0) = ρ0; if ρ0 ≥ ρmin > 0, then ρ̃ ≥ ρ̃min > 0, where ρ̃min only depend on
ρmin, supt∈[0,T ] ‖u(t)‖C2,1, T and d; moreover, supt∈[0,T ] ‖ρ̃(t)‖C1,1 only depends

on ‖ρ0‖C1,1, supt∈[0,T ] ‖u(t)‖C2,1, T , d (and on ρmin in the case ρ0 ≥ ρmin > 0).

Proof. The first part is just an application of the construction proposed by Fefferman
in [11] to extend Hölder continuous functions. In particular, by theorem 2 in [11], for
any k ≥ 0 there exists a linear bounded operator Lk : Ck,1(M) → Ck,1(Rd) such that
the norm of Lk is bounded by a constant depending only on d and k, and for any
f ∈ Ck,1(Rd) one has Lkf |M = f . Then, setting ũ(t) = L2 u(t) (applied component-
wise) for all t ∈ [0, T ] for a given extension operator L2, we obtain the estimate (4.1)
by the boundedness of L2. In the case where u ∈ C1([0, T ], C2,1(M,Rd)), by linearity
of L2 we have ∂tũ = L2∂tu, from which we deduce (4.2).
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For the second part, we first introduce X : [0, T ] × Rd → Rd the flow of ũ, i.e. the

solution to the flow equation Ẋt = ũ(t,Xt) with initial conditions X0 = Id. For all
times t ∈ [0, T ], Xt is a C2,1 diffeomorphism of Rd and by construction the C2,1 norm of
Xt and X−1

t only depend on that of u and on T . Note, in particular, that the Jacobian
determinant solves

∂t det∇Xt = div ũ(t,Xt) det∇Xt ,

which implies that for all (t, x) ∈ [0, T ]× Rd,

(4.3) max

{
det∇Xt(x),

1

det∇Xt(x)

}
≤ exp

(∫ t

0
‖div ũ(t)‖∞ dt

)
.

Now, if ρ0 is not strictly-positive, we define an extension ρ̃0 : Rd → R of ρ0 on the
whole space by ρ̃0 := L1ρ0 (and note that ρ̃0 may be negative). Then, we define for all
t ∈ [0, T ]

(4.4) ρ̃(t) =
ρ̃0

det∇Xt
◦X−1

t ,

and therefore the regularity of ρ̃ in space derives from that of ρ̃0, X−1
t and det∇Xt,

and from the bound (4.3). Moreover, by direct computation one can check that ρ̃ solves
the continuity equation with velocity ũ. On the other hand, if ρ0 ≥ ρmin > 0, we define
ρ̃0 := exp(L1 log(ρ0)) and ρ̃ as above. Then, the lower bound on ρ̃ can be deduced from
equations (4.4) and (4.3). �

In the following, we finally prove Theorem 1.1 and 1.2, which establish a bound on
the rate of convergence for our space-time discretizations of problems (1.1) and (1.4),
respectively.

Proof of Theorem 1.1. Throughout the proof we will denote by 〈·, ·〉 and ‖ · ‖ the inner
product and norm on X, respectively, i.e. the L2 inner product and norm weighted by
ρ0. Moreover, for any function f : [0, T ] → C0,1(E) with E ⊆ Rd, we will denote
by LipT (f) := supt∈[0,T ] Lip(f(t)) and we will use the same notation for vector-valued
functions.

We denote by ũ and ρ̃ the extensions of u and ρ, respectively, constructed via Lemma
4.1. Note that if ρ is not strictly-positive, ρ̃ may be negative. However, since in the case
we suppose that |U ′′′+ (0)| < +∞, we replace U by a C3 extension defined on R (which we

still denote by U with an abuse of notation), e.g., by setting U(r) =
∑3

n=0 U
(n)
+ (0)rn/n!

for r < 0 . Then, U (n)(ρ̃) is Lipschitz in space, uniformly in time, for n = 0, 1, 2.

We define the relative energy as follows:

(4.5) Eρ,u(t,XN ) := Kũ(t,XN ) + Fε,ρ(t,XN ) +
1

2
‖XN (t)−X(t)‖2 .

Note that besides the relative kinetic and internal energy, we also included an additional
term in (4.5) given by the squared L2 distance between the flows and which will help
us deal with the fact that the image of XN (t) may not be included in M . Note also
that while the relative kinetic energy needs to be computed using the extended velocity
field ũ, for the relative internal energy we can use indifferently either ρ or ρ̃ since it is
defined via an integral over the (fixed) domain M .
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The strategy of the proof is the following. First of all, we compute separately the
time derivative of the three terms in (4.5) for t ∈ [tn, tn+1). We then apply Grönwall’s
inequality on the same time interval to obtain a first estimate. Finally, we use a discrete
Grönwall’s inequality for 0 ≤ n ≤ NT to prove the result.

Step 1: Time derivative of the relative kinetic energy. We introduce the material
derivative

Dtũ(t) := ∂tũ(t) + ũ(t) · ∇ũ(t) .

Then, using equation (1.12), we have
(4.6)

d

dt
Kũ(t,XN ) = 〈ẌN (t)− ∂tũ(t,XN (t))− ẊN (t) · ∇ũ(t,XN (t)), ẊN (t)− ũ(t,XN (t))〉

= −〈(ẊN (t)− ũ(t,XN (t))) · ∇ũ(t,XN (t)), ẊN (t)− ũ(t,XN (t))〉
− 〈ε−1(XN (t)−Xε

N (tn)) +Dtũ(t,XN (t))), ẊN (t)− ũ(t,XN (t))〉 ,

where we replaced ẌN (t) using (1.12), and we removed the projection onto XN , since

ẊN (t)− ũ(t,XN (t)) ∈ XN . Observe that the system (1.1) implies

ρ0Dtũ(t,X(t)) = −ρ0∇U ′(ρ̃(t,X(t)) .

Then, adding and subtracting ∇U ′(ρ̃(t,X(t))) and ∇U ′(ρ̃(t,XN (t))) in the last inner
product in (4.6), we obtain
(4.7)

d

dt
Kũ(t,XN ) =− 〈(ẊN (t)− ũ(t,XN (t))) · ∇ũ(t,XN (t)), ẊN (t)− ũ(t,XN (t))〉

− 〈Dtũ(t,XN (t)))−Dtũ(t,X(t))), ẊN (t)− ũ(t,XN (t))〉
+ 〈∇U ′(ρ̃(t,X(t)))−∇U ′(ρ̃(t,XN (t))), ẊN (t)− ũ(t,XN (t))〉
− 〈ε−1(XN (t)−Xε

N (tn))−∇U ′(ρ̃(t,XN (t))), ẊN (t)− ũ(t,XN (t))〉 .

Step 2: Time derivative of the relative internal energy. First of all, we define
the following quantity which will be useful for the computations below and also later in
the Grönwall argument (see also Remark 4.2 below):

(4.8) Hn(t) :=

∫

Rd

U ′(ρ̃(t))d(ρεN (tn)− ρN (t)) .

We now compute the time derivatives of the different terms in Fε,ρ(t,XN ) (defined
by equation (3.6)) for t ∈ [tn, tn+1). By the same computations as in (2.7), we have

(4.9)
d

dt
U(ρ(t)) = −

∫

M
P (ρ(t))div u(t) dx .
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For the time derivative of the discrete energy we can arrange the terms in order to
obtain a similar quantity. In particular, we have

(4.10)

d

dt

(‖XN (t)−Xε
N (tn)‖2

2ε
+ U(ρεN (tn))

)

= ε−1〈XN (t)−Xε
N (tn), ẊN (t)〉

= ε−1〈XN (t)−Xε
N (tn), ẊN (t)− ũ(t,XN (t))〉

+ ε−1〈XN (t)−Xε
N (tn), ũ(t,XN (t))− ũ(t,Xε

N (tn))〉
+ ε−1〈XN (t)−XN (tn), u(t,Xε

N (tn))〉
+ ε−1〈XN (tn)−Xε

N (tn), u(t,Xε
N (tn))〉 ,

and note that by Lemma 2.2, the last term in in equation (4.10) can be written as
follows

(4.11) ε−1〈XN (tn)−Xε
N (tn), u(t,Xε

N (tn))〉 = −
∫

M
P (ρεN (tn))div u(t) dx .

We write the time derivative of the remaining term in Fε,ρ(t,XN ) as follows:

(4.12)
d

dt

∫

M
U ′(ρ(t))(ρεN (tn)− ρ(t)) dx =

d

dt
Hn(t) +

d

dt

∫

Rd

U ′(ρ̃(t))d(ρN (t)− ρ(t)).

Note that here we identify ρ(t) with a measure on Rd extending it by zero, and we will
use the same convention also in the following. Then, we compute

(4.13)

d

dt

∫

Rd

U ′(ρ̃(t)) d(ρN (t)− ρ(t)) =〈∇U ′(ρ̃(t)) ◦XN (t), ẊN (t)〉

−
∫

M
u(t) · ∇U ′(ρ(t))ρ(t) dx

−
∫

Rd

U ′′(ρ̃(t))div(ρ̃(t)ũ(t)) d(ρN (t)− ρ(t)).

Remark that here we used the fact that the continuity equation holds also for the
extended functions (ρ̃, ũ), which is due to the construction described in Lemma 4.1.
Using div(ρ̃ũ) = ρ̃divũ+∇ρ̃ · ũ and then using P ′(r) = rU ′′(r), we get

(4.14)

d

dt

∫

Rd

U ′(ρ̃(t)) d(ρN (t)− ρ(t)) = 〈∇U ′(ρ̃(t)) ◦XN (t), ẊN (t)− ũ(t,XN (t))〉

−
∫

Rd

P ′(ρ̃(t))divũ(t)d(ρN (t)− ρ(t)) .

Putting this back into equation (4.12), we find
(4.15)
d

dt

∫

M
U ′(ρ(t))(ρεN (tn)− ρ(t)) dx =

d

dt
Hn(t) + 〈∇U ′(ρ̃(t)) ◦XN (t), ẊN (t)− ũ(t,XN (t))〉

−
∫

Rd

P ′(ρ̃(t))divũ(t)d(ρN (t)− ρεN (tn))

−
∫

M
P ′(ρ(t))div u(t)(ρεN (tn)− ρ(t)) dx .
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Note that we have added and subtracted ρεN (tn) in the last integral, which allows us
to retrieve P (ρεN (tn)|ρ) when combining all terms. In fact, replacing (4.11) into (4.10),
and subtracting the contributions from (4.9) and (4.15), we obtain
(4.16)

d

dt
Fε,ρ(t,XN ) = 〈ε−1(XN (t)−Xε

N (tn))−∇U ′(ρ̃(t,XN (t))), ẊN (t)− ũ(t,XN (t))〉

+ ε−1〈XN (t)−Xε
N (tn), ũ(t,XN (t))− ũ(t,Xε

N (tn))〉

−
∫

M
P (ρεN (tn)|ρ(t))div u(t) dx

+

∫

Rd

P ′(ρ̃(t))div(ũ(t))d(ρN (t)− ρεN (tn))

+ ε−1〈XN (t)−XN (tn), ũ(t,Xε
N (tn))〉 − d

dt
Hn(t) .

We finally observe that the first term on the right-hand side of equation (4.16) coincides
with the opposite of the last term in (4.7). Therefore the two terms cancel out when
adding the two equations. The decomposition of the time derivative in (4.10) is designed
to exploit this feature, which is a consequence of energy conservation.

Step 3: Grönwall’s argument on [tn, tn+1). Combining

d

dt

1

2
‖XN (t)−X(t)‖2 = 〈ẊN (t)− Ẋ(t), XN (t)−X(t)〉

with equations (4.7) and (4.16), we obtain

(4.17)

d

dt
Eρ,u(t,XN ) = −〈Dtũ(t,XN (t)))−Dtũ(t,X(t))), ẊN (t)− ũ(t,XN (t))〉

+ 〈∇U ′(ρ̃(t,X(t)))−∇U ′(ρ̃(t,XN (t))), ẊN (t)− ũ(t,XN (t))〉
− 〈(ẊN (t)− ũ(t,XN (t))) · ∇ũ(t,XN (t)), ẊN (t)− ũ(t,XN (t))〉
+ 〈ẊN (t)− Ẋ(t), XN (t)−X(t)〉
+ ε−1〈XN (t)−Xε

N (tn), ũ(t,XN (t))− ũ(t,Xε
N (tn))〉

−
∫

M
P (ρεN (tn)|ρ(t))div u(t) dx

+

∫

Rd

P ′(ρ̃(t))div(ũ(t))d(ρN (t)− ρεN (tn))

+ ε−1〈XN (t)−XN (tn), u(t,Xε
N (tn))〉 − d

dt
Hn(t)

=: J1 + J2 + J3 + J4 + J5 + J6 + J7 + J8 −
d

dt
Hn(t) .

Applying Cauchy-Schwarz and then Young’s inequality to the first two terms we
obtain

(4.18) J1 + J2 ≤ 2(LipT (Dtũ) + LipT (∇U ′(ρ̃)))

(
Kũ(t,XN ) +

1

2
‖XN (t)−X(t)‖2

)
,

where Dtũ and ∇U ′(ρ̃) are interpreted as functions on [0, T ]× Rd.
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For J4, we have

(4.19)

J4 = 〈ẊN (t)− ũ(t,XN (t)), XN (t)−X(t)〉
+ 〈ũ(t,XN (t))− ũ(t,X(t)), XN (t)−X(t)〉

≤ Kũ(t,XN ) + (1 + 2LipT (ũ))
1

2
‖XN (t)−X(t)‖2 ,

Using the estimate (4.19), we find

(4.20)

6∑

i=3

Ji ≤ (1 + 2LipT (ũ))

(
Kũ(t,XN ) +

‖XN (t)−X(t)‖2
2

)

+ LipT (ũ)
‖XN (t)−Xε

N (tn)‖2
ε

+ALipT (ũ)U(ρεN (tn)|ρ(t))

≤ (1 +A′LipT (ũ))Eρ,u(t,XN ) ,

where A′ := max(A, 2), and we used for J6 the inequality given in Lemma 3.5 (see also
Remark 3.6). Hence, combining (4.18) and (4.20) we obtain

(4.21)
6∑

i=1

Ji ≤ C1Eρ,u(t,XN ) ,

where C1 := 2LipT (Dtũ) + 2LipT (∇U ′(ρ̃)) +A′ LipT (ũ) + 1. For J7 we have

(4.22)

J7 ≤ LipT (P ′(ρ̃) div ũ)W1(ρN (t), ρεN (tn))

≤ C2

(
ε

2
+
W 2

2 (ρN (t), ρεN (tn))

2ε

)

≤ C2

(
ε

2
+
‖XN (t)−Xε

N (tn)‖2
2ε

)
,

where W1(·, ·) denotes the L1-Wasserstein distance and we have used the inequal-
ity W1(ρN (t), ρεN (tn)) ≤ W2(ρN (t), ρεN (tn)) (see Chapter 5 in [29]), and where C2 :=
LipT (P ′(ρ̃) div ũ).

For J8 we have

(4.23)

J8 =
1

ε

∫ t

tn

〈ẊN (t′), u(t,Xε
N (tn)〉 dt′

≤ 1

ε

∫ t

tn

‖ẊN (t′)‖‖u(t,Xε
N (tn))‖ dt′

≤ τ

ε

(
Eε(tn, XN )−minU +

1

2
‖u‖2L∞([0,T ]×M)

)

≤ τ

ε
(Eε(0, XN ) + C3) ,

where we used the conservation-dissipation of the energy Eε (1.19) for the last two
inequalities, and where C3 := ‖u‖2L∞([0,T ]×M)/2−minU .
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Using the same argument as for J7, we obtain

(4.24)
|Hn(t)| ≤|LipT (U ′(ρ̃))|2ε+

W 2
2 (ρN (t), ρεN (tn))

4ε

≤C4ε+
1

2
Eρ,u(t,XN ) ,

where C4 := |LipT (U ′(ρ̃))|2.

This last inequality allows us to include Hn(t) in the Grönwall argument. In partic-
ular, let En(t) := Eρ,u(t,XN ) + Hn(t). Combining the estimates (4.21), (4.22), (4.23),
into (4.17), we find

d

dt
En(t) ≤ (C1 + C2)Eρ,u(t,XN ) +

C2

2
ε+ (C3 + Eε(0, XN ))

τ

ε
.

Adding and subtracting 2(C1+C2)Hn(t), using the bound (4.24) and rearranging terms,
this implies

d

dt
En(t) ≤2(C1 + C2)En(t) + (

C2

2
+ 2(C1 + C2)C4)ε+ (C3 + Eε(0, XN ))

τ

ε

=:C5E
n(t) + C6ε+ (C3 + Eε(0, XN ))

τ

ε
.

Applying Grönwall inequality over the interval [tn, s] with tn < s < tn+1, we obtain

En(t−n+1) := lim
s→t−n+1

En(s) ≤ (En(tn) + C6ετ + (C3 + Eε(0, XN ))
τ2

ε
) exp(C5τ) .

In order to apply a discrete Grönwall inequality, we need to replace the left-hand side
with En+1(tn+1) := Eρ,u(tn+1, XN ) + Hn+1(tn+1). This is indeed possible, since by
definition of Xε

N (tn+1) and continuity of ρ, ρN and Xε
N we have

(4.25)

Fε,ρ(tn+1, XN ) +Hn+1(tn+1) =
‖XN (tn+1)−Xε

N (tn+1)‖2
2ε

+ U(ρεN (tn+1))− U(ρ(tn+1))

−
∫

Rd

U ′(ρ̃(tn+1))d(ρN (tn+1)− 1Mρ(tn+1))

≤ ‖XN (tn+1)−Xε
N (tn)‖2

2ε
+ U(ρεN (tn))− U(ρ(tn+1))

−
∫

Rd

U ′(ρ̃(tn+1))d(ρN (tn+1)− 1Mρ(tn+1))

= Fε,ρ(t−n+1, XN ) +Hn(t−n+1) .

Hence we get

En+1(tn+1) ≤ (En(tn) + C6ετ + (C3 + Eε(0, XN ))
τ2

ε
) exp(C5τ) .

Remark 4.2. Note that the quantity

(4.26) Fε,ρ(t,XN ) +Hn(t) , for t ∈ [tn, tn+1) ,

can be regarded as a different approximation of the relative internal energy of the contin-
uous setting (3.4). Using this quantity instead of simply Fε,ρ(t,XN ) allows us to relate
the estimates across different time steps as in equation (4.25) wihtout having to deal
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with the discontinuities in time of ρεN . Nonetheless, the sum in (4.26) is not positive in
general, which is why we define the relative internal energy by Fε,ρ(t,XN ) only.

Step 4: Discrete Grönwall’s argument. Since tNT
= τNT = T , we obtain

ENT (T ) ≤ E0(0) exp(C5T ) + (C6ε+ (C3 + Eε(0, XN ))
τ

ε
)
exp(C5(T + τ))− 1

C5
.

Using once again equation (4.24), this implies

Eρ,u(T,XN ) ≤(Eρ,u(0, XN ) +H0(0)) exp(C5T )

+ (C6ε+ (C3 + Eε(0, XN ))
τ

ε
)
exp(C5(T + τ))− 1

C5

+
1

2
Eρ,u(T,XN ) + C4ε .

Hence, we get

(4.27)

Eρ,u(T,XN ) ≤2(Eρ,u(0, XN ) +H0(0)) exp(C5T )

+ 2(C6ε+ (C3 + Eε(0, XN ))
τ

ε
)
exp(C5(T + τ))− 1

C5
+ 2C4ε .

In order to conclude the proof we need to estimate the initial energy Eε(0, XN ) and
the quantity Eρ,u(0, XN ) +H0(0). Note that, due to the initial conditions (1.12)

Eε(0, XN ) =

N∑

i=1

1

2
|Ẋi

N (0)|2ρ0[Pi] + Fε(XN (0))

≤ 1

2
‖u(0)‖2L∞(M) + U(ρ(0)) +

W 2
2 (ρ(0), ρN (0))

2ε

≤ C3 + U(ρ(0)) +
δ2
N

2ε
,

where δN is the error in the initial conditions in the Wasserstein distance, i.e.

(4.28) δN := W2(ρN (0), ρ(0)) .

In order to bound the quantity Eρ,u(0, XN ) +H0(0), we first estimate the term

Fρ(0, XN ) +H0(0) =
W 2

2 (ρN (0), ρεN (0))

2ε

+ U(ρεN (0))− U(ρ(0))−
∫

Rd

U ′(ρ̃(0))d(ρN (0)− 1Mρ(0)) .

By definition of ρεN (0) we find

W 2
2 (ρN (0), ρεN (0))

2ε
+ U(ρεN (0))− U(ρ(0)) ≤ W 2

2 (ρN (0), ρ(0))

2ε
.
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Moreover,
∣∣∣∣
∫

Rd

U ′(ρ̃(0))d(ρN (0)− 1Mρ(0))

∣∣∣∣ ≤ Lip(U ′(ρ(0)))W1(ρN (0), ρ(0))

≤ C2
0

2
ε+

W 2
2 (ρN , ρN (0))

2ε
,

where C0 := Lip(U ′(ρ(0))). Combining the two estimates and recalling (4.28) we get

(4.29) Fρ(0, XN ) +H0(0) ≤ C2
0

2
ε+

W 2
2 (ρN (0), ρ(0))

ε
=
C2

0

2
ε+

δ2
N

ε
.

The remaining terms in the relative energy Eρ,u(0, XN ) can be estimated by the fact
that K(0, XN ) = 0 (due to the initial conditions (1.12)) and the bound

(4.30) δN = W2(ρN (0), ρ(0)) = ‖PXN
Id− Id‖ ≤

√
ρ0[M ]hN ,

which follows from definition of hN .

We conclude by replacing the estimates above into equation (4.27) and estimating
the constants using Lemma 4.1. �

We now turn to the proof of Theorem 1.2. We will focus only on the differences with
the proof of Theorem 1.1. In particular the kinetic energy will not be taken into account
in the definition of the energy.

Proof of Theorem 1.2. The proof follows the same line as the one of Theorem 1.1. We
denote by ρ̃ and ũ the extensions of ρ and u := −∇U ′(ρ) constructed via Lemma 4.1. In
particular, note that ũ 6= −∇U ′(ρ̃) outside the domain. In the case where |U ′′′+ (0)| <∞,
we also extend U as a C3 function on R as in the proof of Theorem 1.1.

Then we take as relative energy

(4.31) Zρ(t,XN ) := Fε,ρ(t,XN ) +
1

2
‖XN (t)−X(t)‖2 .

By equation (4.16), the time derivative of Zρ,u(t,XN ) satisfies
(4.32)

d

dt
Zρ(t,XN ) +

d

dt
Hn(t) =

8∑

i=4

Ji − 〈ẊN (t) +∇U ′(ρ̃(t,XN (t))), ẊN (t)− ũ(t,XN (t))〉 ,

where the terms Hn(t) and Ji are defined as in equation (4.8) and (4.17), respectively.
Adding and subtracting ũ(t,XN (t)) and ∇U(ρ̃(t,X(t)) in the last term we obtain

(4.33)
d

dt
Zρ(t,XN ) +

d

dt
Hn(t) + 2Kũ(t,XN ) =

10∑

i=4

Ji ,

where

J9 := 〈ũ(t,X(t))− ũ(t,XN (t)), ẊN (t)− ũ(t,XN (t))〉 ,

J10 := 〈∇U(ρ̃(t,X(t)))−∇U(ρ̃(t,XN (t))), ẊN (t)− ũ(t,XN (t))〉 .
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The estimates for the terms Ji are analogous to those in the proof of Theorem 1.1.
In particular, we obtain

6∑

i=4

Ji ≤ Kε,ũ(t,XN ) + C1Zρ(t,XN ) ,

where now C1 := 1 + A′LipT (ũ), and as in the previous proof A′ := max(2, A). The
terms J7 and Hn are estimated as in equations (4.22) and (4.24), respectively, with the
same constants C2 and C4. For J8, proceeding as in (4.23), we obtain

(4.34)

J8 ≤
1

ε

∫ t

tn

(
1

2
‖ẊN (t′)‖2 +

1

2
‖u(t,Xε

N (tn))‖2
)

dt′

≤ 1

2ε
(
‖XN (tn)−Xε

N (tn)‖2
2ε

− ‖XN (tn+1)−Xε
N (tn)‖2

2ε
) +

τ

2ε
‖u‖2L∞([0,T ]×M)

≤ 1

2ε
(Fε(XN (tn))−Fε(XN (tn+1))) +

τ

2ε
‖u‖2L∞([0,T ]×M)

=:
∆n

2ε
+ C3

τ

ε
,

where we used the equation

‖ẊN (t)‖2 = − d

dt

‖XN (t)−Xε
N (tn)‖2

2ε

to pass from the first to the second line, and the inequality

‖XN (tn+1)−Xε
N (tn)‖2

2ε
+ U(ρεN (tn)) ≥ Fε(XN (tn+1))

to pass from the second to the third line. Finally, the last two terms are estimated as
follows

J9 + J10 ≤
1

2
Kε,ũ(t,XN (t)) + 2(LipT (ũ) + LipT (∇U ′(ρ̃))‖XN (t)−X(t)‖2

=:
1

2
Kε,ũ(t,XN (t)) + C5Zρ(t,XN ) .

Introducing Zn(t) := Zρ(t,XN ) +Hn(t), and proceding as in the previous proof, we
obtain

d

dt
Zn(t) +

1

2
Kε,ũ(t,XN ) ≤ 2(C1 + C2 + C5)Zn(t) + (

C2

2
+ 2(C1 + C2 + C5)C4)ε

+
∆n

2ε
+ C3

τ

ε

=: C6Z
n(t) + C7ε+ C3

τ

ε
+

∆n

2ε
.

Therefore, by the same reasoning as above

Zρ(T,X) +
1

2

∫ T

0
Kε,ũ(t,XN ) ≤2(Zρ,u(0, XN ) +H0(0) + C7ε+ C3

τ

ε
) exp(C6T )

+
τ

ε
(Fε(XN (0))−Fε(XN (T ))) exp(C6T ) + 2C4ε .
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However, note that

Fε(XN (0))−Fε(XN (T )) ≤ Fε(XN (0))−minU ≤ U(ρ(0))−minU +
W 2(ρ(0), ρN (0))

2ε
.

We conclude the proof using (4.29) and (4.30) to bound this latter term as well as
Zρ(0, XN ) +H0(0), and using Lemma 4.1 to bound the constants in the final estimate.

�
Remark 4.3. Note that the dependency of our estimates on hN is only due to the bound
(4.30). In particular, the error estimates in Theorem 1.1 and 1.2 hold also replacing
hN with δN .

Remark 4.4. We observe that we can obtain similar convergence estimates also on the
Lagrangian velocity as it can be easily verified with the following triangular inequality

(4.35)
‖ẊN (t)− Ẋ(t)‖X ≤ ‖ẊN (t)− ũ(t,XN (t))‖X + ‖ũ(t,XN (t))− ũ(t,X(t))‖X

≤
√

2Kũ(t,XN ) + LipT (ũ)‖XN (t)−X(t)‖X .
Remark 4.5. The regularity of the exact solutions required in Theorem 1.1 and 1.2 is
chosen in order to apply the extension Lemma 4.1. However, examining the constants
appearing in the estimates above, one can see that this is stronger than what is actually
required from the extended variables themselves. For example, one can check that the
proof still holds if u is of class C1,1 on [0, T ]×M with C1,1 divergence in space, uniformly
in time, and admits an extension ũ with the same regularity. If M is sufficiently regular,
say simply connected with a smooth boundary, such an extension can be constructed
using Fefferman’s extension theorem [11] as in Lemma 4.1 but applied to the potentials
obtained via the Helmholtz decomposition of u.

5. Implementation

5.1. Computation of the Moreau-Yosida regularization. In this section we de-
scribe how the schemes (1.16) and (1.21) can be implemented. In particular, we show
that computing the gradient vector field driving the dynamics amounts to solving a
semi-discrete optimal transport problem at each time step.

Definition 5.1 (Laguerre diagram). The Laguerre diagram of (x1, . . . , xN ) ∈ (Rd)N
with weights (w1, . . . , wN ) ∈ RN is a decomposition of M into N subsets (Li)i defined
by

Li := {x ∈M | ∀j ∈ {1, . . . , N}, |x− xi|2 + wi ≤ |x− xj |2 + wj} .

In the following we will identify XN with (Rd)N , i.e. we regard an element XN ∈ XN
as the collection of the particle positions (Xi

N )i ∈ (Rd)N . With this identification, the

functional Fε can be interepreted as a function on (Rd)N , and its gradient at a given
point as a vector in (Rd)N . Let us introduce the set

DN := {(x1, . . . , xN ) ∈ (Rd)N | xi = xj for some i 6= j} .

In the following proposition we collect the results of Proposition 11 and 13 in [30]
adapted to our setting. It gives the explicit expression of the regularized density and
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the gradient of the regularized energy appearing in the time-continuous schemes given
by (1.12) and (1.15).

Proposition 5.2. Let X = (x1, . . . , xN ) ∈ (Rd)N \ DN , and set ρN =
∑

i ρ0[Pi]δxi.
Then the unique minimizer ρεN of problem satisfies

ρεN (x) = (2εU ′)−1((wi − |x− xi|2) ∨ U ′(0)) , ∀x ∈ Li ,
where (Li)i is the Laguerre diagram associated with the positions (x1, . . . , xN ) and the
weights (w1, . . . , wN ), which are uniquely defined up to an additive constant by the con-
dition ρεN [Li] = ρ0[Pi]. Moreover, Fε interpreted as a function on (Rd)N is continuously

differentiable on (Rd)N \ DN and

∇xiFε(X) = ρ0[Pi]
xi − bi(X)

ε
, bi(X) :=

1

ρ0[Pi]

∫

Li

xρεNdx .

Remark 5.3 (Power energies). If the energy is defined by the power function

U(r) =
rm

m− 1
,

for m > 1, then the minimizer ρεN has the following form:

ρεN (x) =

[(
m− 1

m

)
(wi − |x− xi|2)+

2ε

] 1
m−1

∀x ∈ Li .

Actually, in order to compute the solutions of the fully-discrete scheme, we do not
need the expression for the gradient in Proposition 5.2, but we just need to identify
PXN

Xε
N (tn) in (1.16) and (1.21). For this, assume that (Xi

N (tn))i ∈ (Rd)N \ DN and
let (Li)i be the Laguerre diagram associated with ρεN (tn). Then, for any YN ∈ XN , we
have ∫

S0

Xε
N (tn) · YNρ0 dx =

∑

i

Y i
N ·
∫

Pi

Xε
N (tn)ρ0 dx =

∑

i

Y i
N ·
∫

Li

xρεN (tn) dx .

Therefore,
PXN

Xε
N (tn)(ω) = bi(XN (tn)) ∀ω ∈ Pi ,

where bi(XN (tn)) ∈ Rd is the barycenter of ρεN (tn) restricted on Li.

Remark 5.4 (Initialization by optimal quantization). The partition PN of the support
S0 ⊆ M of ρ0 which is required to define the space XN (see Section 1.2) can be itself
defined as the interesection of a Laguerre diagram (Li)i with S0. For instance, assuming
the masses to be equal, i.e. mi = ρ0[M ]/N for i = 1, . . . , N , one can select the vector of
positions (x1, . . . , xN ) ∈ (Rd)N defining the diagram to belong to the argmin of

(y1, . . . , yN ) ∈ (Rd)N 7→W2

(∑

i

ρ0[M ]

N
δyi , ρ0

)
,

so that there exists a vector of weights (w1, . . . , wN ) ∈ RN such that ρ0[Li] = ρ0[M ]/N .
Then one can define the initial conditions XN (0) by XN (0)|Li = xi, and therefore

ρN (0) =
∑

i
ρ0[M ]
N δxi. With this choice δN = W2(ρN (0), ρ0) . N−1/d (see, e.g., [20]).

In view of Remark 4.3, this ensures the convergence of the schemes independently of the
size of the partion hN .
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5.2. Time integration and linear potentials. The schemes (1.12) and (1.15) can
be easily generalized to the case when the energy of the system contains an additional
linear term of the form ∫

M
V dρ ,

where V ∈ C1,1(M) is a given function. At the discrete level, it is more convenient to
treat this term independently of the Moreau-Yosida regularization, i.e. by adding to the
discrete energy the term

(5.1)

∫

Rd

Ṽ dρN =

∫

M
Ṽ ◦XN dρ0 ,

where Ṽ is a C1,1 extension of V , e.g., constructed using Fefferman’s extension theorem
[11]. Then, in view of Proposition 5.2 the discrete scheme (1.12) would be replaced by

(5.2) Ẍi
N (t) = −X

i
N (t)− bi(XN (tn))

ε
−∇Ṽ (Xi

N (t)) ,

for all i ∈ {1, . . . , N} and t ∈ [tn, tn+1), where bi is defined as in Proposition 5.2.
Therefore for each time-step one needs to:

(1) find the optimal density ρεN (tn) and the associated barycenters bi(XN (tn)): as
in [19], this is done by applying a damped Newton’s method to solve the system
of optimality conditions ρεN (tn)[Li] = ρ0[Pi] from Proposition 5.2;

(2) solve N decoupled systems of ODEs in (5.2), which can be done explicitly for

particular choices of Ṽ .

The same holds for the scheme (1.15) upon replacing Ẍi
N (t) by Ẋi

N (t).

Finally, note that even with the additional term (5.1), the proofs of convergence above
still apply without modifying the relative energies and with only minor modifications. In
particular, the constant in Theorem 1.1 and 1.2 would additionally depend on Lip(∇Ṽ ).

6. Numerical tests

In this section we demonstrate numerically the behavior of the scheme in terms of
convergence with mesh and time-step refinement. The tests presented hereafter corre-
spond to the internal energy/pressure function

(6.1) U(r) = P (r) = r2 ,

for which the Euler equations (1.1) yield the shallow water equations without rotation
and the gradient flow (1.4) yields the porous medium equation with a quadratic non-
linearity. Note, however, that in tests below the vector field ∇U ′(ρ) is not Lipschitz (in
fact, it is discontinuous at the boundary of the support of ρ), so they are outside the
limits of applicability of our theorems. For all the tests the discrete initial condition
are determined by optimal quantization with respect to the Wasserstein distance as in
Remark 5.4.

For the computation of the Moreau-Yosida regularization, we used the open-source
library sd-ot, which is available at https://github.com/sd-ot.
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1/
√
N ∆X rate ∆U rate

1.25e-01 4.71e-02 - 1.66e-02 -
6.25e-02 2.78e-02 7.62e-01 9.39e-03 8.21e-01
3.12e-02 1.55e-02 8.44e-01 5.11e-03 8.77e-01
1.56e-02 8.24e-03 9.08e-01 2.72e-03 9.12e-01

Table 1. Errors and convegence rates for the Barenblatt solution of the
porous medium equation, with ε =

√
τ = 1/

√
N .

6.1. Convergence: porous medium equation. The porous medium equation (1.4)
associated with the energy (6.1) admits the following exact solution

(6.2) ρ(t, x) =
1√
t

(
C2 − 1

16
√
t
|x|2
)

+

on any time interval [t0, T ], with t0 > 0. Initial conditions are given by optimal quan-
tization of the Barenblatt profile at given time. Equation (6.2) describes the evolution
of the so-called Barenblatt profile. The internal energy decays according to

U(t) =
16πC6

3
√
t
,

whereas the Lagrangian flow is given by

(6.3) X(t, x) = x

(
t

t0

)1/4

.

Here we take t0 = 1/16, T = 1 and C = 1/3, and we monitor the following quantities:

(6.4) ∆X := ‖XN (T )−X(T,XN (0))‖X , ∆U := |Uε(ρN (T ))− U(T )| .
Note that ∆X is an order one approximation of the L2 distance between the discrete
and continuous flows appearing in the convergence estimates. For a given number of
particles N , we take ε =

√
τ = 1/

√
N , which implies a rate of convergence of 1/2

according to Theorem 1.2 (see also Remark 5.4). In Figure 1 we show the density ρεN
for fixed N and at different times and the associated Laguerre diagram. Table 1 collects
the errors and the associated convergence rates which confirm our estimate. Figure
2 shows the time evolution of the internal energy, which decreases monotonically in
accordance with the stability estimate (1.22).

6.2. Convergence: Euler equation. We perform two different convergence tests for
the Euler model (1.1). For the first we construct an exact solution of the equation by a
time rescaling of the Barenblatt solution above, i.e. we take

(6.5) ρ(t, x) =
4

1 + 2t+ 5t2

(
C2 − 1

4(1 + 2t+ 5t2)
|x|2
)

+

.

This is an exact solution of the model associated with the Lagrangian flow

(6.6) X(t, x) = x
√

5t2 + 2t+ 1
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Figure 1. Evolution of the density ρεN for the Barenblatt solution of

the porous medium equation for N = 576, and ε =
√
τ = 1/

√
N . Upper

row: weights evolution; lower row: Laguerre diagram evolution.

Figure 2. Time evolution of the discrete internal energy Uε(ρN (t)) for
the Barenblatt solution of the porous medium equation (the red line
corresponds to the exact energy evolution).

and the initial conditions Ẋ(0, x) = x. In this case the exact kinetic and internal energy
evolutions are given by

(6.7) K(t) =
4πC6(10t+ 2)2

3(5t2 + 2t+ 1)
, U(t) =

64πC6

3(1 + 2t+ 5t2)
.
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1/
√
N ∆X rate ∆E rate

1.25e-01 4.36e-02 - 2.46e-02 -
6.25e-02 2.77e-02 6.53e-01 1.68e-02 5.52e-01
3.12e-02 1.61e-02 7.83e-01 1.02e-02 7.13e-01
1.56e-02 8.80e-03 8.71e-01 5.71e-03 8.44e-01

Table 2. Errors and convegence rates for the Barenblatt solution of the
Euler equations, with ε =

√
τ = 1/

√
N .

For this test, we take t0 = 0, T = 0.6 and C = 1/3, and we monitor the flow error ∆X
defined in equation (6.4) and the total energy error

(6.8) ∆E := |Eε(T,XN )− E(T )| ,
where E(T ) = K(T ) + U(T ).

For the second test, we add to the system a linear confinement potential

(6.9) V (x) =
5

8
|x|2 .

Then, we consider the exact solutions associated with the steady density

(6.10) ρ(x) =

(
C2 − 1

16
|x|2
)

+

and the rigid rotation given by the flow

(6.11) X(t, x) = R(t)x , R(t) =

(
cos(t) sin(t)
− sin(t) cos(t)

)
.

Both the kinetic and internal energy are constant during the evolution and they are
given by

(6.12) K(t) =
64πC6

3
, U(t) =

16πC6

3
.

For this test we take t0 = 0, T = 1 and C = 1/3, and we monitor the same quantities
as above.

As before, for a given number of particles N , we take ε =
√
τ = 1/

√
N , which

implies a rate of convergence of 1/2 according to Theorem 1.1 (see also Remark 5.4).
Tables 2 and 3 collect the errors and the associated convergence rates for the two tests
and confirm our error estimate. Figures 3 and 4 show the time evolution of the total,
kinetic and internal energy; note that the discrete total energy decreases monotonically
in accordance with the stability estimate (1.19).
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Figure 3. Time evolution of the discrete total energy Eε(t,XN ) (left),
kinetic energy (center), and internal energy Uε(ρN (t)) (right) for the
Barenblatt solution of the Euler equations (the red line corresponds to
the exact energy evolution).

1/
√
N ∆X rate ∆E rate

1.25e-01 7.28e-02 - 3.00e-02 -
6.25e-02 3.76e-02 9.55e-01 1.59e-02 9.18e-01
3.12e-02 1.92e-02 9.71e-01 8.16e-03 9.61e-01
1.56e-02 9.84e-03 9.61e-01 4.28e-03 9.29e-01

Table 3. Errors and convegence rates for the rigid rotation solution of
the Equation equation, with ε =

√
τ = 1/

√
N .

Figure 4. Time evolution of the discrete total energy Eε(t,XN ) (left),
kinetic energy (center), and internal energy Uε(ρN (t)) (right) for the
rigid rotation solution of the Euler equations (the red line corresponds
to the exact energy evolution).
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Chapter 3

Unbalanced Optimal transport,
geometry and PDE

3.1 Regularity theory and geometry of unbalanced optimal
transport.

Articles:

• Regularity theory and geometry of unbalanced optimal transport. Submit-
ted 2023 Gallouët T.O., Ghezzi R. et Vialard F.X. https://hal.science/
hal-03498098v1.

Collaborators: Roberta Ghezzi and Francois Xavier Vialard

Main contributions:

• We investigate the regularity of optimal transport maps for Unbalanced op-
timal Transport, making the link with regularity of a classical Optimal Trans-
port problem.

• We provide an equivalent of the Brenier Polar Factorization Theorem in the
UOT case.

• We explicit the link between c-convexity and a cone-distance convexity
linked to UOT.

• We also explicite the link between c-convex functions and cone-distance con-
vex functions.

• It allows us to show for instance that the MTW condition on the Cone with
the cone distance implies the MTW condition for the cost associated cost c on
the base space.

Research directions: A natural follow-up of this paper is to understand how to
use this new polar factorization theorem in order to compute numerical approxi-
mations of some PDE, in the spirit of what we have done in Section 2.3 with La-
grangian numerical scheme. We also want to pursue this investigation onto the link
between the geometry of the underlying space and the one on the cone space. Our
main motivation is to provide more efficient numerical methods for some problems
related to UOT.

https://hal.science/hal-03498098v1
https://hal.science/hal-03498098v1
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Abstract. Using the dual formulation only, we show that regularity of unbalanced optimal trans-

port also called entropy-transport inherits from regularity of standard optimal transport. We then
provide detailed examples of Riemannian manifolds and costs for which unbalanced optimal trans-

port is regular. Among all entropy-transport formulations, Wasserstein-Fisher-Rao metric, also

called Hellinger-Kantorovich, stands out since it admits a dynamic formulation, which extends the
Benamou-Brenier formulation of optimal transport. After demonstrating the equivalence between

dynamic and static formulations on a closed Riemannian manifold, we prove a polar factorization

theorem, similar to the one due to Brenier and Mc-Cann. As a byproduct, we formulate the
Monge-Ampère equation associated with Wasserstein-Fisher-Rao (WFR) metric, which also holds

for more general costs. Last, we study the link between c-convex functions for the cost induced

by the WFR metric and the cost on the cone; the main result is that weak Ma-Trudinger-Wang
condition on the cone implies it for the cost induced by WFR.
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1. Introduction

In the past few years, optimal transport has seen an impressive development mainly driven by
applied fields in which real data require robust and largely applicable models. In many applications,
data are modeled by probability distributions. To compare two such distributions, optimal transport
(OT) provides a distance which is geometrically meaningful. Indeed, OT lifts a distance on the base
space to the space of probability measures. In OT, the underlying idea consists in explaining variation
of mass between measures via displacement, thereby having a global constraint of equal total mass
for the two measures. The last constraint can easily be alleviated with global renormalization but

The second author is supported by project “ConDiTransPDE”, Control, diffusion and transport problems in PDEs

and applications, project number E83C22001720005, funded by Università degli Studi di Roma “Tor Vergata”, Rome
Italy.
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the obtained model will not be able to account for possible local change of mass. Considering this
shortcoming [20, 4], it was natural to enrich the model using local change of mass as proposed by
the last author and co-authors and independently by others in [8, 9, 25, 30].

When looking for a generalization of optimal transport to unnormalized measures, there are at
least two possible directions. The first one consists in extending the Kantorovich formulation of opti-
mal transport, which is static in contrast to the Benamou-Brenier formulation. This idea amounts to
relax the marginal constraints using some divergence such as the relative entropy (Kullback-Leibler).
By doing so, it is not trivial to know whether the resulting functional gives a proper distance between
positive densities. The second one is to start by the dynamic formulation of Benamou and Brenier
[3], which is of interest since it uncovers the Riemannian-like structure of the Wasserstein metric for
the L2 cost. A natural Riemannian tensor on the space of densities which is one-homogeneous with
respect to rescaling of mass is the Hessian of the entropy, known as the Fisher-Rao metric when
restricted to the set of probability densities.

The latter idea was the starting point of the concurrent works [8, 9, 25, 30] that introduced what
is now called unbalanced optimal transport and which has seen several applications in data sciences.
Arguably, the most significant result on this model is the equivalence between the static formulation
and the dynamic formulation [9, 30]. Importantly, the article [30] gives another characterization of
unbalanced optimal transport as a standard optimal transport problem on the cone over the base
manifold with second order moment constraints. This formulation was exploited in [19, 41] to refor-
mulate the Camassa-Holm equation as a standard incompressible Euler equation on an extension of
the cone. Then, generalized flows à la Brenier were studied in [18] for the Camassa-Holm equation
and its higher-dimensional extension. Other interesting extensions and related works of the unbal-
anced framework include the projection of this distance to the set of probability measures using
homogeneity property [28] and gradient flows that retain more convexity than standard Wasserstein
gradient flows [27, 26]. The dynamic formulation of unbalanced optimal transport has also drawn
some interest [5, 2], also for defining new metrics between metric measure spaces [34, 39]. Applica-
tions of unbalanced optimal transport are numerous [45, 36, 38, 39, 15], in particular in data science
and computer vision, since this model is more robust in some sense than standard optimal transport
and computationally feasible using entropic regularization [10].

An open question in this unbalanced framework is the issue of regularity. In the context of
standard optimal transport, regularity appeared after Brenier stated the existence of an optimal
transport map under mild conditions in Euclidean space. Since then, an “implicit” regularity of
optimal transport was discovered in [7] and following works, see [13] for a recent overview. Regularity
does not hold in general but it is observed when the underlying densities are regular and have convex
support in Euclidean space. These results are based on Monge-Ampère equation and they have
triggered a number of works concerned with extensions to Riemannian manifolds [32].

Contributions and structure of the article. In this paper, we address the question of
regularity of unbalanced optimal transport. We focus on two important instances of the problem
which give rise to a metric on the space of positive Radon measures, namely the Wasserstein-Fisher-
Rao (or Hellinger-Kantorovich) and the Gaussian-Hellinger distances. Obviously, there is not just a
single map as in standard optimal transport. However, the objects of interest are still encoded via
optimal potentials, on which regularity can be studied. Alternatively, regularity can also be tackled
from the primal formulation. Indeed, a plan which minimizes the primal formulation of unbalanced
optimal transport is an optimal transport plan between its marginals.

From the above remarks, it is expected that regularity of the potentials is inherited from regularity
theory for optimal transport. This fact is proven in Section 2 in Theorem 4 by studying the dual
formulation and in particular its first-order optimality condition which encodes optimal transport
between the optimal marginals of the primal formulation. Starting from the general formulation
of [30], our regularity theorem requires Lipschitz regularity of the optimal potentials. Existence of
Lipschitz potentials is proven in Section 2.2, under geometric conditions on the measures. Under
these conditions, we obtain our results for Gaussian-Hellinger and Wasserstein-Fisher-Rao in Section
2.3. In particular, Gaussian-Hellinger is regular on the sphere and the Euclidean space, whereas
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Wasserstein-Fisher-Rao is regular only on the sphere but not on the Euclidean space. We then focus
in Section 3 on the Wasserstein-Fisher-Rao metric for which we show the equivalence between static
and dynamic formulations on a closed Riemannian manifold. To derive our main contribution in
this section, we take advantage of a geometric point of view to show a polar factorization [6, 32]
theorem on a semi-direct product of groups, which is the natural extension of the diffeomorphism
group to the unbalanced setting. Such a decomposition inherits the regularity results of unbalanced
optimal transport. Last, we study c-convex function for the cost on the cone and the cost induced
by the Wasserstein-Fisher-Rao metric. Our main result is to show that the so-called weak MTW
condition on the cone implies the same condition for the cost induced by Wassertein-Fisher-Rao.

2. Regularity of unbalanced optimal transport

2.1. From optimal transport regularity to unbalanced optimal transport regularity. In
what follows, we use the notation X,Y for two spaces that are either Euclidean spaces, bounded
convex sets of Euclidean spaces, or Riemannian manifolds. In fact, results in this section apply to
the more general setting of [30] but since we are interested in regularity theory, we choose to focus
on the aforementioned cases.

We consider the general case of an entropy function, that replaces the relative entropy.

Definition 1. An entropy function F : R → [0,+∞] is a convex, lower semi-continuous, nonnegative

function such that F (1) = 0 and F (x) = +∞ if x < 0. Its recession constant is F
′
∞ = limr→+∞

F (r)
r .

Proposition 1. The Legendre-Fenchel transform of F , denoted by F ∗, has a domain of definition
dom(F ∗) = (−∞, F

′
∞] and it satisfies

(2.1) ∂F ∗(dom(F ∗)) ⊂ R≥0 .

Moreover, if ∂F (0) = +∞, then ∂F ∗(dom(F ∗)) ⊂ R>0.

Remark 1. The hypothesis ∂F (0) = +∞ is satisfied, for instance, by the choice F (x) = x log(x) −
x + 1, arguably the most important and most frequent entropy function used in unbalanced optimal
transport. In this case, the Legendre-Fenchel transform is F ∗(x) = ex − 1.

Definition 2. Let F be an entropy function and µ, ν be Radon measures on a Riemannian manifold
M . The Csiszàr divergence associated with F is

(2.2) DF (µ, ν) =

∫

M

F

(
dµ(x)

dν(x)

)
dν(x) + F

′
∞

∫

M

dµ⊥ ,

where µ⊥ is the orthogonal part of the Lebesgue decomposition of µ with respect to ν.

For F (x) = x log(x) − x+ 1, DF is also known as Kullback-Leibler divergence or relative entropy,
and it reads

(2.3) KL(µ, ν) =

∫
dµ

dν
log

(
dµ

dν

)
dν + |ν| − |µ| .

Given F , the resulting divergence DF is jointly convex and lower semi-continuous on the space of
pairs of finite and positive Radon measures, see [30, Corollary 2.9]. We can now define the primal
formulation of unbalanced optimal transport, which is similar to the Kantorovich formulation of
optimal transport. We denote by M+(X) the space of finite and positive Radon measures on X.
As is standard in optimal transportation, we need a cost function, which can be unbounded in our
setting.

Definition 3. A function c : M ×M → R ∪ {+∞} is a cost function if it is bounded below.

Definition 4 (Kantorovich UOT). Let (ρ0, ρ1) ∈ M+(X)×M+(Y ) and F0, F1 be entropy functions.
The unbalanced optimal transport problem is defined as

(2.4) UOT(ρ0, ρ1) = inf
γ∈M+(X×Y )

DF0
(γ0, ρ0) +DF1

(γ1, ρ1) +

∫

X×Y
c(x, y) dγ(x, y) ,

where γ0, γ1 are marginals of γ, and c : X × Y → R ∪ {+∞} is a cost function.
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The distance between two Dirac masses can be computed explicitly: let ρ0 = rδx, ρ1 = sδy, in
order to compute UOT(ρ0, ρ1) one has to compute the local quantity

(2.5) D((x, r), (y, s)) := inf
z∈R>0

rF0(z/r) + sF1(z/s) + c(x, y)z .

This quantity can be computed explicitly for the Kullback-Leibler divergence for both F0 and F1

and is equal to D((x, r), (y, s)) = r + s− 2
√
rse−c(x,y)/2; it will be useful for example to derive the

Monge formulation of UOT.
The UOT problem has many equivalent reformulations, in this section, we rely on the dual

formulation of (2.4) given by the Fenchel-Rockafellar theorem.

Proposition 2 (Dual UOT). The dual formulation of (2.4) is

(2.6) S(z0, z1) := sup
(z0,z1)∈Cb(X)×Cb(Y )

−
∫

X

F ∗
0 (−z0(x)) dρ0(x) −

∫

Y

F ∗
1 (−z1(y)) dρ1(y)

under the constraint

(2.7) z0(x) + z1(y) ≤ c(x, y) .

For a proof in the general case, see for instance [30, Proposition 4.3].
Our goal is to show that regularity of unbalanced optimal transport follows from regularity of

standard optimal transport for the cost c. This result can be expected since once the optimal
marginals γ0, γ1 are fixed in (2.4), optimizing on the plan γ (with fixed marginals) is indeed a
standard optimal transport problem between γ0 and γ1 for the cost c.

Lemma 3 (Linearized UOT). Assume that the entropy functions Fi are differentiable on their
domain. Let (z⋆0 , z

⋆
1) ∈ Cb(X) × Cb(Y ) be a pair of optimal potentials for the dual problem (2.6)

satisfying range(−z⋆i ) ⊂ dom(F ∗
i ). Then (z⋆0 , z

⋆
1) is a solution of the standard optimal transport

problem

(2.8) sup
(z0,z1)∈Cb(X)×Cb(Y )

∫

X

z0(x) dρ̃0(x) +

∫

Y

z1(y) dρ̃1(y)

under the constraint z0(x) + z1(y) ≤ c(x, y) where ρ̃i = F ∗
i
′(−z⋆i )ρi for i = 0, 1.

Proof. Let (δz0, δz1) ∈ Cb(X)×Cb(Y ) denotes the first order admissible variations of z0, z1 satisfying
the inequality constraint z0(x) + δz0(x) + z1(y) + δz1(y) ≤ c(x, y). Given some potentials (z0, z1) ∈
Cb(X) × Cb(Y ), one can differentiate the dual functional (2.6) to get

∫

X

δz0(x)F ∗
0
′(−z0(x)) dρ0(x) +

∫

Y

δz1(y)F ∗
1
′(−z1(y)) dρ1(y) ,

At (z⋆0 , z
⋆
1) the optimality implies for all admissible (δz⋆0 , δz

⋆
1)

∫

X

δz⋆0(x)F ∗
0
′(−z⋆0) dρ0(x) +

∫

Y

δz⋆1(y)F ∗
1
′(−z⋆1(y)) dρ1(y) ≤ 0,

or equivalently by linearity
∫

X

(z⋆0 + δz⋆0(x))F ∗
0
′(−z⋆0) dρ0(x) +

∫

Y

(z⋆1 + δz⋆1(y))F ∗
1
′(−z⋆1(y)) dρ1(y) ≤

∫

X

z⋆0(x)F ∗
0
′(−z⋆0) dρ0(x) +

∫

Y

z⋆1(y)F ∗
1
′(−z⋆1(y)) dρ1(y),

for all (z̄0, z̄1) = (z⋆0 + δz⋆0 , z
⋆
1 + δz⋆1) satisfying z̄0(x) + z̄1(y) ≤ c(x, y). It exactly says that (z⋆0 , z

⋆
1)

is optimal in the constraint problem (2.8).
□

Remark 2. An immediate consequence of this proof is that the corresponding Radon measures ρ̃i
have the same total mass. Indeed, given a pair of potentials (z0, z1) satisfying (2.7), for every λ ∈ R
the pair (z0 + λ, z1 − λ) still satisfies (2.7). However, the linearized objective functional differs with
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the term λ(|ρ̃0| − |ρ̃1|) where | · | denotes total mass. This term can be made arbitrarily large unless
|ρ̃0| = |ρ̃1|, thus contradicting the fact that the linearization is bounded.

Remark 3. Following Lemma 3 and Brenier’s work [6, Section 1.4], a potential z0 solution of
Proposition 2 can be taken as a definition of variational solutions for a UOT-Monge-Ampère equation
given by :

(2.9) det
[
−∇2z0(x) + (∇2

xxc)(x, φ(x))
]

= |det [(∇x,yc)(x, φ(x))]| F ∗
0
′(−z⋆0)ρ0(x)

F ∗
1
′(−z⋆1(y))ρ1 ◦ φ(x)

·

See Proposition 16 for more detailed computation in particular cases like Gaussian-Hellinger or
Hellinger-Kantorovich problems.

Regularity results for such optimal potentials are therefore regularity results for these PDE. The
following definition is useful to state the main result of this section.

Definition 5. Let (ρ0, ρ1) ∈ M+(X) ×M+(Y ) be two measures which are absolutely continuous
with respect to a reference volume with densities (ρ0, ρ1) ∈ Ck,α(X) × Ck,α(Y ) for a given non-
negative integer k, α ∈ (0, 1). We say that (ρ0, ρ1) is a k-regular pair of measures if, for every
0 ≤ l ≤ k and every pair (λ0, λ1) ∈ Cl,α(X)×Cl,α(Y ) of positive functions bounded away from zero
and infinity, the optimal potentials, for the classical balanced optimal transport problem between
the pair ρ̃0 = λ0ρ0/|λ0ρ0| and ρ̃1 = λ1ρ1/|λ1ρ1|, are of class Cl+2,α.

This definition/assumption encapsulates the regularity of balanced optimal transport needed for
its extension to the unbalanced setting. This condition is realized in [12, Theorem 3.3] for Ck

positive densities whose support is a convex domain and which are bounded away from zero and
infinity. More generally, this definition fits well with the regularity theory developed for Monge-
Ampère equation. Indeed, there is often geometric assumptions on the support of the measures, for
instance convexity in the Euclidean case, which are left unchanged under pointwise multiplication
with a positive function.

We now state the main result of this section which says that unbalanced optimal transport inherits
the regularity of standard optimal transport associated with the cost c.

Theorem 4 (Reduction to standard optimal transport). Assume that
(1) the Fenchel-Legendre transform of the entropy functions have domain [0,+∞), are Ck+1 on

(0,∞) and ∂Fi(0) = +∞, i = 0, 1;
(2) the pair of measures (ρ0, ρ1) is k-regular;
(3) the optimal potentials for unbalanced optimal transport (z⋆0 , z

⋆
1) are Lipschitz continuous.

Then, the optimal pair (z⋆0 , z
⋆
1) is of class Ck+2,α(X) × Ck+2,α(Y ).

Assumption (1) ensures that the resulting marginals are sufficiently smooth and with unchanged
support, i.e., the multiplicative term F ∗

i
′(−z⋆i ) does not vanish. Existence of Lipschitz potentials

is in general a consequence of Lipschitz continuity of the cost. However, for unbounded costs, it
requires more assumptions, as detailed in the next section for the Wasserstein-Fisher-Rao metric.

Assumption (2) says that a theory of regularity for a class of optimal maps in the case of classical
optimal transport is available. This is true for example under conditions on the Ma-Trudinger-Wang
tensor see [43, Chapter 12] for instance. Some links between the MTW tensor on the underlying
space X and the MTW tensor on the cone over X is discussed in Section 4.

Proof. The proof is a straightforward bootstrap argument based on the combination of Lemma 3
and Hypothesis (2). Since the optimal potentials are Lipschitz, Lemma 3 gives that these potentials
are optimal for a classical balanced optimal transport problem between a new pair of densities
which inherits smoothness from the potentials and the initial densities, namely ρ̃i = F ∗

i
′(−z⋆i )ρi.

Hypothesis (1) gives that F ∗
i
′(−z⋆i ) is Cl if zi ∈ Cl for l ≤ k. It implies that the regularity of ρ̃i is

given by that of zi. At the initialization step of the bootstrap, they are only Lipschitz, then applying
Lemma and Hypothesis (2), the optimal potentials gain in regularity to be C3,1. Then, in turn, we
obtain that the marginals ρ̃i are Cmin(k,3). Iterating this bootstrap argument gives the result, the
optimal potentials are Ck+2,α and the optimal marginals ρ̃i are Ck,α. □
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2.2. Existence of Lipschitz potentials for unbounded costs. The choice of cost c in formula-
tion (2.4) may vary. For instance, in usual applications outside mathematics, the Euclidean squared
distance is often used. From the mathematical point of view, the case of

(2.10) c(x, y) = − log
(

cos2
(
d(x, y) ∧ π

2

))

stands out since it appears in the static formulation of the Wasserstein-Fisher-Rao metric. Impor-
tantly, this cost is unbounded as well as its gradients, since it blows up when d(x, y) is close to π/2.
In this section we prove existence of Lipschitz potential for the maximization problem in (2.6), (2.7)
for unbounded costs under an admissibility assumption on the source and target measure. Such
condition may be interpreted by saying that pure creation/destruction of mass is forbidden or, in
other words, mass transport must be performed between the source and target measure on the whole
supports.

For simplicity, we consider the case where M is either a compact Riemannian manifold or a
convex and compact domain in Euclidean space. Let us recall the notion of conjugate function. Let
c : M ×M → R ∪ {+∞} be a cost function. The c-conjugate of a function z : M → R is defined by

ẑ(x) = inf
y∈M

c(x, y) − z(y) .

We now define a class of functions that will be considered in this section as costs. In particular,
such costs can be unbounded.

Definition 6. A function c : M×M → R∪{+∞} is a locally Lipschitz cost function if it is bounded
below and if, for every L ∈ R, the restriction of c on the sub-level c−1((−∞, L]) is Lipschitz.

Obviously, the Lipschitz constant on a sub-level may depend on the chosen L.

Definition 7 (Admissible measures). A pair of Radon positive measures (ρ1, ρ2) is admissible if,
denoting Ki = Supp(ρi), Ki ̸= ∅ i = 0, 1, and there holds

(2.11) max

(
sup
x∈K1

inf
y∈K2

c(x, y), sup
y∈K2

inf
x∈K1

c(x, y)

)
<∞ .

We denote this finite number by cH(ρ1, ρ2).

When considering the distance as cost function, being admissible simply means that the supports
of the source and target measure have finite Hausdorff distance.

Proposition 5. Let F0, F1 be entropy functions that have finite value at 0. Let (ρ0, ρ1) ∈ M+(M)2

be a pair of admissible measures. Then there exists an optimal pair (z0, z1) ∈ C(M)2 for the
maximization problem in (2.6). Moreover, zi is locally Lipschitz on Ki, i = 0, 1 and z1 = ẑ0.

Let us first prove an auxiliary technical lemma.

Lemma 6. Let (ρ0, ρ1) be an admissible pair of measures. Then, there exist x1, . . . , xk ∈ M and
r1, . . . , rk > 0 such that ρ0(B(xi, ri)) > 0 and for any y ∈ K1, there exists ī ∈ {1, . . . , k} such that
supx∈B(xī,rī)

c(x, y) < cH(ρ0, ρ1) + 1.

Proof. Recall that Ki, i = 0, 1, is the support of ρi. Since the pair (ρ0, ρ1) is admissible, for every y ∈
K1, there exists B(xy, ry) and B(y, δy) small enough such that supx1∈B(xy,ry),y1∈B(y,δy) c(x1, y1) <

cH(ρ0, ρ1) + 1 and ρ0(B(xy, ry)) > 0. As K1 is compact, there exists a finite number of points
(yi)i=1,...,k such that K1 ⊂ ∪ki=1B(xy, ry). Therefore with xi = xyi and ri = ryi , for i = 1, . . . , k,
the announced result is satisfied. □
Proof of Proposition 5. Recall that S(z0, z1) denotes the functional in the maximization problem
(2.6). Remark that S(0, 0) = 0, hence the supremum in (2.6) is nonnegative. Moreover, taking
the c-conjugate of z0 improves the value of S, i.e., S(z0, ẑ0) ≥ S(z0, z1). Iterating this alternate
optimization enables to restrict the optimization set to pairs of potentials that satisfy z1 = ẑ0 and
z0 = ẑ1 (indeed, the c-conjugate is an involution on its range). We prove that the set

(2.12) E = {(z0, z1) ∈ C(M)2 | (2.7) is satisfied, S(z0, z1) ≥ 0 and z1 = ẑ0, z0 = ẑ1}
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is equibounded and equi-Lipschitz, i.e., there exists a constant L > 0 such that for every pair
(z0, z1) ∈ E , z0|supp(ρ0) and z1|supp(ρ1) are locally L-Lipschitz.

Let us start by equiboundedness of E . Consider B(xi, ri) for i = 1, . . . , k given by Lemma 6 for
the measure ρ0 such that

inf
y∈Supp(ρ1)

min
i=1,...,k

c(y, xi) ≤ cH + 1 .

Since F ∗
0 (x) ≥ ⟨x, 0⟩ − F0(0) = −F0(0), for every i ∈ 1, . . . , k, there holds

0 ≤ S(z0, ẑ0) ≤ −ρ0(B(xi, ri))F
∗
0 (−z̃) + F0(0)ρ0(M) + F1(0)ρ1(M)

where z̃ = max(supx∈B(xi,ri) z0(x), 0). As a consequence, denoting δ > 0 the minimum of ρ0(B(xi, ri))

for i = 1, . . . , k, one has, since F ∗
0 (−z̃) ≥ 0,

(2.13) − F0(0)ρ0(M) − F1(0)ρ1(M) ≤ −δF ∗
0 (−z̃) .

Moreover, since F ∗
0 (x) ≥ ⟨x, 1⟩ − F0(1) = x, the following lower bound

z̃ ≥ −F0(0)ρ0(M) − F1(0)ρ1(M)

δ

holds. Set κ = (−F0(0)ρ0(M) − F1(0)ρ1(M))/δ. Denote by α
def.
= infx∈M mini c(x, xi), then

ẑ0(y) ≤ inf
x
c(x, y) − z0(x)

≤ α− κ .

where xi is chosen such that c(xi, y) < cH(ρ0, ρ1) + 1. Hence ẑ0 is bounded above. As a direct
consequence, z0 is bounded below. By symmetry of the hypothesis on ρ0, ρ1, we obtain that there
exists A,B, depending only on ρ0, ρ1, F ∗

0 , F
∗
1 and cH(ρ0, ρ1) such that B ≤ z0 ≤ A and B ≤ ẑ0 ≤ A,

for every (z0, ẑ0) ∈ E .
We now prove that there exists a uniform constant L such that for every pair (z0, z1) ∈ E , zi is

Lipschitz continuous with constant L. Let (z0, z1) ∈ E . By definition of E , z0 = ẑ1. Since z1 is
bounded above by A, the infimum is attained at a point y(x) such that c(x, y(x)) ≤ B −A,

ẑ0(x) = c(x, y(x)) − z1(y(x))

and moreover, for every x′ ∈M ,

ẑ0(x′) ≤ c(x′, y(x)) − z1(y(x)) .

Subtracting the two previous formulas gives

ẑ0(x′) − ẑ0(x) ≤ c(x′, y(x)) − c(x, y(x)) .

Let L be the Lipschitz constant of c on the sublevel c−1((−∞, B −A]), then

|ẑ0(x′) − ẑ0(x)| ≤ Ld(x, x′) .

Therefore E is not empty, equibounded and equi-Lipschitz. As a consequence, existence of an
optimal pair (z0, z1) for (2.6) with the required properties is obtained with a standard argument based
on Ascoli–Arzelà theorem for compactness and dominated convergence theorem for the convergence
of the functional S. □

As concerns uniqueness, an obvious sufficient condition is given by the following statement.

Proposition 7. If F ∗
0 and F ∗

1 are strictly convex, the optimal pair (z0, z1) is unique ρ0 and ρ1 a.e.

Proof. The maximization problem (2.6) is strictly convex. □

Collecting the previous results leads to existence and uniqueness of optimal Lipschitz potentials
for (2.4).
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Corollary 8. Let F0(x) = F1(x) = x log(x) − x+ 1 and

(2.14) c(x, y) =
1

2
d(x, y)2, or c(x, y) = − log

(
cos2 (d(x, y) ∧ δπ/2)

)

for some δ > 0. Then, for every pair of admissible measures, there exists a unique pair of Lipschitz
continuous optimal potentials for the dual formulation (2.6).

Note that any pair of measures is admissible for the quadratic cost.
Combining Theorem 4 and Corollary 8, regularity results for the costs in (2.14) can be inferred

in different ways depending on the choice of the ambient space M . When M = Rd, the quadratic
cost supports regularity theorems for optimal transport. For the second cost in (2.14), regularity
results also hold for M = Sd the unit sphere of dimension d and for the sphere of radius 1/2
(see Section 2.3). In [30], such cases are named after Gaussian-Hellinger for the quadratic case,
and Hellinger-Kantorovich for the other cost. The latter is also known as Wesserstein-Fisher-Rao
distance (see for instance [8, 9]).

2.3. Two important costs for regularity of unbalanced optimal transport. We discuss the
case of two important costs in unbalanced optimal transport. The first one is the most commonly
used in practical applications, the Euclidean squared cost. The second one arises naturally from the
dynamic formulation which was originally proposed to introduce this model.

Gaussian-Hellinger distance: Euclidean space and spheres. Regularity in these two cases is
an immediate consequence of Theorem 4 and the regularity of optimal transport, for which sufficient
conditions ensuring assumption (2) in Theorem 4 are well-known. We simply detail the case of the
Euclidean space, for which the following statement holds true, as a consequence of [12, Theorem
3.3].

Corollary 9. Let X,Y be convex sets in Rd and let (µ, ν) ∈ M+(X) × M+(Y ) be a pair of
measures which are absolutely continuous with respect to the Lebesgue measure, with densities (f, g)
bounded away from zero and infinity. Assume the entropy functions F0, F1 have strictly convex and
differentiable Fenchel-Legendre transforms with infinite slope at 0.

If (f, g) ∈ Ck,α(X) × Ck,α(Y ) for some positive integer k and α ∈ (0, 1), then, the pair of
optimal potentials (z0, z1) in the dual formulation (2.6) for the quadratic cost 1

2∥x− y∥2 belongs to

Ck+2,α(X) × Ck+2,α(Y ) and ∇z0 is a Ck+1,α-diffeomorphism between X and Y .

Wasserstein-Fisher-Rao distance. We consider the case of a d-dimensional Riemannian manifold
M having constant sectional curvature, i.e., M may be the Euclidean space, a d-sphere, or the
hyperbolic space and

(2.15) c(x, y) = − log

(
cos
(
d(x, y) ∧ π

2

)2)
.

Here we provide sufficient conditions to ensure assumption (2) in Theorem 4 based on the study of
Ma-Trudinger-Wang tensor for the cost (2.15) on such manifolds.

Since [31], the study of the so-called Ma-Trudinger-Wang (MTW) tensor allows to provide suf-
ficient conditions to imply regularity of potential functions in optimal transport, see [43, Chapter
12].

In particular: MTW weak condition states that MTW tensor must be nonnegative for every
pair of points and every pair of c-orthogonal vectors; MTW strong condition states that MTW
weak condition holds true and the tensor vanishes only at vanishing vectors. MTW tensor for costs
of the type c(x, y) = l(d(x, y)) was analysed in [29] for even smooth functions l : R → [0,+∞)
having invertible derivative. In particular, authors characterize MTW weak and strong conditions
on manifolds with constant sectional curvature in terms of some computable explicit functions,
see [29, Theorem 5.3].

Proposition 10. Let M be a Riemannian manifold with constant sectional curvature and let c :
M ×M → R ∪ {+∞} be as in (2.15).

Then
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(i) MTW weak condition for c fails if M is either the Euclidean space Rd, either the hyperbolic
space Hd or the d-sphere of radius R > 1 with the induced metric;

(ii) MTW weak condition holds for c if M is the d-sphere of radius 1 with the induced metric;

(iii) MTW strong condition holds for c if M is the d-sphere of radius R = 1/2 and |v| =
√
g(v, v)

denotes the norm with respect to the metric tensor on M with the induced metric.

Let us make simple comments on these results. Since the cone construction is curvature decreasing,
one cannot expect the MTW weak condition to be satisfied when the Riemannian manifold has
nonpositive curvature, such as the Euclidean space or the hyperbolic space. However, in nonnegative
curvature, there is a better chance to observe regularity for the cost (2.15). We further generalize
this connection in Section 4.

Proof. We start by recalling the main results in [29]. Consider a cost function J(x, y) = l(d(x, y)),
where l : R → [0,+∞[→ R is a smooth, even function such that l′′(s) > 0. Set h(s) = (l′)−1(s).
Then the J-exponential map can be computed as

J- expx(v) = expx

(
h(|v|)
|v| v

)
,

where expx denotes the Riemannian exponential on M and |v| =
√
gx(v, v) denotes the norm with

respect to the metric tensor on M . By definition, the MTW tensor is

MTWx(u, v, w) = −3

2
∂2s∂

2
t |s=t=0J(expx(tu), J- expx(v + sw)),

where x ∈M , and u, v, w are tangent vectors at x. Define A(s) = 1
h(s) , and

B(s) =





s coth(h(s)), if M = Rd,
s

h(s) , if M = Hd,
s cot(h(s)), if M is the unit sphere.

By [29, Proposition 5.1], whenever u and w are J-orthogonal, the MTW tensor can be simplified to

MTWx(u, v, w) = −3

2

(
α(|v|)|u0|2|w0|2 + β(|v|)|u0|2|w1|2 + γ(|v|)|u1|2|w0|2 + δ(|v|)|u1|2|w1|2

)
,

where u = u0 + u1, w = w0 + w1, u0, w0 ∈ span{v}, u1, w1 ∈ (span{v})⊥ and coefficients are given
by

α(s) =
s2A′′(s) + 6(A(s) −B(s)) − 4s(A′(s) −B′(s))

s2
,(2.16)

β(s) =
sA′(s) − 2(A(s) −B(s))

s2
,(2.17)

γ(s) = B′′(s),(2.18)

δ(s) =
B′(s)
s

,(2.19)

in terms of functions A,B defined above. By Theorem 5.3 in [29], the MTW tensor satisfies MTW
weak condition if and only if, for every s ∈ [0, |l′(D)|], with D the diameter of M , four inequalities
hold

(2.20) β(s) ≤ 0, γ(s) ≤ 0, δ(s) ≤ 0, α(s) + δ(s) ≤ 2
√
β(s)γ(s).

Moreover, MTW strong condition holds if and only if the four inequalities are strict for every
s ∈ (0, |l′(D)|].

Note that cost c in (2.15) is of the type l(d(x, y)), for l(s) = − log(cos2(s)). We compute explicitly
functions A,B for the hyperbolic space and for the Euclidean space. In both cases, β(0) > 0, whence
MTW weak condition fails.

When M is the d-sphere of radius R ∈ (0,+∞), we interpret the cost c in (2.15) as c(x, y) =
lR(d(x, y)) where lR(x, y) = − log(cos2(Rs)). Hence we set B(s) = s cot(hR(s)), with hR = (l′R)−1

and apply [29, Proposition 5.1] to compute the MTW tensor on the d-sphere of radius R by means
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of the MTW tensor on the unit d-sphere with rescaled distance. Note that MTW conditions (weak

or strong) must hold for s ∈ [0, |l′R(D)|], where D = π is the diameter of the unit sphere.
Computing explicitly, α(0) = β(0) = γ(0) = δ(0) = 1

3

(
1 − 1

R2

)
. Therefore we conclude that when

R > 1 MTW weak condition fails. On the other hand, an explicit computation gives

for R = 1, α(s) = β(s) = γ(s) = δ(s) ≡ 0,

for R =
1

2
, α(s) = β(s) = γ(s) = δ(s) ≡ −1 .

Hence for R = 1 MTW weak condition holds and MTW vanishes on c-orthogonal vectors, whereas
for R = 1/2 MTW strong condition holds. □

We end this section with remarks concerning MTW conditions on the d-sphere of radius R ∈
(0, 1) \ {1/2} with the induced metric. Using (2.16), (2.17), (2.18), (2.19), an easy computation
gives

αR(s) =
12R2

s2
− 2

s
cot

(
1

R
arctan(s/(2R))

)
− 8

s2 + 4R2
csc2

(
1

R
arctan(s/(2R))

)
,

βR(s) =
2

s2

(
s cot

(
1

R
arctan(s/(2R))

)
− 2R2

)
,

γR(s) =
8

(s2 + 4R2)2
csc2

(
1

R
arctan(s/(2R))

)(
s cot

(
1

R
arctan(s/(2R))

)
− 2R2

)
,

δR(s) =
1

s
cot

(
1

R
arctan(s/(2R))

)
− 2

s2 + 4R2
csc2

(
1

R
arctan(s/(2R))

)
.

A simple computation allows to prove that for R ∈ (0, 1/2) the functions βR and γR are non positive
for every s ∈ (0, 2R tan(πR)). To see this, consider the auxiliary function

ξ(s) = s cot

(
1

R
arctan(s/(2R))

)
− 2R2.

Then βR(s) = 2
s2 ξ(s) and γR(s) = 8ξ(s)

(s2+4R2)2 csc2( arctan(s/(2R))
R ))2). We are going to show that,

for every R ∈ (0, 1/2) and every s ∈ (0, 2R tan(πR)), ξ(s) < 0. Note that for R ∈ (0, 1/2),
arctan(s/(2R))

R ) ∈ (0, π). Hence ξ(s) < 0 is equivalent to s cot( arctan(s/(2R))
R ) < 2R2 which in turn

is equivalent to arctan(s/(2R))
R > arccot( 2R2

s ). Using arctanx = arccot(1/x), the last inequality is

equivalent to arccot(2R/s) > Rarccot( 2R2

s ). Set v = 2R/s and define k(v) = arccot(v)−Rarccot(Rv).
To show that ξ(s) < 0 it is sufficient to prove that k(v) > 0 on (0,+∞). This is an easy consequence
of the fact that k(0) = π/2(1 − T ) > 0, limv→+∞ k(v) = 0 and

k′(v) =
R2

1 +R2v2
− 1

1 + v2
< 0, v ∈ (0,+∞).

To test the last two conditions in (??), let us plot the 0-level sets of the functions δR(·), (αR +

δR − 2
√
βRγR)(·) in the region (R, s) ∈ (0, 1) × (0, 25). We plot also the function w(R) = |l′R(π)| =

|2R tan(πR)|. Recall that the MTW strong condition holds if the four functions βR(·), γR(·), δR(·), (αR+
δR − 2

√
βRγR)(·) are strictly negative for every s ∈ (0, |2R tan(πR)|].

3. The Wasserstein-Fisher-Rao metric

In this section, we detail the case of the Wasserstein-Fisher-Rao (WFR) metric on a smooth
compact Riemannian manifold M , which is the cornerstone of unbalanced optimal transport as
introduced in [25, 8, 30]. Recall that the Wassertein-Fisher-Rao corresponds to the cost function
given in 2.15 and to the Kullback-Leibler divergence for the marginal penalization (i.e., both entropy
functions are given by F (x) = x log(x)−x+1. First we prove the equivalence of several definitions of
this metric. In particular we introduce an equivalent of the Monge formulation of standard OT to this
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unbalanced setting. Using this formulation we prove the existence of unbalanced optimal transport
maps and an unbalanced version of Brenier polar factorization Theorem on the automorphism group
of the cone C(M) see Theorem 18. A regularity theory for such maps is obtained in section 2 and it
is linked to an unbalanced Monge-Ampère equation, see section 3.4.

3.1. Equivalent formulations of WFR metric. As in classical optimal transport, the Wasserstein-
Fisher-Rao metric can be defined in many ways. Here we detail five of them, namely: Monge,
Kantorovich, semi-couplings, dual and dynamical formulation. The Kantorovich formulation is the
one introduced in Definition 4 and the dual formulation is given in Proposition 2. For the sake of
clarity we instantiate them hereafter. The starting point of all these formulations is certainly the
dynamical formulation of the WFR metric which appears as a generalization of Benamou-Brenier
formula by introducing a source term in the continuity equation. This is the formulation we first
present below.

In the sequel, let (M, g) be a compact Riemannian manifold, let vol denote the Riemannian
volume on M and let div denote the divergence of a vector field with vol.

3.1.1. Dynamical formulation of. Given ρ0, ρ1 ∈ M+(M) and a, b > 0, we start by the following
optimization problem

inf
ρ,v,α

1

2

∫ 1

0

(∫

Ω

a2gx(v(x), v(x)) + b2α2(x) dρt(x)

)
dt

under the constraints of the generalized continuity equation, with time boundary conditions

∂tρ+ div(ρv) = αρ , ρ(0, ·) = ρ0, ρ(1, ·) = ρ1 .

Here the control variables are α, the growth rate (also called Malthusian parameter) and v, a vector
field, both depending on time t and position x ∈M .

Remark 4. For α ≡ 0, the dynamic formulation above is the well-known Benamou-Brenier formu-
lation of the optimal transport problem [3].

We now give the definition, relying on convexity, which allows to account for every positive Radon
measure and not only those with density with respect to the reference volume measure.

Definition 8 (Dynamical formulation of WFR metric). Let ρ0, ρ1 ∈ M+(M), the WFR metric is
defined by

WFR2(ρ0, ρ1) = inf
ρ,m,µ

J (ρ,m, µ) ,

where

(3.1) J (ρ,m, µ) = a2
∫ 1

0

∫

M

g−1
x (m̃(t, x), m̃(t, x))

ρ̃(t, x)
dν(t, x) + b2

∫ 1

0

∫

M

µ̃(t, x)2

ρ̃(t, x)
dν(t, x)

over the set (ρ,m, µ) satisfying ρ ∈ M+([0, 1] × M), m ∈ (Γ0
M ([0, 1] × M,TM))∗ which denotes

the dual of time dependent continuous vector fields on M (time dependent sections of the tangent
bundle), µ ∈ M([0, 1] ×M) subject to the constraint

(3.2)

∫

[0,1]×M
∂tf dρ+

∫

[0,1]×M
(m(∇xf) − f dµ) =

∫

M

f(1, ·) dρ1 −
∫

M

f(0, ·) dρ0

satisfied for every test function f ∈ C1([0, 1]×M,R). Moreover, ν ∈ M+([0, 1]×M) is chosen such
that ρ,m, µ are absolutely continuous with respect to ν and ρ̃, m̃, µ̃ denote their Radon-Nikodym
derivative with respect to ν.

Note that due to the one-homogeneity of the formulas with respect to (ρ̃, m̃, µ̃), the functional J
is well-defined, i.e., it does not depend on the choice of the dominating measure ν. Moreover, the
divergence is defined by duality on the space C1(M). Formula (3.1) in Definition 8 is called dynamic
since the time variable is involved and only length-space structures can be defined in this way. It is
of interest to show that the variational problem admits a so-called static formulation that does not
involve the time variable.
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3.1.2. Semi-couplings formulation. The semi-couplings formulation already appears in [9] and in
another form in [30]. In both references, equivalence between semi-couplings and dynamical formu-
lation is proved in the Euclidean case. We now extend those results to a Riemannian setting.

Given ρ0, ρ1 ∈ M+(M), set

Γ(ρ0, ρ1)
def.
=
{

(γ0, γ1) ∈
(
M+(M2)

)2
: p1∗γ̂0 = ρ0, p

2
∗γ̂1 = ρ1

}
,

where p1 and p2 denote the projection on the first and second factors of the product M2. Moreover,
consider the cone

C (M) = {(x, r) | x ∈M, r > 0},
endowed with the Riemannian metric

h(x,r) = a2r2gx + 4b2 dr2,

where g is the Riemannian metric on M , and a, b appear in the definition of WFR metric. Finally,
denote by dC (M) the distance on C (M) associated with the Riemannian metric h.

Theorem 11 (Semi-couplings formulation of WFR metric). The WFR distance satisfies

WFR2(ρ0, ρ1) = min
(γ̂0,γ̂1)∈Γ(ρ0,ρ1)

∫

M2

d2C (M)

(
(x,

√
dγ̂0
dγ̂

), (y,

√
dγ̂1
dγ̂

)

)
dγ̂(x, y) ,(3.3)

where γ is any measure that dominates γ0, γ1.

The functional

S(γ̂0, γ̂1)
def.
=

∫

M2

d2C (M)

(
(x,

√
dγ̂0
dγ̂

), (y,

√
dγ̂1
dγ̂

)

)
dγ̂(x, y)

is well-defined, i.e., it does not depend on the choice of the measure γ̂. Indeed, the square distance
function d2C (M) is two-homogeneous with respect to dilation of the mass variables, since h(x,λr) =

a2(λr)2gx + 4b2λ2 dr2. As a consequence of Rockafellar’s theorem [35, Theorem 5], S is convex and
lower-semicontinuous on the space of Radon measures as the Legendre-Fenchel transform of a convex
functional on the space of continuous functions.

Our proof of Theorem 11 is an adaptation to the Riemannian case of the one in [9, Theorem 4.3],
to which we refer the reader for technical details. The same reasoning, based on a simple regular-
ization argument which is intrinsic on Riemannian manifolds, applies under minor adaptations to
the standard Wasserstein distance W2 on Riemannian manifolds, see for instance the comments in
[44, Remark 8.3]. A different proof of the equivalence between dynamical and semi-coupling formu-
lation for the Wasserstein distance W2 in the Riemannian setting is given in [1] which uses the Nash
isometric embedding theorem.

Proof of Theorem 11. First of all, the set Γ is weak∗ closed, the functional S is weakly continuous and
lower semicontinuous. Therefore, the fact that the minimum for S is attained follows by application
of the direct method of calculus of variations. In the following, we denote by S2(ρ0, ρ1) the right
hand side of (3.3).

Since dC (M) is a distance on C (M), one can prove that S is a distance on M+(M) and S is
continuous w.r.t. the weak∗ topology, as done in [9].

We claim that, for every pair of measures (ρ0, ρ1) that are finite linear combination of Dirac
masses, the inequality

S2(ρ0, ρ1) ≥ WFR2(ρ0, ρ1),

holds. To see this, note that for ρ0 =
∑
i aiδxi and ρ1 =

∑
j bjδyj , for finite sets of points

{xi, yj}i,j ⊂ M , the minimization problem (3.3) can be reduced to a linear optimization prob-
lem in finite dimension. Indeed, the optimal semi-couplings can be proved to have support on the
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product of the support of ρ0 and ρ1. As a consequence, the optimal semi-couplings can be written
as γk =

∑
i,jm

k
i,jδ(xi,yj) for k = 0, 1. Then, one has

S2(ρ0, ρ1) =
∑

i,j

d2C (M)

(
(xi,m

0
i,j), (yj ,m

1
i,j)
)

≥
∑

i,j

WFR2(m0
i,jδxi ,m

1
i,jδyj ) ≥ WFR2(ρ0, ρ1) ,

where the first inequality comes from the fact that the distance on the cone (with mass coordinates)
for a geodesic (x(t),m(t)) is given by the evaluation of WFR on the path m(t)δx(t). The second

inequality is given by subadditivity of WFR2. Since linear By density of finite linear combination of
Dirac masses and weak∗ continuity of both WFR and S, the inequality S2(ρ0, ρ1) ≥ WFR2(ρ0, ρ1)
holds on (M+(M))2.

We now prove the reverse inequality which follows using the convexity of (ρ0, ρ1) 7→ WFR2(ρ0, ρ1).
By subadditivity of WFR2, one has, for every ρ2 ∈ M+(M)

(3.4) WFR2(ρ0 + ρ2, ρ1 + ρ2) ≤ WFR2(ρ0, ρ1) .

Using the triangular inequality and the fact that the WFR metric is bounded above (up to a
multiplicative constant) by the Hellinger distance, we also have, for ε1 > 0

(3.5) WFR(ρ0, ρ1) ≤ WFR(ρ0 + ε1 vol, ρ1 + ε1 vol) + 2 cst
√
ε1 .

Let us be more precise on the previous inequality: Consider now a path ρ,m, µ which is a solution to
the continuity equation (3.2), then so is the path ρ+ ε1 vol,m, µ satisfying the boundary conditions
ρ(0) = ρ0, ρ(1) = ρ1. Note that ε1 vol is constant in time and space. In addition, it is obvious that

J (ρ+ ε1 vol,m, µ) ≤ J (ρ,m, µ) .

To prove the final result, it suffices to prove that S(ρ0 + ε1 vol, ρ1 + ε1 vol) ≤ J (ρ+ ε vol,m, µ) + ε0
for any ε0 > 0. This will be done via a smoothing argument which is standard in the Euclidean case
using convolution but has never been adapted, to the best of our knowledge, to work on Riemannian
manifolds (see [44, Remarks 8.3]).

Our goal is to prove that there exists a path of smooth quantities (ρε,mε, µε) for which J (ρε,mε, µε)
is close to J (ρ,m, µ) and ρε is strictly positive and the time endpoints of the path are close in the
weak-* topology. The conclusion can then be obtained by integrating the flow defined by the vector
field (mε/ρε, µε/ρε). It gives that S(ρε(0), ρε(1)) ≤ J (ρε,mε, µε) and the conclusion is similar to
the Euclidean case [9, Theorem 5].

By compactness of M , it is sufficient to locally smooth the path on M by iteration of this
smoothing. Therefore, we will work on a chart U around a point x0 ∈ M . By Moser’s lemma, it is
possible to choose the chart such that the volume form is the Lebesgue measure.

Averaging over perturbations of identity: We construct perturbations (of compact support)
of the identity which will be local translations around x0 and which will play the role of the trans-
lations in the standard convolution formula. We consider a ball B(x0, r0) and a function u whose
support is contained in B(x0, r0) and is constant equal to 1 on B(x0, r1) for 0 < r1 < r0. For a
given vector v ∈ Rd, we consider the map Φv(x) = x+u(x)v which is a smooth diffeomorphism. We
extend Φ to the whole manifold M by defining it as identity outside of U .

Let k : Rd+1 → R+ be a smooth symmetric function whose support is contained in the unit
ball and such that

∫
k(y) dy = 1 and define for ε > 0, kε(x) = k(x/ε)/εd+1 whose support is thus

contained in the ball of radius ε. We define the mollifier kε ⋆ acting on f ∈ C([0, 1] × U,R) by

(3.6) (kε ⋆ f)(s, x) =

∫

R

∫

U

kε(s, v)f(t+ s,Φ−1
v (x)) dv ds ,

which is well defined for ε small enough, extending the function outside the time interval [0, 1]
as a constant. Moreover, for ε sufficiently small, it coincides with the usual convolution on a
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neighborhood of x0. By duality, it is well defined on Radon measures and extends trivially to vector
valued measures as follows:

(kε ⋆ ρ)(s, x) =

∫

R

∫

U

kε(s, v)(Φv)∗(ρ(t+ s)) dv ds ,(3.7)

(kε ⋆ m)(s, x) =

∫

R

∫

U

kε(s, v) Ad∗
Φ−1

v
(m(t+ s)) dv ds .(3.8)

We consider the path (Φv)∗(ρ) which satisfies the continuity equation for the triple of measures(
(Φv)∗(ρ),Ad∗

Φ−1
v

(m), (Φv)∗(µ)
)

and average over v to consider

(3.9) (ρε,mε, µε) = (kε ⋆ ρ, kε ⋆m, kε ⋆ µ) .

As a convex combination, this path satisfies the continuity equation and the boundary conditions
are close in the weak-* topology when ε tends to 0. An important remark is that, for ε small
enough, kε ⋆ Ad∗

Φ−1
v

(m) reduces to the standard convolution on m in a small neighborhood of x0
since DΦv = Id in a neighborhood of x0 since u ≡ 1 on B(x0, r1).

Use of convexity of J : For notation convenience, we denote by f the integrand of J and
we make the abuse of notation to use ρ,m, µ instead of their corresponding densities w.r.t. ν a
dominating measure.

Under the change of variables y = Φ−1
v (x) (we use one homogeneity hereafter) leads to

(3.10) J (ρε,mε, µε) =

∫

[0,1]×M
f (x, (ρε,mε, µε)) dν(x) ≤

∫

R

∫

U

∫

[0,1]×M
kε(s, v)f(Φv(y), (ρ(t+ s), DΦv(t, y)m(t+ s), µ(t+ s))) dν(t, y) dtdsdv .

Moreover, since the metric g on M is smooth and in particular uniformly continuous on M and
since ∥DΦv − Id ∥ ≤ cst∥v∥ for a constant that only depends on u, we thus have, for any ε2 > 0, the
existence of δ > 0 such that if ∥v∥ ≤ δ then,

(3.11) |g(x)(w,w) − g(Φv(x))(DΦv(x)w,DΦv(x)w)| ≤ ε2 g(x)(w,w) ,

for every w ∈ TxM . Therefore, a direct estimation leads to

(3.12)∣∣∣∣∣

∫

R×M
kε(s, v)f(Φv(x), (ρ(t+ s),m(t+ s), µ(t+ s))) dν(t, x) −

∫

[0,1]×M
f(x, (ρ(t),m(t), µ(t))) dν(t, x)

∣∣∣∣∣
≤ ε2J (ρ,m, µ) ,

and as a consequence the desired result,

(3.13) J (ρε,mε, µε) ≤ J (ρ,m, µ) + ε2J (ρ,m, µ) .

Since this averaging reduces to standard convolution in the coordinate chart U in a small neigh-
borhood of x0, it implies that (ρε,mε, µε) is smooth in a neighborhood of x0 and ρε ≥ ε1 vol. By
compactness of M , iterating a finite number of times this argument gives the desired path. □

Next, we prove the equivalence of these two formulations with a particular UOT problem intro-
duced in Section 2.

3.1.3. Kantorovich formulation and dual formulation. As in [9] the application of Fenchel-Rockafellar
duality Theorem gives the dual formulation of WFR. This is summarized in the following proposi-
tion.

Proposition 12 (Dual formulation of WFR). On (M, g), it holds

(3.14) WFR2(ρ0, ρ1) = sup
(ϕ,ψ)∈C(M)2

∫

M

ϕ(x) dρ0(x) +

∫

M

ψ(y) dρ1(y)
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subject to ∀(x, y) ∈M2,

(3.15)

{
ϕ(x) ≤ 1 , ψ(y) ≤ 1 ,

(1 − ϕ(x))(1 − ψ(y)) ≥ cos2 (d(x, y) ∧ (π/2)) .

A reformulation of this linear optimization problem is

(3.16) WFR2(ρ0, ρ1) = sup
(z0,z1)∈C(M)2

∫

M

1 − e−z0(x) dρ0(x) +

∫

M

1 − e−z1(y) dρ1(y)

subject to ∀(x, y) ∈M2,

(3.17) z0(x) + z1(y) ≤ − log
(
cos2 (d(x, y) ∧ (π/2))

)
.

Interestingly this last formulation is exactly the dual formulation of UOT defined in Proposition
2 with the cost c(x, y) = − log

(
cos2 (d(x, y) ∧ (π/2))

)
and dual entropy functions F ∗

0 (x) = F ∗
1 (x) =

F ∗(x) = ex − 1. As noticed in Remark 1 the associated entropy function is therefore F (x) =
x log(x) − x+ 1 leading to the Kullback-Leibler divergence, which reads

(3.18) KL(µ, ν) =

∫
dµ

dν
log

(
dµ

dν

)
dν + |ν| − |µ| .

Existence of Lipschitz solutions to the dual problem has been proved under admissibility condition
on the measures in Section 2.2. Without these assumptions, existence of potentials can be proved
in a less regular space of functions in [30, Section 6.2].

Proposition 13 (Kantorovich formulation of WFR). With the same notations as above it holds

(3.19) WFR2(ρ0, ρ1) = inf
γ∈M+(M2)

KL(p1∗γ, ρ0) + KL(p2∗γ, ρ1)

−
∫

M2

log(cos2(d(x, y) ∧ (π/2))) dγ(x, y) .

3.2. A Monge formulation. OT supports an interesting geometric framework. Indeed, the push-
forward action of the diffeomorphisms group on the space of densities is a (formal) Riemannian
submersion to the space of densities endowed with the Wasserstein metric, see [21, 14] for more
details. This structure also exists in the case of UOT, as already explained in [19]. We briefly recall
it hereafter.

3.2.1. The formal Riemannian submersion and Monge formulation of WFR. Recall that a Riemann-
ian submersion is a submersion π between two Riemannian manifolds M and N , such that dπ is an
isometry between the orthogonal of its kernel and its range. An important property of Riemannian
submersion is that every geodesic on N can be lifted (called horizontal lift) to a unique geodesic on
M (having the same length), up to the choice of a basepoint in M . In the following, the roles of
M and N are taken by Diff(M), the group of diffeomorphisms of M and Densp(M) the space of
probability densities on M . We choose the reference volume form ρ0 on M and define

π0 : Diff(M) → Densp(M)

π(φ) = φ∗ρ0

which is a (formal) Riemannian submersion of the metric L2(M,ρ0) on Diff(M) to the Wasserstein
W2 metric on Densp(M). Using the horizontal lift property of geodesics mentioned above, the
Benamou and Brenier dynamic formulation [3] can be rewritten on the group Diff(M) as the Monge
problem,

(3.20) W2(ρ0, ρ1)2 = inf
φ∈Diff(M)

{∫

Ω

d2M (φ(x), x) ρ0(x) dvol(x) : φ∗ρ0 = ρ1

}
.

In the unbalanced case, the group Diff(M) is replaced with the semidirect product of groups
between Diff(M) and the space of positive functions on M which is a group under pointwise multi-
plication. It is not a direct product but a semidirect one, where the composition law is defined such
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that the map π given by

π1 : (Diff(M) ⋉ C(M,R>0)) × Dens(M) 7→ Dens(M)

π1 ((φ, λ), ρ)
def.
= φ∗(λρ)

is a left-action of the group Diff(M)⋉C(M,R>0) on the space of densities. Similarly to the optimal
transport case, this action is actually a Riemannian submersion between L2(M,M × R>0) and
Dens(M) endowed with the WFR metric. Note that the L2 metric is defined by a density (the
initial density) on M and a metric on M × R>0 (see [16] for more details) and this Riemannian
metric is completely specified by the unbalanced optimal transport model, namely

(3.21) g(x,m)( dx, dm) = a2mdx2 + b2
dm2

m
·

Up to the change of variable m = r2, we find that the metric can be rewritten as

(3.22) g(x,r)( dx, dr) = a2r2 dx2 + 4b2 dr2 ,

which is called a cone metric1. Since it is a classical formulation of this metric, we adopt this change
of variable in the rest of the paper. In particular, the action is changed into

π : (Diff(M) ⋉ C(M,R>0)) × Dens(M) 7→ Dens(M)

π ((φ, λ), ρ)
def.
= φ∗(λ2ρ) ,

and the metric on M × R>0 is the cone metric (3.22). We now adopt the notation C (M) for the
M × R>0 equipped with the cone metric. In fact, as done in [19] we can identify this semidirect
product of groups with the automorphism group of the cone C (M) (since it has a multiplicative
group structure in the R>0 component). Thus, to shorten the notations, we use Aut(C (M)) instead
of Diff(M)⋉C(M,R>0). We now state the (formal) Riemannian submersion result obtained in [19].

Proposition 14. Let ρ0 ∈ Dens(M) be a positive density and π be the map

π : Aut(C (M)) 7→ Dens(M)

π(φ, λ) = φ∗(λ2ρ0) .

Then, π is a Riemannian submersion between Aut(C (M)) endowed with the metric L2(M,ρ0,C (M))
and Dens(M) with the WFR metric.

For details about the proof, we refer the reader to [19]. This proposition can be used to deduce
a static or Monge formulation of the variational problem.

Definition 9. Let (ρ0, ρ1) ∈ M+(M2). The Monge formulation of WFR is given by

M-WFR2(ρ0, ρ1) = inf
(φ,λ)

{∫

M

d2C (M) [(x, 1), (φ(x), λ(x))] dρ0(x) : φ∗(λ2ρ0) = ρ1

}
,(3.23)

= inf
(φ,λ)

{
d2Aut(C (M))

[(Id, 1), (φ, λ)] : φ∗(λ2ρ0) = ρ1

}

where the infimum is taken over (φ, λ) ∈ Diff(M) ⋉ C(M,R>0) and (Id, 1) denotes the identity in
Aut(C (M)).

This Monge formulation extends to more general divergences and costs. Indeed, one can formulate

M-UOT2(ρ0, ρ1) = inf
(φ,λ)

{∫

M

DC (M) [(x, 1), (φ(x), λ(x))]
2
dρ0(x) : φ∗(λ2ρ0) = ρ1

}
,

where

(3.24) DC (M)((x, r), (y, s))
2 = inf

z∈R>0

r2F0(z/r2) + s2F1(z/s2) + c(x, y)z .

1It is interesting to check that other Riemannian metrics on the cone can be chosen provided they are two-

homogeneous in the radial variable. Some of the results of this article carry over such cases.
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Importantly, the quantity2 DC (M) is not necessarily a power of a distance on the cone but it is the
case in the three following situations. When F0 = F1 is the relative entropy, two cases are known,
c(x, y) = − log(cos(min(d(x, y), π2 ))2) for which DC (M)((x, r), (y, s)) is almost the distance on the

cone but not exactly3 since DC (M)((x, r), (y, s))
2 = r2 + s2 − 2rs cos(min(d(x, y), π2 )). The equality

between the two seemingly different Monge formulations actually holds.
The Gaussian-Hellinger case is recovered for c(x, y) = d2(x, y) which gives DC (M)((x, r), (y, s))

2 =

r2 + s2 − 2rse−d(x,y)
2/2. The last known case is for partial optimal transport where the divergences

are taken as the total variation of measures given by the entropy function F (x) = |x − 1| and the
c = dq. Then, for q ≥ 1, DC (M)((x, r), (y, s))

q = r + s − (min(r, s)) min(0, 2 − d(x, y)q) gives a
distance.

A consequence of the semi-couplings formulation is the relaxation inequality M-WFR2(ρ0, ρ1) ≥
WFR2(ρ0, ρ1): for any ϕ consider γ(x, y) = (x, ϕ(x))ρ0, γ0(x, y) = γ(x, y) and γ1(x, y) = λ2(x)γ(x, y).
The converse inequality does not hold in general since in the case of unbalanced transport not only
the particles can split but also they can reach the apex of the cone. However under our admissibility
condition on (ρ0, ρ1) we prove that M-WFR2(ρ0, ρ1) = WFR2(ρ0, ρ1) in Proposition 17.

3.3. Kantorovich relaxation: the conic formulation. This yet another but important formula-
tion was introduced in [30] and can be interpreted as a natural Kantorovich relaxation of the Monge
formulation. Indeed, instead of making the map φ stochastic, one makes both the map and the
rescaling stochastics. From a cost on the cone defined by minimization in (3.24), one defines the
conic formulation

(3.25) C-OT(ρ0, ρ1) = inf
γ∈ΓC

∫

C(M)×C(M)

DC (M)((x, r), (y, s))
2dγ((x, r), (y, s)) ,

where ΓC denotes the set of positive Radon measures γ on the product of cones such that

(3.26)

{
ρ0(x) =

∫
R r

2[p1∗γ](x, dr) ,

ρ1(y) =
∫
R s

2[p1∗γ](y, ds) .

These constraints are moment constraints instead of marginal constraints in standard OT. Moreover,
this formulation does not require the plan to be a probability measure on the product space although
it can also be restricted to the set of probability measure by action with dilations, see [30, 18]. In
fact, formula (3.24) is 2-homogeneous so that the mass can always be rescaled pointwisely. Last, the
moment constraint is the natural relaxation of the action by pushforward and rescaling φ∗(λ2ρ0).
Note that from the numerical point of view, introducing this additional radial variable is costly, yet
it is amenable to entropic regularization, see [37]. The proof of equivalence with the formulations
introduced above can be found in [30]. For our purpose and to prepare the discussion of c-convex
functions in Section 4, we simply note that the dual solutions of this problem are also dual solutions
of an OT problem; the optimal potentials take the form r2p(x) and s2q(y) for functions p, q defined
on M . These potentials are necessarily 2-homogeneous functions in the radial variable.

3.4. Monge solution and polar factorization on the automorphism group. The geometric
structure used to show Brenier’s polar factorization theorem [6] in standard optimal transport relies
on the Riemannian submersion and solution of Monge problem. Thanks to results given in Sec-
tion 3.2.1 and after finding a solution to the Monge problem M-WFR we generalise in this section
polar factorization to the unbalanced framework.

2Note that with respect to the first section we made the slight change of variable with the square root to remain

consistent with the definition of the group action.
3For the cone distance, the minimum is taken with π rather than π/2, this difference is explained by the fact that

at the level of the measures, the transformation can occur simultaneously for both Dirac masses.
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3.4.1. Monge solution of WFR. To show the existence of a solution to Monge problem (3.23) we
start by solving WFR(ρ0, ρ1), in the dual form (3.16), (3.17) and we provide geometric properties
of such solution (see Proposition 16). To prove Proposition 16 there are two different arguments:
one is based on results in Section 2 and the existence of Lipschitz potentials; the other one mimics
the standard case of optimal transport with minor adaptions due to the cost. This latter approach
leads to a pair of approximately differentiable potentials. For completeness we give both proofs.

Lemma 15 (sub-differentiability). Let y ∈M , the function g defined on M by g(x) = cos2 (d(x, y))
is sub-differentiable.

Proof. The function d2(·, y) is super-differentiable see [32, Proposition 6] for instance. Therefore
d2π/2(·, y) = (d(x, y) ∧ (π/2)) is also super-differentiable and the function g is sub-differentiable as

the combination of a decreasing C1 function and the super-differentiable function d2π/2(·, y), see [32,

Lemma 5]. □

Proposition 16 (Brenier’s variational solution of WFR-Monge-Ampère). Let (ρ0, ρ1) ∈ M+(M2)
and let (z0, z1) be the generalized optimal potentials for WFR2(ρ0, ρ1). Suppose that (ρ0, ρ1) is
admissible and ρ0 ≪ vol, then z0 is ρ0 a.e. unique and approximate differentiable on Supp(ρ0). The
optimal plan γ in the formulation (13) is unique, with marginals γ0 = e−z0ρ0, γ1 = e−z1ρ1 and
concentrated on the graph of

(3.27) x 7→ φ(x) = expMx

(
− arctan

(
∥∇̃z0(x)∥

2

)
∇̃z0(x)

∥∇̃z0(x)∥

)
= c-exp(−∇z0(x)) ,

that is φ∗γ0 = γ1 and γ = (Id×φ)∗γ0. Finally

(3.28) WFR2(ρ0, ρ1) =

∫

M

1 − e−z0(x) dρ0(x) +

∫

M

1 − e−z1(y) dρ1(y) .

Note that (z0, z1) may not be continuous as needed in (3.16) but (3.28) still holds true. The
approximate differentiable proof of this proposition (being more technical) is given in Appendix A,
we prefer to discuss the corresponding formulation of the Monge-Ampère equation hereafter and a
simple sketch of proof following the results in Section 2.

Direct proof. Corollary 8 gives a pair of Lipschitz potentials (z0, z1) solution of WFR2(ρ0, ρ1).
Lemma 3 proves that this pair is also solution of a classical Optimal Transport problem between γ0 =
e−z0ρ0, γ1 = e−z1ρ1 for the cost c(x, y) = − log

(
cos2 (d(x, y) ∧ (π/2))

)
. The hypothesis on ρ0 and

Classical optimal transport theory arguments gives the existence of a map φ(x) = c-exp(−∇z0(x))
solution of this OT problem. In particular φ∗γ0 = γ1. □

Remark 5. Note that the map φ(x) = c-exp(−∇z0(x)) is a solution to a standard OT problem
from γ0 = e−z0ρ0 to γ1 = e−z1ρ1 for the cost c(x, y) = − log

(
cos2 (d(x, y) ∧ (π/2))

)
. Therefore,

OT regularity theory applies to z0 with fixed marginals γ0, γ1. In particular, higher regularity of z0
increases regularity of γ0 and γ1 and, in turn, a bootstrap argument improves regularity of z0 (see
also the strategy in the proof of Theorem 4).

As a consequence of the underlying classical OT structure, the potential found in Proposition 16,
denoted by z, is a solution of a Monge-Ampère equation with a right-hand side that also depends
on the potential. We recall how to derive the equation supposing that z is C2. Remember that

c(x, y) = − log(cos2(dπ/2(x, y))) and φ(x) = expMx

(
− arctan

(
1
2∥∇z(x)∥

) ∇z(x)
∥∇z(x)∥

)
, therefore

2
√

2 tan(dπ/2(x, φ(x)))

√
2

2dπ/2(x, φ(x))
∇
(

1

2
d2π/2(x, φ(x))

)
= (∇xc)(x, φ(x))

and the sub-differentiable equality (A.4) reads

(3.29) ∇z(x) − (∇xc)(x, φ(x)) = 0 .
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Observe that by definition of c-expx(v) = [(−∇xc)(x, ·)]−1
(v) (3.29) is exactly

φ(x) = c-exp(−∇z(x)).

Differentiating (3.29) and taking the determinant yields

(3.30) det
[
−∇2z(x) + (∇2

xxc)(x, φ(x))
]

= |det [(∇x,yc)(x, φ(x))]| |det(∇φ)| .
Notice that the c-concavity property of z implies that −∇2z + (∇2

xxc)(x, φ(x)) is a nonnegative
symmetric matrix. To obtain the equation on z, observe that φ∗

(
(1 + 1

4∥∇z∥2)e−2zρ0
)

= ρ1 (see
the proof of Proposition 17 below for details) or equivalently

|det(∇φ)| = e−2z

(
1 +

1

4
∥∇z∥2

)
f

g ◦ φ ,

for smooth z and smooth positive measures ρ0 and ρ1 with densities f and g with respect to the
volume measure vol. Together with (3.30), we obtain the WFR-Monge-Ampère equation defined by
(3.31)

det
[
−∇2z(x) + (∇2

xxc)(x, φ(x))
]

= |det [(∇x,yc)(x, φ(x))]| e−2z(x)

(
1 +

1

4
∥∇z(x)∥2

)
f(x)

g ◦ φ(x)
,

where φ is given by (3.32) and satisfies the second boundary value problem: φ maps the support of
ρ0 towards the support of ρ1.

Remark 6. Another possibility is to write directly the Monge-Ampère equation satisfied by φ as an
optimal map pushing γ0 to γ1 that is

det
[
−∇2z(x) + (∇2

xxc)(x, φ(x))
]

= |det [(∇x,yc)(x, φ(x))]| e−z0(x)ρ0(x)

e−z1(φ(x))ρ1 ◦ φ(x)
·

Using z0(x) + z1(φ(x)) = c(x, φ(x)) and 1 + 1
4∥∇z0(x)∥2 = ec(x,φ(x)) one recovers the WFR-Monge-

Ampère equation (3.31).

Remark 7. Following Brenier [6, Section 1.4] Proposition 16 can be taken as a definition of vari-
ational solutions for the WFR-Monge-Ampère equation (3.31) with second boundary value problem.
The question of regularity of such a solution of a WFR-Monge-Ampère equation is a consequence of
the results proved in Section 2. In particular as we saw it depends on the regularity of classical OT
and therefore on the study of the Ma-Trudinger-Wang tensor associated to c see [11], [42, Section 12].

Thanks to Proposition 16 we are now able to prove the existence, under some assumptions on the
initial density, of a solution to the Monge problem M-WFR.

Proposition 17 (Solution to the Monge problem M-WFR and equivalence to WFR). Let ρ0, ρ1
be admissible and such that ρ0 has density w.r.t. the volume measure on M . Then, there exists
a ρ0 a.e. unique c-convex function on M , z, approximatively differentiable ρ0-a.e., such that the
associated unbalanced transport couple (φ, λ) defined by

(3.32) φ(x) = expMx

(
− arctan

(
1

2
∥∇̃z(x)∥

) ∇̃z(x)

∥∇̃z(x)∥

)

and

(3.33) λ(x) = e−z(x)
√

1 +
1

4
∥∇̃z(x)∥2

is a solution of the Monge problem (3.23) and satisfies

(3.34) π[(φ, λ), ρ0] = φ∗
(
λ2ρ0

)
= φ∗

(
(1 +

1

4
∥∇̃z∥2)e−2zρ0

)
= ρ1 .

Moreover, (φ, λ) is the unique ρ0 a.e. unbalanced transport couple associated to a c-concave potential,
also unique, such that π[(φ, λ), ρ0] = ρ1. The potential z is characterized by

(3.35) M-WFR2(ρ0, ρ1) = WFR2(ρ0, ρ1) =

∫

M

1 − e−z(x) dρ0(x) +

∫

M

1 − e−z
c(y) dρ1(y) ,
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Proof. Existence: Let (z0, z1) be the optimal potentials for WFR2(ρ0, ρ1). From Proposition 16, we

know that x 7→ φ(x) = expMx

(
− arctan

(
∥∇̃z0(x)∥

2

)
∇̃z0(x)

∥∇̃z0(x)∥

)
is well defined ρ0 a.e. and φ∗(γ0) = γ1

where γi = σiρi = e−ziρi, i = 0, 1. Therefore

ρ1 = σ−1
1 γ1 = σ−1

1 φ∗(γ0) = σ−1
1 φ∗ (σ0ρ0)

= φ∗
(
e−z0σ−1

1 ◦ φρ0
)

= φ∗
(
e−z0ez1◦φρ0

)
= φ∗

(
e−z0ec(·,φ(·))e−z0ρ0

)

= φ∗

(
e−2z0

(
1 +

1

4
∥∇̃z0∥2

)
ρ0

)
= φ∗



(
e−z0

√
1 +

1

4
∥∇̃z0∥2

)2

ρ0




= π

[(
φ, e−z0

√
1 +

1

4
∥∇̃z0∥2

)
, ρ0

]
.

We used that ρ0 a.e. z0(x) + z1(φ(x)) = c(x, φ(x)), 1 + tan2(x) = 1/ cos2(x) and thus 1 +
1
4∥∇̃z0(x)∥2 = ec(x,φ(x)) . Equation (3.28) is exactly (3.35).

To prove uniqueness, consider z to be a c-concave function, such that (φ, λ) are well defined
through (3.32), (3.33) and π[(φ, λ), ρ0] = ρ1. Then, we claim that γ = [Id×φ]∗(e−zρ0) is an optimal
plan for WFR2(ρ0, ρ1) in (13). Indeed, let us check that γ satisfies the optimality conditions of [30,
Theorem 6.3(b)].

• γ is concentrated on the set of equality for a pair (z, zc) of c-concave functions. By definition
of φ, it holds ρ0 a.e. and therefore γ0 = e−zρ0 a.e.

(3.36) z(x) + zc(φ(x)) = c(x, φ(x)) .

Thus, (z, zc) satisfies for all (x, y) ∈M ×M , z(x) + zc(y) ≤ c(x, y) with equality γ a.e.
• The marginals are absolutely continuous with respect to ρ0 and ρ1. It holds true for γ0 =
e−zρ0. Note then that ρ0 a.e.

λ2(x) = e−2z(x)(1 +
1

4
∥∇̃z(x)∥2) = e−z(x)ez

c(φ(x)) .

It yields

ρ1 = φ∗(λ2ρ0) = φ∗(ez
c(φ(x))e−z(x)ρ0) = ez

c

φ∗(γ0) = ez
c

γ1 ,

thus γ1 = e−z
c

ρ1 and γ is optimal for WFR2(ρ0, ρ1).

In particular it implies M-WFR2(ρ0, ρ1) = WFR2(ρ0, ρ1). The computation (A.5) yields (3.35)
and uniqueness of the generalized optimal potentials for WFR2(ρ0, ρ1) in Proposition (16) implies
uniqueness of (z, φ, λ).

□

3.4.2. Polar factorization. We are left with proving a polar factorization theorem for the automor-
phism group of the cone Aut(C (M)).

Definition 10. The generalized automorphism semigroup of C (M) is the set of measurable maps
(denoted by Mes below) (φ, λ) from M to C (M)

(3.37) Aut(C (M)) = {(φ, λ) ∈ Mes(M,M) ⋉Mes(M,R>0)} ,
endowed with the semigroup law

(φ1, λ1) · (φ2, λ2) = (φ1 ◦ φ2, (λ1 ◦ φ2)λ2) .

We also consider the stabilizer of the volume measure in the automorphisms of C (M). It is
defined by

(3.38) Autvol(C (M)) =
{

(s, λ) ∈ Aut(C (M)) : π ((s, λ), vol) = vol
}
.
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By abuse of notation, any (s, λ) ∈ Autvol(C (M)) will be denoted
(
s,
√

Jac(s)
)

meaning that for

every continuous function f ∈ C(M,R)

(3.39)

∫

M

f(s(x))
√

Jac(s)
2

d vol(x) =

∫

M

f(x) d vol(x) .

Theorem 18 (Polar factorization). Let (ϕ, λ) ∈ Aut(C (M)) be an element of the generalized auto-
morphism group of the half-densities bundle such that ρ1 = π0 [(ϕ, λ), vol] is an absolute continuous
admissible measure. Then, there exists a unique minimizer, characterized by a c-concave function
z0, to the Monge formulation (3.23) between vol and ρ1 and there exists a unique measure preserving

generalized automorphism (s,
√

Jac(s)) ∈ Autvol(C (M)) such that vol a.e.

(3.40) (ϕ, λ) = expC (M)

(
−1

2
∇̃pz0 ,−pz0

)
◦ (s,

√
Jac(s))

or equivalently

(3.41) (ϕ, λ) =

(
φ, e−z0

√
1 + ∥∇̃z0∥2

)
· (s,

√
Jac(s)) ,

where pz0 = ez0 − 1 and

(3.42) φ(x) = expMx

(
− arctan

(
1

2
∥∇̃z0(x)∥

) ∇̃z0(x)

∥∇̃z0(x)∥

)
.

Moreover (s,
√

Jac(s)) is the unique L2(M,C (M)) projection of (ϕ, λ) onto Autvol(C (M)).

Proof of Theorem 18. We denote ρ0 = vol and ρ1 = π0 [(ϕ, λ), ρ0]. Let (z0, z1) be a solution of
WFR2(ρ0, ρ1) and γ be an optimal unbalanced transport plan. By symmetry, (z1, z0) is a solution
of WFR2(ρ1, ρ0) and γt is an optimal unbalanced transport plan. Let finally (φ0, λ0) and (φ1, λ1) be
the two transport couples given by application of Proposition 16 to (ρ0, ρ1) and (ρ1, ρ0). We divide
the proof into four small steps. We also denote dom(f) the domain of definition of the function f .

Step 1: φ0 and φ1 are inverse maps. On U = φ−1
0 (dom˜̃∇z1) ∩ dom(̃̃∇z0) which has full γ0

and therefore ρ0 measure (we use here the admissible condition to say that γ0 and ρ0 have the same
support), we have

z0(x) + z1(φ0(x)) = c(x, φ0(x))

and thus φ1(φ0(x)) = x. Similarly, it holds φ0(φ1(y)) = y on V = φ−1
1 (dom ∇̃z0)∩dom(∇̃z1) which

has full ρ1 measure.

Step 2: (φ0, λ0) and (φ1, λ1) are inverse in Aut. From Step 1, ρ1 a.e. it holds φ0(φ1(y)) = y.
Thus, ρ1 a.e.

(φ0, λ0) · (φ1, λ1) = (φ0 ◦ φ1, λ0 ◦ φ1λ1) = (Id, (λ0 ◦ φ1)λ1) .

Moreover by (3.34) of Proposition 17 applied twice

π [(φ0, λ0) · (φ1, λ1), ρ1] = π [(φ0, λ0), π [(φ1, λ1), ρ1]] = π [(φ0, λ0), ρ0] = ρ1 .

It implies that
π [(Id, (λ0 ◦ φ1)λ1), ρ1] = π [(φ0, λ0) · (φ1, λ1), ρ1] = ρ1 .

In other words, we have ρ1 a.e. (λ0 ◦ φ1)λ1 = 1 and ρ1 a.e.

(φ0, λ0) · (φ1, λ1) = (Id, 1) .

Step 3: polar factorization. Let (s, λs) = (φ1, λ1) · (ϕ, λ) = (φ1 ◦ϕ, λ1 ◦ϕλ). By construction,
one has

π [(s, λs), ρ0] = π [(φ1, λ1) · (ϕ, λ), ρ0] = π [(φ1, λ1), π [(ϕ, λ), ρ0]] = π [(φ1, λ1), ρ1] = ρ0 .

Therefore, (s, λs) belongs to Autvol and λs =
√

Jac(s) holds in the weak sense (3.39). Thus

(ϕ, λ) = (Id, 1) · (ϕ, λ) = (φ0, λ0) · (φ1, λ1) · (ϕ, λ) = (φ0, λ0) · (s,
√

Jac(s)) .
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It proves the polar factorization.
Step 4: Uniqueness. The pair of c-concave potentials (z0, z1) is optimal for WFR(ρ0, [(φ0, λ0), ρ0]) =

WFR(ρ0, ρ1) and therefore by Proposition 17, zi are unique ρi a.e.. We deduce that the projec-

tion (s,
√

Jac(s)) = (φ1, λ1) · (ϕ, λ) is also unique ρ0 a.e.. Indeed the positivity of λ implies that
Supp(λ2ρ0) = Supp(ρ0), thus ϕ maps Supp(ρ0) onto Supp(ρ1) and the uniqueness of φ1 and λ1, ρ1
a.e., implies the uniqueness of s and

√
Jac(s), ρ0 a.e.. To prove that (s,

√
Jac(s)) is the L2(M,C (M))

projection of (ϕ, λ) onto Autvol(C (M)), we observe

inf
(σ,
√

Jac(σ))∈Autvol(C (M))

∫

M

d2C (M)

(
(ϕ, λ), (σ,

√
Jac(σ))

)
ρ0 ≥ WFR2(ρ0, ρ1)

=

∫

M

d2C (M)

(
(φ0, λ0), (Id, 1)

)
ρ0

=

∫

M

d2C (M)

(
(φ0, λ0) · (s,

√
Jac(s)), (s,

√
Jac(s))

)
ρ0

=

∫

M

d2C (M)

(
(ϕ, λ), (s,

√
Jac(s))

)
ρ0 ,

which gives the result. □

As in OT, Theorem 18 could be extended, for example, to any admissible ρ1 without the absolute
continuity assumption. In such a case, one looses uniqueness of the measure preserving generalized
automorphism (s,

√
Jac(s)). An other extension is to project on the subset of Aut(C (M)):

Autρ0,µ0(C (M)) =
{

(s, λ) ∈ Aut(C (M))
∣∣π ((s, λ), ρ0) = µ0

}
,

in the spirit of [44, Theorem 3.15]. The proof is similar to the one given above. Last, linearization
of this polar factorization leads to an Helmholtz decomposition for velocity vector fields. As explain
previously this last three results are not limited to the case of WFR. A similar analysis for the
Gaussian-Hellinger case is even easier to compute. For instance for Gaussian-Hellinger in Rd the
optimal potential z would be semi-concave, thus φ a gradient of a convex function:

(3.43) φ(x) = x−∇z(x),

and

(3.44) λ(x) = e−z(x)+
1
4∥∇z(x)∥2

.

This formulation can be particularly adapted for statistical or numerical applications. We leave
these for future works.

4. The Ma-Trudinger-Wang tensor in the WFR case. Some relations between
c-convex functions and dC -convex functions

In this section we investigate the link between c-convex functions on the base space M and d2
C (M)-

convex functions on C (M). As a consequence, we provide a relation between the MTW-tensor on
M for the cost c and the MTW-tensor on C (M) for the cost d2

C (M). Since for instance the connexity

of the c-subdifferential is a synthetic formulation of MTWc(0). For simplicity, we denote by dC the
distance on C (M).

We prove two fundamental facts. Lemma 19 states that a function is c-convex on M if and only if
its (suitably defined) lift is d2

C -convex on C (M). Lemma 20 is concerned with explicit computations
along c-segments.

Let us recall the definition of cost-convex functions.

Definition 11. [43, Definition 5.2] Let X × Y ⊂ M ×M be a subset and c be a cost function on
X × Y . A function f : X → R ∪ {+∞} is c-convex if it is not identically +∞ and if there exists a
function g : Y → R ∪ {±∞} such that, for every x ∈ X,

f(x) = sup
y∈Y

g(y) − c(x, y) .
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The c-subdifferential of f at point x̄, denoted by ∂cf(x̄), is the set of y ∈ Y such that, for every
x ∈ X,

f(x) ≥ f(x̄) + c(x̄, y) − c(x, y).

In the sequel we set cos+(x, y) := cos
(
min(d(x, y) , π2

)
) and we consider the cost c(x, y) =

− log(cos2+(x, y)). The corresponding distance on the cone is given by

d2
C ((x, r), (y, s)) = r2 + t2 − 2rt cos+(x, y).

Definition 12. Given a function f : M → R we define the lift of f to C (M) as the function
Ff : C(M) 7→ R as

Ff (x, r) = r2(ef(x) − 1).

This definition is natural with formulation 3.16 of WFR in mind seen as a dual formulation on
the cone.

Lemma 19. Let X × Y ⊂ M ×M and f : M → R. Then f is c-convex on X × Y if and only if
Ff is d2

C -convex on (X ×R+) × (Y ×R+). In particular, given (x̄, r̄) ∈ X ×R+, y ∈ ∂cf(x̄) if and

only if (y, s) ∈ ∂ d2
C
Ff (x̄, r̄) where s = r̄ ef(x̄)

cos+(x̄,y) . Finally (Ff ) d2
C = Ffc .

Proof. By Definition 11, it is sufficient to prove the second statement.
The function f is c-convex on X × Y , if and only if for every x̄ ∈ X the c-subdifferential of f at

x̄ is not empty. In particular, for every x̄ ∈ X there exists y ∈ Y such that, for every x ∈ X,

f(x) ≥ f(x̄) + c(x̄, y) − c(x, y)

= f(x̄) − log(cos2+(x̄, y)) + log(cos2+(x, y)),

or, equivalently, for every x ∈ X,

(4.1) ef(x)−f(x̄)
cos2+(x̄, y)

cos2+(x, y)
≥ 1.

Let now r̄ ∈ R+. Then (y, s) ∈ ∂ d2
C
Ff (x̄, r̄) if and only if, for every (x, r) ∈ X × R+, the following

inequality holds true

(4.2) r2(ef(x) − 1) ≥ r̄2(ef(x̄) − 1) + d2
C ((x̄, r̄), (y, s))) − d2

C ((x, r), (y, s))) .

Using the definition of dC , (4.2) is equivalent to

(4.3) r2ef(x) ≥ r̄2ef(x̄) − 2sr̄ cos+(d(x̄, y)) + 2sr cos+(d(x, y)).

Adding s2 cos2+(x, y)e−f(x) + s2 cos2+(x̄, y)e−f(x̄) to both sides of (4.3), the inequality becomes

ef(x)
(
r − s cos+(x, y)e−f(x)

)2
− ef(x̄)

(
r̄ − s cos+(x̄, y)e−f(x̄)

)2

+ s2 cos2+(x, y)e−f(x)
(

cos2+(x̄, y)

cos2+(x, y)
ef(x)−f(x̄) − 1

)
≥ 0(4.4)

For Ff to be d2
C -convex, (4.4) must be satisfied for every (x, r) ∈ X × R+. When this is the case,

evaluating (4.4) at x = x̄ implies that, for every r ∈ R+,

(4.5)
(
r − s cos+(x̄, y)e−f(x̄)

)2
−
(
r̄ − s cos+(x̄, y)e−f(x̄)

)2
≥ 0.

For a given r̄ ∈ R+ (4.5) holds for every r ∈ R+ if and only if

s = r̄
ef(x̄)

cos+(x̄, y)
.

Thus, the (unique) value of s has been identified and we now evaluate (4.4) at this value. Inequality
(4.4) holds for every (x, r) ∈ X × R+ if and only if

(4.6) ef(x)
(
r − s cos+(x, y)e−f(x)

)2
+ s2 cos2+(x, y)e−f(x)

(
cos2+(x̄, y)

cos2+(x, y)
ef(x)−f(x̄) − 1

)
≥ 0.
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If (4.6) holds true for every (x, r) ∈ X ×R+, then evaluating at r = s cos+(x, y)e−f(x) we infer that

cos2+(x̄, y)

cos2+(x, y)
ef(x)−f(x̄) − 1 ≥ 0

must be satisfied for every x ∈ X, that is to say (4.1), i.e., y ∈ ∂cf(x̄).
The other direction is obvious since in Formula (4.6) the first term is a square and the second

term is nonnegative due to (4.1). The proof of (Ff ) d2
C = Ffc is done similarly or can be seen as a

consequence of the identification of the subdiffentials. □

The next lemma makes a link between the notions of c-segment on M and d2
C -segment on C (M).

Let us recall the definition of cost-segments on a manifold.

Definition 13. [43, Definition 12.10] Let c : M ×M → R be a cost, x̄ ∈ M , and consider the
parameterized segment between q0, q1 ∈ Tx̄M given by [0, 1] ∋ t 7→ qt = (1 − t)q0 + tq1. The
c-segment, whenever it is defined, is given by the parameterized curve

[0, 1] ∋ t 7→ yt := −(∇xc(x̄, ·))−1qt.

In this case, we refer to x̄ as the base point of the c-segment. Recalling that, by definition,
c-expx̄ (v) = y if and only if −∇xc(x̄, y) = v, c-segments coincide with the image under c-exponential
map of segments in the tangent space. In the sequel we also use the notation [y0, y1]cx̄(t) for the
c-segment given by c-expx̄(qt), where yi = c-expx̄(qi), i = 0, 1.

Lemma 20 (Link between cost-convex segment). Let yt = [y0, y1]cx̄(t) = c-expx̄(qt) be a c-segment

on M . For every r̄ ∈ R∗
+, a0 > −2r̄ there exist s0, s1 ∈ R+ such that [(y0, s0), (y1, s1)]

d2
C

x̄,r̄ (t) =

d2
C -exp(x̄,r̄) (pt, a0) is a d2

C -segment of C (M). Moreover st, pt are given by

(4.7) st =
2r̄ + a0

2 cos+(x̄, yt)
, pt =

(
r̄2 +

a0
2
r̄
)
qt.

Conversely, let [(y0, s0), (y1, s1)]
d2

C
x̄,r̄ (t) = d2

C -exp(x̄,r̄) (pt, a0) be a dC (M)-segment of C (M) with

a0 > −2r̄. Then [y0, y1]cx̄(t) = c-expx̄(qt) is a c-segment of M with the choice qt = 2pt
2r̄2+r̄a0

.

We can state a longer but more exhaustive statement. Let t 7→ yt ∈ M be the c-segment
on M with endpoints y0, y1, base point x̄, given by the image under c-expx̄ of the segment qt =
(1 − t)q0 + tq1 ∈ Tx̄M . For every r̄ ∈ R∗

+ and for every a0 > −2r̄ there exist s0, s1 ∈ R+ such that
the curve t 7→ (yt, st) ∈ C (M), with

st =
2r̄ + a0

2 cos+(x̄, yt)
,

is the d2
C -segment with endpoints (y0, s0), (y1, s1) and base point (x̄, r̄), given by the image under

d2
C -exp(x̄,r̄) of the segment

pt =
(
r̄2 +

a0
2
r̄
)
qt, at ≡ a0.

Conversely, let t 7→ (yt, st) ∈ C (M) be the d2
C -segment with endpoints (y0, s0), (y1, s1), base point

(x̄, r̄), given by the image under d2
C -exp(x̄,r̄) of the segment (pt, at), with pt = (1− t)p0 + tp1 ∈ Tx̄M

and at ≡ a0 > −2r̄. Then t 7→ yt ∈ M is the c-segment of M with endpoints y0, y1, base point x̄,
given by the image under c-expx̄ of the segment qt = 2pt

2r̄2+r̄a0
.

Proof. Recall that c(x, y) = − log(cos2+(x, y)) and d2
C ((x, r), (y, t)) = r2 + t2 − 2rt cos+(x, y). Thus,

−∇xc(x̄, z) = ∂x[log(cos2+(x̄, z))] = 2
∂x[cos+(x̄, z)]

cos+(x̄, z)
,

−∇(x,r) d2
C ((x̄, r̄), (z, s)) = 2 (r̄s∂x[cos+(x̄, z)],−r̄ + s cos+(x̄, z)) .
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Therefore, a curve t 7→ yt ∈ M is the c-segment [y0, y1]cx̄(t) if and only if there exist q0, q1 ∈ Tx̄M
for which yt satisfies

(4.8) (1 − t)q0 + tq1 = −∇xc(x̄, yt) = 2
∂x[cos+(x̄, yt)]

cos+(x̄, yt)
,

where yi = c-expx̄(qi), i = 0, 1 (for simplicity set qt = (1 − t)q0 + tq1). Similarly, a curve t 7→
(yt, st) ∈ C (M) is a d2

C -segment if and only if there exist a0, a1 > 0 and p0, p1 ∈ Tx̄M for which
(yt, st) satisfies

(4.9)

{
−∂x d2

C ((x̄, r̄), (yt, st)) = 2r̄st∂x[cos+(x̄, yt)] = (1 − t)p0 + tp1

−∂r d2
C ((x̄, r̄), (yt, st)) = −2r̄ + 2st cos+(x̄, yt) = (1 − t)a0 + ta1 .

Let t 7→ yt = [y0, y1]cx̄(t) = c-expx̄(qt), with qt = (1 − t)q0 + tq1 ∈ Tx̄M . For simplicity, we look for
solutions of (4.9) where a0 = a1. If t 7→ cos+(x̄, yt), the second equation gives

(4.10) st =
a0 + 2r̄

2 cos+(x̄, yt)
,

which is strictly positive if a0 > −2r̄. Plugging such choice of st in the first equation of system (4.9),
we look for p0, p1 ∈ Tx̄M satisfying

r̄
a0 + 2r̄

cos+(x̄, yt)
∂x[cos+(x̄, yt)] = (1 − t)p0 + tp1.

Using (4.8), the identity above reads

r̄

2
(a0 + 2r̄)qt = (1 − t)p0 + tp1,

which is satisfied by the choice pi = r̄
2 (a0 + 2r̄)qi, i = 0, 1.

Conversely, assume a d2
C -segment is given by

t 7→ (yt, st) = [(y0, s0), (y1, s1)]
d2

C

(x̄,r̄)(t) = d2
C -exp(x̄,r̄) (pt, a0) ,

where pt = (1 − t)p0 + tp1 and a0 > −2r̄. Then the pair (yt, st) satisfies (4.9). Define qt = 2pt
a0r̄+2r̄2 .

Since t 7→ pt is affine, so is t 7→ qt. Moreover by (4.9), qt satisfies

qt = ∂x[log(cos2+(d(x̄, yt)))] = −∇xc(x̄, yt).

Therefore t 7→ yt is a c-segment between endpoints y0, y1 and with base point x̄. □

A direct consequence of the correspondence between c-segments and d2
C -segments is the following.

Corollary 21 (Link between cost convexity domains). Let Y × R>0 ⊂ C (M) be a d2
C -convex set

with respect to (x̄, r̄) ∈ C (M). Then Y ⊂M is a c-convex set with respect to x̄ ∈M .

Proof. By definition see [43, Definition 12.11], Y × R+ ⊂ C (M) is d2
C -convex set with respect to

(x̄, r̄) if every pair of points in Y ×R+ can be joined by a d2
C -segment with base point (x̄, r̄). Take

y0, y1 ∈ Y such that there exists q0, q1 ∈ Tx̄M with the property yi = c-expx̄(qi), i = 0, 1. Let
a0 > −2r̄ and define

pi =
(
r̄2 +

a0
2
r̄
)
qi, i = 0, 1,

si =
2r + a0

2 cos+(x̄, yi)
, i = 0, 1.

By construction, the d2
C -segment

t 7→ (yt, st) := d2
C -exp(x̄,r̄)((1 − t)p0 + tp1, a0)

is contained in Y ×R+ and has endpoints (y0, s0), (y1, s1). By Lemma 20, the curve t 7→ yt coincides
with the c-segment c-expx̄(qt), where qt = (1 − t)q0 + tq1. □
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A synthetic formulation for the sign of the MTWcost tensor is also given by the quasi or plain
convexity of a particular functional, the so-called support function (see Lemma below) along a cost-
segment see for instance [43, Theorem 12.36, Proposition 12.25(i)] [23, Theorem 2.7][?, Section
1.5.b,c,d]. We turn now to the second crucial lemma of this section which makes the link between
this support function defined on the base space and the one defined on the cone.

Lemma 22. Assume t 7→ yt = [y0, y1]cx̄(t) ∈M is a c-segment with base point x̄ and let hx : [0, 1] →
R denote the support function on yt, namely

hx(t) = c(x̄, yt) − c(x, yt) .

Let t 7→ (yt, st) = [(y0, s0), (y1, s1)]
d2

C

(x̄,r̄)(t) be any d2
C -segment associated to [y0, y1]cx̄(t) throughout

Lemma 20 and denote by H(x,r) : [0, 1] → R the corresponding support function,

H(x,r)(t) = d2
C ((x̄, r̄), (yt, st) − d2

C ((x, r), (yt, st)).

Then hx and H(x,r) satisfy the following identity

hx(t) = 2 log

(
H(x,r)(t) − r̄2 + r2

a0r̄ + 2r̄2
+ 1

)
.

Remark that for hx, H(x,r) to be well defined the cost c must satisfies some smoothness condition
such that qt is in the definition domain of c-exp.

Proof. By definition

hx(t) = c(x̄, yt) − c(x, yt) = − log(cos2+(x̄, yt)) + log(cos2+(x, yt))

= 2 log

(
cos+(x, yt)

cos+(x̄, yt)

)
.(4.11)

The support function on C (M) is given by

H(x,r)(t) = d2
C ((x̄, r̄), (yt, st)) − d2

C ((x, r), (yt, st))

= r̄2 − r2 + 2rst cos+(x, yt) − 2r̄st cos+(x̄, yt).

Since (yt, st) is a d2
C -segment, it satisfies (4.7), whence

2r̄st =
a0r̄ + 2r̄2

cos+(x̄, yt)
=

ā

cos+(x̄, yt)
,

where ā = a0r̄ + 2r̄2 > 0. Thus

Hx,r(t) − r̄2 + r2 = ā

(
r cos+(d(x, yt))

r̄ cos+(d(x̄, yt))
− 1

)
.

Finally

log
(
Hx,r(t) − r̄2 + r2 + ā

)
− log ā = log

(
r cos+(d(x, yt))

r̄ cos+(d(x̄, yt))

)
,

which provides the statement thanks to (4.11).
□

Thanks to the link we made between c-convex functions/c-segment on the cone and on the base
manifold, we are able to provide an example of answer to the question raised in [22, Example 3.9]
which is

It remains interesting to find more general sufficient conditions on a Riemannian
manifold (M, g) and function f ”...” for f(d(x, y)) to be strictly or weakly regular
i.e MTWf(d)(0) holds.
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We prove hereafter the following sufficient condition: if the cost on the cone satisfies MTW d2
C

(0),

then it MTWc(0) holds where c(x, y) = − log(cos2+(d(x, y))). Recall that this cost is associated
with the Wasserstein-Fisher-Rao metric, see Corollary 8. Importantly, this proof holds for any cost
d(x, y) on the base manifold as long as ∇xd(x, ·) is injective and continuous with inverse continuous
on a small neighborhood of all y0 ∈ M . We have two proofs of this result based on two different
synthetic formulations of MTWc(0). One is based on the quasi-convexity of the c-segment the other
one on the assumption (C) that we now recall.

Definition 14. [43, p.288] A cost c on M×M satisfies Assumption (C) if for every c-convex function
f and for every x ∈M in its domain, the c-subdifferential ∂cf(x) is connected.

Lemma 23. If d2
C satisfies assumption (C) on C (M) then c satisfies assumption (C) on M .

Proof. To prove assumption (C) for c, let f : M → R be a c-convex function. (Note that on both
M and C (M) connectedness is equivalent to path-connectedness.) Take y1, y2 ∈ ∂cf(x̄). Then, by

Lemma 19, (yi, si) ∈ ∂ d2
C
Ff (x̄, r̄), where si = r̄ef(x̄)

cos+(x̄,yi)
. By assumption (C) on d2

C , ∂ d2
C
Ff (x̄, r̄)

is connected, hence there exists a continuous path t 7→ (yt, st) ∈ ∂ d2
C
Ff (x̄, r̄), with endpoints

(y0, s0), (y1, s1). Again, by Lemma 19, (yt, st) ∈ ∂ d2
C
Ff (x̄, r̄) if and only if

yt ∈ ∂cf(x̄), st =
r̄ef(x̄)

cos+(x̄, yt)
.

In particular, t 7→ yt is a continuous path in ∂cf(x̄) between endpoints y0, y1, whence ∂cf(x̄) is
connected. □

We can now state and prove the main Theorem of this section. Recall that a cost c satisfies the
MTW weak condition if and only if, for every pair of points the MTW tensor associated with c
computed at any pair of c-orthogonal vectors is nonnegative (see also Section 2.3).

Theorem 24. If d2
C on C (M) satisfies the MTW weak condition, then the cost c on M satisfies

the MTW weak condition.

We give two proofs of Theorem 24.

Proof 1. Recall that, under some convexity assumptions, [43, Theorem 12.42] states that assumption
(C) is equivalent to MTW weak condition. Both costs d2

C on C (M) and c on M satisfy the
requirements in [43, Theorem 12.42]. Therefore, applying the result to d2

C we deduce that d2
C

satisfies assumption (C). By Lemma 23 also c satisfies assumption (C) on M . Applying [43, Theorem
12.42] to c we conclude that c satisfies MTW weak condition. □

Proof 2. By the results [43, Proposition 12.15 (i), Theorem 12.42], under the same convexity as-
sumptions, MTW weak condition for a cost is equivalent to the quasi-convexity of the support
function along any cost-segment, see [23, Theorem 2.7],[?, Section 1.5.b,c,d]. [43, Theorem 12.36,
Proposition 12.25(i)] Assume d2

C satisfies MTW weak condition on C (M). Then, the support
H(x,r)(t) = d2

C ((x̄, r̄), (yt, st)) − d2
C ((x, r), (yt, st)) function along any d2

C -segment t 7→ (yt, st) is
quasi-convex, i.e.,

H(x,r)(t) ≤ max
(
H(x,r)(0), H(x,r)(1)

)
.

Let t 7→ yt ∈M be a c-segment, x ∈M . By Lemma 20, yt is the projection on M of a d2
C -segment

t 7→ (yt, st). Moreover, by Lemma 22, the support function t 7→ hx(t) along yt and t 7→ H(x,r)(t) are
related by

hx(t) = 2 log

(
H(x,r)(t) − r̄2 + r2

a0r̄ + 2r̄2
+ 1

)
.

By hypothesis, H(x,r)(t) is quasi-convex. Since log is an increasing function, max
(
H(x,r)(0), H(x,r)(1)

)
=

H(x,r)(j) is equivalent to max (hx(0), hx(1)) = hx(j). Since a0r̄ + 2r̄>0, quasi-convexity of t 7→
H(x,r)(t) implies quasi-convexity of t 7→ hx(t). Finally, we apply [43, Proposition 12.15 (i), Theorem
12.42] to the cost c and we deduce that c satisfies MTW weak condition. □
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Note that this theorem can be checked by direct computations4 however the above proof uses a
synthetic strategy as illustrated in [43, Chapter 26].

Remark 8. With Theorem [43, 12.42] in mind a summary of this section could be the following,
which give some weaker results: Lemma 22 states an equivalence for c to be regular on M and for d2

C

to be regular on a specific set of d2
C -segments of C (M). Whereas Lemma 19 states an equivalence

for c to satisfies assumption (C) on M and d2
C to satisfies assumption (C) on a specific class of

d2
C -convex functions of C (M). Both these conditions imply the weak Ma-Trudinger-Wang condition

MTW (0). Therefore assumption (C) or regularity for d2
C on a subdomain on these specific sets are

enough to ensure that MTWc(0) holds true on a subdomain on the base space. To prove Theorem
24 we also used the reverse results that assumption (C) or regularity for d2

C on a totally d2
C -convex

set D are implied by MTW d2
C

(0).

Using the link between c-segments on the cone and on the base manifold, we could prove Theorem
24. We can also use such a strategy to derive a result on cross-curvature. Cross-curvature is
essentially the curvature tensor of the Kim-McCann metric without the orthogonality condition,
see [24]. It is also referred to as MTW (0, 0) [?, Section 1.5.b,c,d]. Thus, asking nonnegativity of
the cross-curvature is a stronger condition than asking for MTW (0) to hold true. However, this
condition is known, as proven in [24], to pass to Riemannian submersions and products of manifolds,
i.e. nonnegativity of cross-curvature is preserved, which may not be the case for the nonnegativity
of the MTW tensor.

Theorem 25. If the cross-curvature on the cone C (M) is nonpositive, it is also the case on M for
the cost − log(cos2+(d(x, y))).

Proof. A synthetic formulation for the sign of the MTWc tensor is given given by the convex-
ity/concavity of the support function along a c-segment [?, Section 1.5.b,c,d] or [23, Theorem 2.10].
The convexity is equivalent to a nonnegative cross curvature whereas the concavity is equivalent to a
nonpositive cross curvature. Using Lemma 22 and the fact that log is a concave increasing function
we get that t 7→ Hx,r(t) concave implies t 7→ hx(t) is also concave and prove the first part of the
Lemma. □

Obviously, this result is not of direct interest for smoothness of unbalanced optimal transport
since it requires nonnegativity of the cross-curvature tensor rather than nonpositivity.

Remark 9. As log is concave we cannot prove here a result similar to Theorem 24, that would pushed
the nonnegative cross curvature from the cone towards the base space. More precisely a consequence
of Lemma (19) would be if the cross-curvature on the cone is nonnegative, log(tef0(x) +(1− t)ef1(x))
is c-convex if f0, f1 are c-convex. However, we do not know if it implies nonnegativity of the cross-
curvature on the base manifold, i.e. tf0 + (1 − t)f1 is c-convex.

5. Future directions

We have shown, not unsurprisingly, that regularity for unbalanced optimal transport can be
reduced to the one of optimal transport through linearization of the dual problem. Regularity,
being a structural result in itself, is interesting outside analysis. For instance, regularity of optimal
transport maps is the key to be able to mitigate the curse of dimensionality of statistical optimal
transport as done in [40] and to obtain minimax rate of convergence for the statistical estimation
of optimal potentials [33]. Our results should allow similar gains in the statistical estimation of
unbalanced optimal transport. We focus on Wasserstein-Fisher-Rao metric since it is the natural
length space associated with the problem. This particular case leads us to examine the MTW
condition of the induced cost. Interestingly, we showed that when the weak MTW condition on
the cone is satisfied, the same holds true for the MTW condition for the induced cost on the base
manifold. A similar result holds for cross-curvature, whose nonnepositivity on the cone implies
nonpositivity of the corresponding cost on the manifold. This is an example of answer to a question

4We tried unsuccessfully to prove this result relying on symbolic computations.
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formulated in [22]. Another open application of polar factorization can lead to new numerical scheme
for the Camassa-Holm equation as done for incompressible Euler in [17].
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Appendix A. Proofs

Proof of Proposition 16 (Approximate differentiability). The proof is an adaptation of [30, Theorem
6.7] using arguments in [32, 42]. In particular we use the notation of [30]. Let (z0, z1) be a generalized
optimal potential pair for WF2(ρ0, ρ1) and γ an optimal coupling [30, Theorem 6.3]. We define the
associated densities σi = e−zi , i = 0, 1. Since ρ0 and ρ1 are admissible [30, Theorem 6.3,b] implies
Supp

(
p1∗(γ) = γ0

)
= Supp(ρ0) and Supp

(
p2∗(γ) = γ1

)
= Supp(ρ1). Therefore, there exist Borel sets

Ai ⊂ Supp(ρi) with ρi(M \Ai) = 0 such that

σ0(x)σ1(y) ≥ cos2(dπ/2(x, y)) inA0 ×A1 ,(A.1)

σ0(x)σ1(y) = cos2(dπ/2(x, y)) γ − a. e. inA0 ×A1 .(A.2)

To construct the set of approximate differentiability let

A1,n = {y ∈M ; σ1(y) ≥ 1/n}
and consider, the function

s0,n = sup
y∈A1,n

cos2(dπ/2(x, y))

σ1(y)
.

By construction, s0,n is bounded, Lipschitz and thus differentiable vol a.e. Still by definition, we
have σ0 ≥ s0,n and thus the sets A0,n = {x ∈M ; σ0(x) = s0,n(x)} are increasing. Since (A.2) is
valid γ a.e. the set

⋂∞
n=1(X \A0,n) is ρ0 negligible. Let

A′
0,n =

{
x ∈ A0,n ; lim

r→0

vol(B(x, r) ∩A0,n)

vol(B(x, r))
= 1 and s0,nis differentiable at x

}
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be the set of points of A0,n with vol density 1. Remark that
⋂∞
n=1(X \ A′

0,n) is also ρ0 negligible.
Let (x̄, ȳ) ∈ A′

0,n ×A1,n be such that

s0,n(x̄)σ1(ȳ) = cos2(dπ/2(x̄, ȳ)) = σ0(x̄)σ1(ȳ) .

Using (A.1), it holds, for all x ∈ A1

σ1(y) ≥ cos2(dπ/2(x, ȳ))/s0,n(x) .

In particular, cos2(dπ/2(x, ȳ))/s0,n(x) achieves its maximum at x̄, implying 0 ∈ ∇+
x̄ (cos2(dπ/2(·, ȳ))/s0,n(·)).

Since s0,n is differentiable at x̄, it yields that d2(·, y) is super-differentiable. By Lemma 15, it is also
sub-differentiable and thus differentiable at x̄. It holds

0 = ∇ cos2

(
√

2

√
1

2
d2π/2(x̄, ȳ))

)
/s0,n(x̄) − cos2(dπ/2(x̄, ȳ))∇s0,n(x̄)/s20,n(x̄)(A.3)

= −2
√

2 tan(dπ/2(x̄, ȳ))

√
2

2dπ/2(x̄, ȳ)
∇
(

1

2
d2π/2(x̄, ȳ)

)
−∇ ln s0,n(x̄) .(A.4)

Let −∇
(

1
2d

2
π/2(x̄, ȳ)

)
= vx̄→ȳ ∈ Tx̄M be the unique vector such that ȳ = expMx̄ (vx̄→ȳ), the last

equality reads

∇̃z0(x̄) = −∇̃ lnσ0(x̄) = −∇ ln s0,n(x̄) = −2 tan(∥vx̄→ȳ∥)
vx̄→ȳ

∥vx̄→ȳ∥
.

Therefore, ȳ is unique ρ1 a.e. and given by

ȳ = expMx̄ (vx̄→ȳ) = expMx̄

(
− arctan

(
∥∇̃z0(x̄)∥

2

)
∇̃z0(x̄)

∥∇̃z0(x̄)∥

)
= φ(x̄) .

It implies that γ is concentrated on the graph of φ in particular γ = (Id, φ)∗ γ0 and φ∗γ0 = γ1. The
strict convexity of KL implies that the marginals γ0 and γ1 are unique [30, Theorem 6.7] thus

z0 = − log(σ0) = − log(
dγ0
dρ0

)

is unique ρ0 a.e. and γ is also unique. Note that we used the admissible condition to say that σ0 is
ρ0 a.e. positive. In order to prove (3.28), we start from (13) and a direct computation yields

WFR2(ρ0, ρ1) = KL(γ0, ρ0) + KL(γ1, ρ1) +

∫

M2

c(x, y) dγ(x, y)

(A.5)

=

∫

M

log
(
e−z0

)
e−z0 dρ0 +

∫

M

(1 − e−z0) dρ0 +

∫

M

log
(
e−z1

)
e−z1 dρ1 +

∫

M

(1 − e−z1) dρ1

+

∫

M2

c(x, φ(x)) dγ(x)

=

∫

M

(1 − e−z0) dρ0 +

∫

M

(1 − e−z1) dρ1 +

∫

M

[c(x, φ(x)) − z0(x) − z1(φ(x))] dγ0(x)

=

∫

M

(1 − e−z0) dρ0 +

∫

M

(1 − e−z1) dρ1.

□
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3.2 Unbalanced gradient flows and more general reaction dif-
fusion PDE

Articles:

• A JKO splitting scheme for Kantorovich-Fisher-Rao gradient flows. SIAM
Journal on Mathematical Analysis, Vol. 49, Issue 2. (2017) https://arxiv.
org/abs/1602.04457. Gallouët T.O. et Monsaingeon L.

• An unbalanced optimal transport splitting scheme for general advection-
reaction-diffusion problems. Journal of Differential Equations ESAIM: Con-
trol, Optimisation and Calculus of Variations (2018) https://hal.science/
hal-01508911. Gallouët T.O., Laborde M. and Monsaingeon L.

Collaborators: The first article is written with L. Monsaingeon and the second
one with both L. Monsaingeon et Maxime Laborde. We were somehow at the same
career level.

Main contributions:

• Using the inf-convolution structure we proposed and proved that a splitting
scheme made of one JKO step in the Wasserstein space followed by one in the
euclidian converge towards Unbalanced Wasserstein Gradient flows.

• In the second paper we proved that the previous approach works well for
more general reaction-diffusions equations, where the energy used in the
Wasserstein JKO step and the Euclidian step are different. The Unbalanced
metric is used as a common metric that can handle all estimates together.

• We construct and implement a numerical scheme for this splitting method.

Research directions: Thanks to the spitting scheme approach detailed in this sec-
tion many of the technics developed for Wasserstein Gradient flows such as higher
order scheme can be used for more general reaction diffusion equation. We need
to understand how in interplay with the reaction step of the scheme.

https://arxiv.org/abs/1602.04457
https://arxiv.org/abs/1602.04457
https://hal.science/hal-01508911
https://hal.science/hal-01508911


A JKO SPLITTING SCHEME FOR KANTOROVICH-FISHER-RAO
GRADIENT FLOWS ∗

THOMAS O. GALLOUËT† AND LÉONARD MONSAINGEON‡

Abstract. In this article we set up a splitting variant of the Jordan-Kinderlehrer-Otto scheme in
order to handle gradient flows with respect to the Kantorovich-Fisher-Rao metric, recently introduced and
defined on the space of positive Radon measure with varying masses. We perform successively a time step
for the quadratic Wasserstein/Monge-Kantorovich distance, and then for the Hellinger/Fisher-Rao distance.
Exploiting some inf-convolution structure of the metric we show convergence of the whole process for the
standard class of energy functionals under suitable compactness assumptions, and investigate in details the
case of internal energies. The interest is double: On the one hand we prove existence of weak solutions for
a certain class of reaction-advection-diffusion equations, and on the other hand this process is constructive
and well adapted to available numerical solvers.

Key words. Unbalanced Optimal transport, Wasserstein-Fisher-Rao, Hellinger-Kantorovich, Gradient
flows, JKO scheme

AMS subject classifications. 35K15, 35K57, 35K65, 47J30

1. Introduction. A new Optimal Transport distance on the space of positive Radon
measures has been recently introduced independently by three different teams [13, 14, 25,
28, 29]. Contrarily to the classical Wasserstein-Monge-Kantorovich distances, which are
restricted to the space of measures with fixed mass (typically probability measures), this
new distance has the advantage of allowing for mass variations, can be computed between
arbitrary measures, and does not require decay at infinity (such as finite moments). In
[13, 14] the distance is called Wasserstein-Fisher-Rao and is introduced with imaging appli-
cations in mind. In [28, 29] the distance is referred to as the Hellinger-Kantorovich one, and
was studied as a particular case of a larger class of Optimal Transport problems including
primal/dual and static formulations. The second author introduced the same distance in
[25], with applications to population dynamics and gradient flows in mind. In this paper we
propose the name Kantorovich-Fisher-Rao for this metric (KFR in the sequel), taking into
account all contributions.

On one side we aim here at understanding the local behavior of the KFR metric with
respect to the by now classical quadratic Monge-Kantorovich/Wasserstein metric MK and
the Hellinger/Fisher-Rao metric FR. On the other side we want to use this information to
prove existence of weak solutions to gradient flows while avoiding to look too closely into
the geometry of the KFR space. Moreover our constructive approach is naturally adapted to
available numerical schemes and Monge-Ampère solvers.

A possible way to formalize abstract gradient flow structures is to prove convergence of
the corresponding Minimizing Movement scheme, as introduced by De Giorgi [15] and later
exploited by Jordan-Kinderlehrer-Otto for the MK metric [21]. Given a metric space (X, d)
and a functional F : X → R, the JKO scheme with time-step τ > 0 writes

(1) xn+1 ∈ Argmin
x∈X

{
1

2τ
d2(x, xn) + F (x)

}
.
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Letting τ → 0 one should expect to recover a weak solution of the gradient flow

(2) ẋ(t) = − gradd F (x(t)).

Looking at (2), which is a differential equality between infinitesimal variations, we guess
that only the local behavior of the metric d matters in (1).

The starting point of our analysis is therefore the local structure of the Kantorovich-
Fisher-Rao metric, which endows the space of positive Radon measures ρ ∈ M+ with a
formal Riemannian structure [25]. Based on some inf-convolution structure, our heuristic
considerations will suggest that, infinitesimally, KFR should be the orthogonal sum of MK and
FR:

KFR2 ≈ MK2 + FR2.

More precisely, we will show that in the tangent plane there holds

(3) ‖ gradKFR F(ρ)‖2 = ‖ gradMK F(ρ)‖2 + ‖ gradFR F(ρ)‖2

at least formally for reasonable functionals F , and this is in fact the key point in this
work. The notion of metric gradients and tangent norms appearing in (3) will be precised in
section 2. This naturally leads to a splitting approach for KFR Minimizing Movements: we
successively run a first time step for MK, leading to the diffusion term in the associated PDE,
and then a second step for FR, leading to the reaction term in the PDE. This can also be
viewed as replacing the direct approximation “by hypotenuses” in the JKO scheme (with the
KFR distance) by a double approximation “by legs” (each of the legs corresponding to one of
the FR, MK metrics). Formula (3) also indicates that the energy dissipation D(t) := −dFdt =
|ẋ|2 = | gradF |2 will be correctly approximated in (2). One elementary Monge-Kantorovich
JKO step is now well known, see for instance [38] and references therein. On the other hand
the Fisher-Rao metric enjoys a Riemannian structure that can be recast, up to a change of
variable, into a convex Hilbertian setting, and therefore the reaction step should be easy to
handle numerically.

Here we show that the classical estimates (energy monotonicity, total square distance,
mass control, BV. . . ) propagate along each MK and FR substeps, and nicely fit together in
the unified KFR framework. This allows us to prove existence of weak solutions for a whole
class of reaction-advection-diffusion PDEs

∂tρ = div(ρ∇(U ′(ρ) + Ψ +K ∗ ρ))− ρ(U ′(ρ) + Ψ +K ∗ ρ)

associated with KFR gradient flows

∂tρ = − gradKFR F(ρ), F(ρ) =

∫

Ω

{
U(ρ) + Ψ(x)ρ+

1

2
ρK ? ρ

}
.

The structural conditions on the internal energy U , external potential Ψ, interaction kernel
K, and the meaning of the metric gradient gradKFR will be precised later on. Moreover we
retrieve a natural Energy Dissipation Inequality at least in some particular cases, which is
well known [3] to completely characterize metric gradient flows.

Our splitting method has several interests: First we avoid a possibly delicate geometrical
analysis of the KFR space, in particular we do not need to differentiate the squared KFR

distance. This is usually required to derive the Euler-Lagrange equations in the JKO scheme,
but might not be straightforward here (see Section 3 for discussions). Secondly, the approach
leads to a new constructive existence proof for weak solutions to the above class of PDEs,
and can be implemented numerically (see [24] for an early application of this idea). For
one elementary MK step many discretizations are now available, such as the semi-discrete
scheme [32, 6], the augmented Lagrangian procedure [5], or the Entropic relaxation [36].
The Fisher-Rao minimizing step should not be difficult to implement, since the problem is
convex with the good choice of variables.
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Finally it is worth stressing that the KFR distance is, by construction, well adapted to
handle general transport and reaction processes in a unified framework. One very natural
extension of this work would be to consider two separate energy functionals F1,F2, to be
used respectively in the diffusion and reaction parts. This natural approach is the pur-
pose of our ongoing works [17, 26] and should allow to treat more general equations (not
necessarily gradient flows). However, the rigorous analysis requires suitable compatibility
conditions between the two driving functionals and becomes quite technical (see e.g. Re-
mark 4.1). For the sake of exposition we chose to restrict here to the case of pure gradient
flows F1 = F = F2, when the technical estimates are more straightforward and allow to
recover dissipation estimates (see Section 5.2).

The paper is structured as follows. In Section 2 we recall some basic facts on the
three metrics involved: the quadratic Monge-Kantorovich MK, the Fisher-Rao FR, and the
Kantorovich-Fisher-Rao KFR distances. We highlight the three differential Riemannian struc-
tures and gradient flow interpretations. Section 3 details the local relation between the three
metrics, in particular the infinitesimal uncoupling of the inf-convolution. For the sake of
exposition we deliberately remain formal in order to motivate the rigorous analysis in the
next sections. In section 4 we define the splitting minimizing movement scheme for the
KFR distance and prove, under natural compactness assumptions, the convergence towards
a weak solution of the expected PDE. As an example in section 5 we work out all the tech-
nical details for the particular case of internal energies, and show that the previous abstract
compactness hypothesis holds.

2. Preliminaries. From now on we always assume that Ω ⊂ Rd is a convex subset,
possibly unbounded. In this section we recall some facts about the Wasserstein-Monge-
Kantorovich and Hellinger-Fisher-Rao distances MK, FR, and introduce the Kantorovich-
Fisher-Rao distance KFR. We also present the differential points of view for each of them,
allowing to retrieve the three corresponding pseudo Riemannian structures and compute
gradients of functionals with respect to the MK, FR, KFR metrics.

2.1. The quadratic Monge-Kantorovich distance MK. We refer to [41] for an
introduction and to [42] for a complete overview of the Wasserstein-Monge-Kantorovich
distances.

Definition 2.1. For any nonnegative Radon measures ρ0, ρ1 ∈ M+
2 with same mass

|ρ0| = m = |ρ1| and finite second moments, the quadratic Monge-Kantorovich distance is

(4) MK2(ρ0, ρ1) = min
γ∈Γ[ρ0,ρ1]

∫

Ω×Ω

|x− y|2dγ(x, y),

where the admissible set of transference plans Γ[ρ0, ρ1] consists of nonnegative measures
γ ∈ M+(Ω × Ω) with mass |γ| = m and prescribed marginals Πx(γ) = ρ0(x) and Πy(γ) =
ρ1(y).

The minimizer is unique and is called an optimal plan. When ρ0 does not charge small sets
we have the characterization in terms of transport maps:

Theorem 2.1 (Brenier, Gangbo-McCann, [11, 19]). With the same assumptions as in
Definition 2.1, assume that ρ0 does not give mass to Hd−1 sets. Then

(5) MK2(ρ0, ρ1) = min
ρ1=t#ρ0

∫

Ω

|x− t(x)|2dρ0(x),

and the optimal transport map t is unique dρ0 almost everywhere.

We recall the definition of pushforwards by maps t : Ω→ Ω

ρ1 = t#ρ0 ⇔
∫

Ω

φ(y)dρ1(y) =

∫

Ω

φ(t(x))dρ0(x) for all φ ∈ Cc(Ω).
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As first pointed out by Benamou and Brenier [4] we also have the following dynamic repre-
sentation of the Wasserstein distance:

Theorem 2.2 (Benamou-Brenier formula, [3, 4]). There holds

(6) MK2(ρ0, ρ1) = min
(ρ,v)∈AMK[ρ0,ρ1]

∫ 1

0

∫

Ω

|vt|2dρtdt,

where the admissible set AMK[ρ0, ρ1] consists of curves [0, 1] 3 t 7→ (ρt,vt) ∈ M+(Ω) ×
L2(Ω,dρt)

d such that t 7→ ρt is narrowly continuous with endpoints ρ0, ρ1 and solving the
continuity equation

∂tρt + div(ρtvt) = 0

in the sense of distributions D′((0, 1)× Ω).

Remark 2.1. Note that, since we are minimizing the kinetic energy in (6), the admissi-
ble velocity fields v are implicitly taken in the varying weighted space v ∈ L2(0, 1;L2(dρt)).
For such velocities in this energy space, the action of the product ρtvt is well defined against
any smooth test-function ϕ ∈ C∞c ((0, 1)×Ω) ⊂ L2(0, 1;L2(dρt)) in the distributional formu-
lation of the continuity equation, i-e

−〈div(ρv), ϕ〉D′,D = 〈ρv,∇ϕ〉D′,D = (v,∇ϕ)L2(0,1;L2(dρt))
=

∫ 1

0

∫

Ω

vt · ∇ϕdρt dt.

In (6) a minimizing curve t 7→ ρt is of course a geodesics, with constant metric speed
‖vt‖2L2(dρt)

= cst = MK2(ρ0, ρ1). Note that we allow here for any arbitrary mass |ρ0| = m =

|ρ1| > 0, and that the distance scales as MK2(αρ0, αρ1) = αMK2(ρ0, ρ1). This is apparent in
all three formulations (4)(5)(6), which are linear in γ, ρ0, ρ1, and ρt respectively.

As is now well-known from the works of Otto [34], we can view the set of measures with
fixed mass as a pseudo-Riemannian manifold, endowing the tangent plane

TρM+
MK = {∂tρ = −div(ρv) evaluated at t = 0}

with the metrics

‖∂tρ‖2TρM+
MK

:= inf
{
‖v‖2L2(dρ) : ∂tρ = −div(ρv)

}
.

It is easy to see that, among all possible velocities v representing the same tangent
vector ∂tρ = −div(ρv), there is a unique one with minimal L2(dρ) norm. A standard
computation [41] shows that this particular velocity is necessarily potential, v = ∇p for a
pressure function p uniquely defined up to constants (see the proof of Proposition 2.2 below
at least for smooth positive densities ρ). As a consequence we always choose to represent

‖∂tρ‖2TρM+
MK

= ‖∇p‖2L2(dρ) with the identification ∂tρ = −div(ρ∇p).

Here we remained formal and refer again to [41, 42] for details. Now metric gradients gradMK

can be computed by the chain rule as follows: If ∂tρt = −div(ρt∇pt) is a smooth curve
passing through ρt(0) = ρ with arbitrary initial velocity ζ = ∂tρ(0) = −div(ρ∇p) then for
functionals F(ρ) =

∫
Ω
F (ρ(x), x)dx

〈gradMK F(ρ), ζ〉TρM+
MK

=
d

dt
F(ρt)

∣∣∣∣
t=0

=
d

dt

(∫

Ω

F (ρt(x), x)dx

)∣∣∣∣
t=0

=

∫

Ω

F ′(ρ)× {− div(ρ∇p)} =

∫

Ω

∇F ′(ρ) · ∇p dρ

= (∇F ′(ρ),∇p)L2(dρ) ,
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where F ′(ρ) = δF
δρ stands for the standard first variation with respect to ρ. For the classical

case F(ρ) =
∫

Ω
{U(ρ)+Ψρ+ 1

2ρK?ρ} considered here this means F ′(ρ) = U ′(ρ)+Ψ(x)+K?ρ.
This shows that one should identify gradients

gradMK F(ρ) = −div(ρ∇F ′(ρ))

through the L2(dρ) action in the tangent plane, and as a consequence the Monge-Kantorovich
gradients flows read

(7) ∂tρ = − gradMK F(ρ) ↔ ∂tρ = div(ρF ′(ρ)).

2.2. The Fisher-Rao distance FR. The classical Hellinger-Kakutani distance [20, 22],
or Fisher-Rao metric, was first introduced for probability measures and is well known in
statistics and information theory for its connections with the Kullback’s divergence and
Fisher information [9]. It can be extended to arbitrary nonnegative measures as

Definition 2.2. The Fisher-Rao distance between measures ρ0, ρ1 ∈M+ is given by

(8) FR2(ρ0, ρ1)
def
= min

(ρ,r)∈AFR[ρ0,ρ1]

∫ 1

0

∫

Ω

|rt(x)|2dρt(x) dt = 4

∫

Ω

∣∣∣∣∣

√
dρ0

dλ
−
√

dρ1

dλ

∣∣∣∣∣

2

dλ.

The admissible set AFR[ρ0, ρ1] consists of curves [0, 1] 3 t 7→ (ρt, rt) ∈ M+(Ω) ×
L2(Ω,dρt) such that t 7→ ρt is narrowly continuous with endpoints ρ0, ρ1, and

∂tρt = ρtrt

in the sense of distributions D′((0, 1)× Ω).

As in Remark 2.1 the reaction term r implicitly belongs to the energy space L2(0, 1;L2(dρt)),
so that ρr is a well-defined distribution D′((0, 1)× Ω) through the (r, .)L2(0,1;L2(dρt))

scalar
product. In the last explicit formula λ is any reference measure such that ρ0, ρ1 are
both absolutely continuous with respect to λ, with Radon-Nikodym derivatives dρi

dλ . By 1-
homogeneity this expression doe not depend on the choice of λ, and the normalizing factor
4 is chosen so that the metric for the pivot space in the first dynamic formulation is exactly
L2(dρt) and not some other multiple βL2(dρt).

At least for absolutely continuous measures dρ0,dρ1 � dx one can check that the
minimum in the first definition is attained along the geodesic

ρt = [(1− t)√ρ0 + t
√
ρ1]2 and rt := 2

√
ρ1 −√ρ0√

ρt
∈ L2(dρt).

Moreover this optimal curve ∂tρt = ρtrt has constant metric speed ‖rt‖2L2(dρt)
= 4

∫
Ω
|√ρ1−√

ρ0|2 = FR2(ρ0, ρ1), which should be expected for geodesics.

More importantly, the first Lagrangian formulation in (8) suggests to view the metric
space (M+, FR) as a Riemannian manifold, endowing the tangent plane

TρM+
FR =

{
∂tρt = ρtrt evaluated at t = 0

}

with the metrics

‖∂tρ‖2TρM+
FR

= ‖r‖2L2(dρ) with the identification ∂tρ = ρr.

Metric gradients gradFR can then be computed by the chain rule as follows: If ∂tρt = ρtrt is
a smooth curve passing through ρt(0) = ρ with arbitrary initial velocity ζ = ∂tρ = ρr then
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for functionals F(ρ) =
∫

Ω
F (ρ(x), x)dx we can compute

〈gradF(ρ), ζ〉TρM+
FR

=
d

dt
F(ρt)

∣∣∣∣
t=0

=
d

dt

(∫

Ω

F (ρt(x), x)dx

)∣∣∣∣
t=0

=

∫

Ω

F ′(ρ)ρr = 〈F ′(ρ), r〉L2(dρ) ,

where F ′(ρ) = δF
δρ as before. This shows that

(9) gradFR F(ρ) = ρF ′(ρ)

with identification through the L2(dρ) action in the tangent plane, and as a consequence
gradients flows with respect to the Hellinger-Fisher-Rao metrics read

(10) ∂tρ = − gradFR F(ρ) ↔ ∂tρ = −ρF ′(ρ).

2.3. The Kantorovich-Fisher-Rao distance KFR. As introduced in [14], we have

Definition 2.3. The Fisher-Rao-Hellinger-Kantorovich-Wasserstein distance between
measures ρ0, ρ1 ∈M+(Ω) is

(11) KFR2(ρ0, ρ1) = inf
(ρ,v,r)∈AKFR[ρ0,ρ1]

∫ 1

0

∫

Ω

(|vt(x)|2 + |rt(x)|2)dρt(x) dt

The admissible set AKFR[ρ0, ρ1] is the set of curves [0, 1] 3 t 7→ (ρt,vt, rt) ∈ M+(Ω) ×
L2(Ω,dρt)

d × L2(Ω,dρt) such that t 7→ ρt is narrowly continuous with endpoints ρ0, ρ1 and
solves the continuity equation with source

∂tρt + div(ρtvt) = ρtrt

in the sense of distributions D′((0, 1)× Ω).

As in Remark 2.1 the velocity fields and reaction term implicitly belong to the energy space
L2(0, 1;L2(dρt)), so that both products ρv, ρr are well-defined as distributions D′((0, 1)×Ω).
Comparing (11) with (6) and (8), this dynamic formulation à la Benamou-Brenier [4] shows
that the KFR distance can be viewed as an inf-convolution of the Monge-Kantorovich and
Fisher-Rao distances MK, FR. By the results of [14, 13, 28] the infimum in the definition is
always a minimum, and the corresponding minimizing curves t 7→ ρt are of course called
geodesics. As shown in [25, 14, 28] geodesics need not be unique, see also the brief dis-
cussion in section 4. Interestingly, there are other possible formulations of the distance
in terms of static unbalanced optimal transportation, primal-dual characterizations with
relaxed marginals, lifting to probability measures on a cone over Ω, and duality with sub-
solutions of Hamilton-Jacobi equations. See also [28, 29] as well as [37] for a related version
with mass penalization.

As an immediate consequence of the definition 11 we have a first interplay between the
distances KFR, MK, FR:

Proposition 2.1. Let ρ0, ρ1 ∈M+
2 such that |ρ0| = |ρ1|. Then

KFR2(ρ0, ρ1) ≤ MK2(ρ0, ρ1).

Similarly for all µ0, µ1 ∈M+ (with possibly different masses) there holds

KFR2(µ0, µ1) ≤ FR2(µ0, µ1).

Proof. If |ρ0| = |ρ1| then the optimal Monge-Kantorovich geodesics ∂tρt+div(ρtvt) = 0
from ρ0 to ρ1 gives an admissible path in (11) with r ≡ 0 and cost exactly MK2(ρ0, ρ1).
Likewise for arbitrary measures µ0, µ1 one can follow the Fisher-Rao geodesics ∂rρt = ρtrt,
which gives an admissible path with v ≡ 0 and cost FR2(µ0, µ1).
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Proposition 2.2. The definition (11) of the KFR distance can be restricted to the sub-
class of admissible paths (vt, rt) such that vt = ∇rt.

Proof. By [14, thm. 2.1] there exists a minimizing curve (ρt,vt, rt) in (11), which by
definition is a KFR-geodesic between ρ0, ρ1 (we also refer to [25, thm. 6] and [29] for the
existence of geodesics). Here we stay at the formal level and assume that ρ,v, r are smooth
with ρ > 0 everywhere.

Consider first an arbitrary smooth vector-field w such that divwt = 0 for all t ∈ [0, 1],
and let vε := v+εwρ . Then div(ρvε) = div(ρv)+0 and the triplet (ρt,v

ε
t , rt) is an admissible

competitor in (11). Writing the optimality condition we compute

0 =
d

dε

(
1

2

∫ 1

0

∫

Ω

(|vεt (x)|2 + |rt(x)|2)dρt(x) dt

)∣∣∣∣
ε=0

=

∫ 1

0

∫

Ω

vt(x) · wt(x)

ρt(x)
dρt(x) dt =

∫ 1

0

∫

Ω

vt(x) ·wt(x) dxdt.

This L2 orthogonality with all divergence-free vector fields classically implies that vt is
potential for all times, i-e vt = ∇ut for some ut.

Fix now any smooth φ ∈ C∞c ((0, 1) × Ω), and define ṽεt := vt + ε∇φt = ∇(ut + εφt).
Defining st by ρtst = div(ρt∇φt) and r̃εt := rt+ εst it is easy to check that (ρt, ṽ

ε
t , r̃

ε
t ) solves

the continuity equation, and this triplet is again an admissible competitor in (11). Writing
the optimality condition we get now

0 =
d

dε

(
1

2

∫ 1

0

∫

Ω

(|ṽεt (x)|2 + |r̃εt (x)|2)dρt(x) dt

)∣∣∣∣
ε=0

=

∫ 1

0

∫

Ω

(
∇ut(x) · ∇φt + rt(x)st(x)

)
dρt(x) dt

=

∫ 1

0

∫

Ω

∇
(
ut − rt

)
(x) · ∇φtdρt(x) dt,

where we used the identity rtstρt = rt div(ρt∇φt) to integrate by parts in the last equality.
As φ was arbitrary this implies div(ρt∇ut) = div(ρt∇rt) and ‖vt‖2L2(dρt)

= ‖∇ut‖2L2(dρt)
=

‖∇rt‖2L2(dρt)
. In particular the triplet (ρt,∇rt, rt) is admissible and has the same cost as

the optimal (ρt,vt, rt), which concludes the proof.

As a consequence we have the alternative definition of the KFR distance as introduced in
[25], which couples the reaction and velocity:

Theorem 2.3. For all ρ0, ρ1 ∈M+(Ω) there holds

(12) KFR2(ρ0, ρ1) = inf
(ρ,u)∈ÃKFR[ρ0,ρ1]

∫ 1

0

∫

Ω

(|∇ut(x)|2 + |ut(x)|2)dρt(x) dt,

where ÃKFR[ρ0, ρ1] is the set of curves [0, 1] 3 t 7→ (ρt,∇ut, ut) ∈ M+(Ω) × L2(Ω,dρt)
d ×

L2(Ω,dρt) such that t 7→ ρt is narrowly continuous with endpoints ρ0, ρ1 and solves

∂tρt + div(ρt∇ut) = ρtut

in the sense of distributions D′((0, 1)× Ω).

The potentials u belong now implicitly to the energy space L2(0, 1;H1(dρt)) with obviously
‖ut‖2H1(dρ) :=

∫
Ω

(|∇ut|2 + |ut|2)dρt, and both products ρt∇ut, ρtut define distributions as
before. Note that Theorem 2.3 shows that the KFR distance constructed in [14], based on
the uncoupled (v, r) formulation, is indeed the same as that in [25], modeled on the (∇u, u)
potential framework.
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In order to define now the Riemannian structure on (M+, KFR) inherited from the
Lagrangian minimization, we endow the tangent plane

TρM+
KFR =

{
∂tρ = −div(ρv) + ρr evaluated at t = 0

}

with the Riemannian metrics

‖∂tρ‖2TρM+
KFR

:= inf
{
‖v‖2L2(dρ) + ‖r‖2L2(dρ) : ∂tρ = −div(ρv) + ρr

}
.

Then Theorem 2.3 also allows to construct the one-to-one correspondence between tangent
vectors ∂tρ and potentials u, such that

‖∂tρ‖2TρM+
KFR

= ‖u‖2H1(dρ) with the identification ∂tρ = −div(ρ∇u) + ρu.

With this one-to-one correspondence at hand, metric gradients gradKFR F can be computed
by the chain rule as earlier: If ∂tρt + div(ρt∇ut) = ρtut is a smooth curve passing through
ρt(0) = ρ with arbitrary initial velocity ζ = ∂tρt(0) = −div(ρ∇u) + ρu then for functionals
F(ρ) =

∫
Ω
F (ρ(x), x)dx we have

〈gradKFR F(ρ), ζ〉TρM+
KFR

=
d

dt
F(ρt)

∣∣∣∣
t=0

=
d

dt

(∫

Ω

F (ρt(x), x)dx

)∣∣∣∣
t=0

=

∫

Ω

F ′(ρ)× {− div(ρ∇u) + ρu}

=

∫

Ω

{∇F ′(ρ) · ∇u+ F ′(ρ)u} dρ = 〈F ′(ρ), u〉H1(dρ) ,

where F ′(ρ) = δF
δρ as before. This shows that

gradKFR F(ρ) = −div (ρ∇F ′(ρ)) + ρF ′(ρ)

through the canonical H1(dρ) action in the tangent plane. In particular KFR gradient flows
read

(13) ∂tρ = − gradKFR F(ρ) ↔ ∂tρ = div(ρ∇F ′(ρ))− ρF ′(ρ),

which should be compared with (7) and (10).

3. Infinitesimal uncoupling of the inf-convolution. Let us first summarize the
previous informal discussion on each of the three metrics: the quadratic Monge-Kantorovich
distance is modeled on the homogeneous Ḣ1(dρ) space, the Fisher-Rao distance is based
on L2(dρ), and the KFR metrics is constructed on the full H1(dρ) structure. Each of these
Riemannian structures are defined via identification of tangent vectors as

MK : ‖∂tρ‖2TρM+
MK

= ‖∇p‖2L2(dρ) =
∫

Ω
|∇p|2dρ, ∂tρ+ div(ρ∇p) = 0,

FR : ‖∂tρ‖2TρM+
FR

= ‖r‖2L2(dρ) =
∫

Ω
|r|2dρ, ∂tρ = ρr,

KFR : ‖∂tρ‖2TρM+
KFR

= ‖u‖2H1(dρ) =
∫

Ω
(|∇u|2 + u2)dρ, ∂tρ+ div(ρ∇u) = ρu.

Given a tangent vector ζuKFR = −div(ρ∇u)+ρu ∈ TρM+
KFR we can naturally define a Monge-

Kantorovich tangent vector ζuMK := −div(ρ∇u) ∈ TρM+
MK, and a Fisher-Rao tangent vector

ζuFR := ρu ∈ TFRM+
FR. Observing that by construction

(14) ‖ζuKFR‖2TρM+
KFR

= ‖ζuMK‖2TρM+
MK

+ ‖ζuFR‖2TρM+
FR

,

this suggests to view the tangent plane as the orthogonal sum

(15) TρM+
KFR = TρM+

MK ⊕⊥ TρM+
FR, ζuKFR = ζuMK + ζuFR.
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More precisely, let us define an equivalence relation ∼ on TρM+
MK⊕TρM+

FR by (v, r) ∼ (ṽ, r̃)
if − div (ρv) + ρr = − div (ρṽ) + ρr̃. Each (v, r) lies in an equivalence class [(∇u, u)] = [u]
on which we define the norm

‖[u]‖2∼ = ‖∇u‖2L2(dρ) + ‖u‖2L2(dρ) = ‖ζuMK‖2TρM+
MK

+ ‖ζuFR‖2TρM+
FR

.

Then the orthogonality in (14) should be understood as
(
TρM+

KFR, ‖ · ‖2TρM+
KFR

)
=
( (
TρM+

MK ⊕ TρM+
FR

)
/ ∼, ‖ · ‖2∼

)
.

Thus infinitesimally KFR2 ≈ MK2 + FR2, and this will motivate later on replacing the approx-
imation “by hypotenuses” by an approximation “by legs” in the JKO scheme - see section 4
and in particular (23)(24). The orthogonality between the transport/MK and reaction/FR
processes also yields a natural strategy to send a measure ρ0 to another ρ1: one can send
first ρ0 to the renormalized ρ̃0 := |ρ0|

|ρ1|ρ1 by pure Monge-Kantorovich transport (which is
possible since |ρ̃0| = |ρ0|), and then send ρ̃0 to ρ1 by pure Fisher-Rao reaction. This amounts
to following separately and successively the two orthogonal directions in the decomposition
(15).

An immediate consequence of this observation is

Proposition 3.1. For arbitrary measures ρ0, ρ1 ∈M+ let ρ̃0 := |ρ0|
|ρ1|ρ1. Then

(16) KFR2(ρ0, ρ1) ≤ 2
(
MK2(ρ0, ρ̃0) + FR2(ρ̃0, ρ1)

)
.

Proof. It suffices to follow first a pure Monge-Kantorovich geodesics (r ≡ 0) from ρ0 to
ρ̃0 scaled in time t ∈ [0, 1/2], and then a pure Fisher-Rao geodesic (v ≡ 0) from ρ̃0 to ρ1

scaled in time t ∈ [1/2, 1]. Because of the rescaling in time each of these half-paths have an
extra factor 2, amounting to a total cost of 2MK2(ρ0, ρ̃0) + 2FR2(ρ̃0, ρ1) for this admissible
path. The result then follows from the definition (11) of KFR2 as an infimum over all paths.

Note that estimate (16) holds for any arbitrary measure ρ0, ρ1 ∈ M+, but has a mul-
tiplicative factor 2 which in view of (14)(15) is certainly not optimal at short range
KFR(ρ0, ρ1) � 1. Consider now two very close measures KFR(ρ0, ρ1) � 1. Then the above
transformation from ρ0 to ρ1 can essentially be considered as occurring infinitesimally in
the tangent plane TρM+

KFR = TρM+
MK ⊕⊥ TρM+

FR. Roughly speaking, this means that the
two transport and reaction processes from ρ0 to ρ̃0 and from ρ̃0 to ρ1 in the previous proof
can be considered as occurring simultaneously and independently at the infinitesimal level.
Thus the factor 2 in (16) is unnecessary, and one should expect in fact

(17) KFR2(ρ0, ρ1) ≈ MK2(ρ0, ρ̃0) + FR2(ρ̃0, ρ1)

for nearby measures KFR(ρ0, ρ1) � 1. This can be made rigorous at least for one-point
particles

ρ0 = k0δx0 , ρ1 = k1δx1

at close distance, i-e |x1 − x0| � 1 and k1 ≈ k0. In this setting it was shown in [25,
Section 3.3] and proved rigorously [14, thm. 4.1] and [29, thm. 3.1] that the geodesics ρt
from ρ0 to ρ1 is a moving one-point mass of the form ρt = ktδxt for some suitable curve
t 7→ (xt, kt) ∈ Ω× R+.

Remark 3.1. The one-point ansatz ρt = ktδxt is in fact correct not only for short
distances |x1 − x0| � 1, but also as long as |x1 − x0| < π. Past this threshold |x1 − x0| ≥ π
it is more efficient to virtually displace mass from x0 to x1 by pure reaction, i-e by killing
mass at x0 while simultaneously creating some at x1.

In the continuity equation ∂tρt + div(ρtvt) = ρtrt the advection moves particles around
according to d

dtxt = vt and the reaction reads d
dtkt = ktrt, each with infinitesimal cost

kt|vt|2 and kt|rt|2. The optimal (vt, rt) for the one-point ansatz ρt = ktδxt can be computed
9



explicitly by looking at the coupled formulation (12) with vt = ∇ut, rt = ut, and optimizing
the cost with respect to admissible potentials ut. Omitting the details (see again [13, 14,
25, 28, 29]), the optimal cost can be computed explicitly as

(18) KFR2(ρ0, ρ1) = 4

(
k0 + k1 − 2

√
k0k1 cos

( |x1 − x0|
2

))
for

{
ρi = kiδxi
|x1 − x0| < π.

Remark 3.2. It was shown in [13, 28, 29] that the KFR distance can be recovered by
means of a suitable Riemannian submersion (P2(CΩ), MK) → (M+(Ω), KFR). Here CΩ =
{[x, r] ∈ Ω×R+}/ ∼ is a cone overlying Ω obtained by identification of all the tips [x, 0] into
a single point � ∈ CΩ, and is suitably endowed with the cone distance d2

C([x0, r0], [x1, r1]) =
r2
0+r2

1−2r0r1 cos(|x1−x0|/2∧π). In formula (18) one sees in fact, up to the normalizing fac-
tor 4, the natural Monge-Kantorovich distance KFR2

(
δ[x0,k0], δ[x1,k1]

)
= MK2

(
δ[x0,

√
k0], δ[x1,

√
k1]

)
=

d2
C([x0,

√
k0], [x1,

√
k1]) between unit Dirac masses in the overlying space P2(CΩ). We refrain

from discussing further the Riemannian submersion and the corresponding static formula-
tions of KFR, and refer again to [13, 28, 29, 18] for rigorous statements.

In this setting and with the previous notation ρ̃0 = |ρ0|
|ρ1|ρ1 = k0δx1 we have here

MK2(ρ0, ρ̃0) = MK2(k0δx0
, k0δx1

) = k0|x1 − x0|2,

and by (8)

FR2(ρ̃0, ρ1) = FR2(k0δx1 , k1δx1) = 4

∫

Ω

∣∣∣∣∣

√
dρ1

dδx1

−
√

dρ̃0

dδx1

∣∣∣∣∣

2

dδx1 = 4
∣∣∣
√
k1 −

√
k0

∣∣∣
2

.

Taylor-expanding (18) at order two in |x1 − x0|, |
√
k1 −

√
k0| � 1 gives

(19) KFR2(ρ0, ρ1) = k0|x1 − x0|2 + 4|
√
k1 −

√
k0|2 +O

(
|x1 − x0|2|

√
k1 −

√
k0|
)

= MK2(ρ0, ρ̃0) + FR2(ρ̃0, ρ1) + lower order,

which shows that our claim (17) holds true at least for one-point particles and at order one
in the squared distances.

Remark 3.3. Due to 4|
√
k1 −

√
k0|2 = FR2(ρ̃0, ρ1) � 1 we have k1 = k0 + O(|

√
k1 −√

k0|). The previous expression can therefore be rewritten as

KFR2(ρ0, ρ1) =
k0 + k1

2
|x1 − x0|2 + 4|

√
k1 −

√
k0|2 + lower order

and the apparent loss of symmetry in k0, k1 in (19) is thus purely artificial.

Remark 3.4. An interesting question would be to determine how much information on
the transport/reaction coupling is encoded in the remainder, and this is also related to the
curvature of the KFR space.

Justifying and/or quantifying the above discussion and (17) for general measures with
KFR(ρ0, ρ1) � 1 is an interesting question left for future work. One can think that the
superposition principle should apply: viewing any measure as a continuum of one-point La-
grangian particles and taking for granted that the infinitesimal uncoupling holds for single
particles, it seems natural that the result should also hold for all measures.

4. Minimizing scheme. We turn now our attention to gradient-flows

(20) ∂tρ = − gradKFR F(ρ)
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of functionals

F(ρ) =

{ ∫
Ω

{
U(ρ) + Ψ(x)ρ+ 1

2ρK ? ρ
}

dx if dρ� dx
∞ otherwise

with respect to the KFR distance. Without further mention we implicitly restrict to ab-
solutely continuous measures (with respect to Lebesgue), and still denote their Radon-
Nikodym derivatives ρ = dρ

dx with a slight abuse of notations. According to (13) this corre-
sponds to PDEs of the form

(21) ∂tρ = div(ρ∇(U ′(ρ) + Ψ +K ? ρ))− ρ(U ′(ρ) + Ψ +K ? ρ),

appearing for example in the tumor growth model studied in [35].
The natural minimizing movement for (20) should be

(22) ρn+1 ∈ Argmin
ρ∈M+

{
1

2τ
KFR2(ρ, ρn) + F(ρ)

}

for some small time step τ > 0. In order to obtain an Euler-Lagrange equation, a classical
and natural strategy would be to consider perturbations ε 7→ ρε of the minimizer ρε(0) =
ρn+1 starting with velocity ∂ερ(0) = −div(ρn+1∇φ) + ρn+1φ for any arbitrary smooth
φ, corresponding to choosing all possible directions of perturbation in the tangent plane
Tρn+1M+

KFR. Writing down the optimality criterion d
dε

(
1
2τ KFR

2(ρε, ρ
n) + F(ρε)

)∣∣
ε=0

= 0
should then give the sought Euler-Lagrange equation. In order to exploit this, one should
in particular know how to differentiate the squared distance ρ 7→ KFR2(ρ, µ) with respect to
such perturbations ρε of the minimizer. At this stage the theory does not provide yet the
necessary tools, even though what the formula should read is quite clear: For any reasonably
smooth Riemannian manifold and smooth curve x(t) with x(0) = x we have

d

dt

(
1

2
d2(x(t), y)

)∣∣∣∣
t=0

= 〈x′(0), ζ〉TxM ,

where ζ is the terminal velocity y′(1) ∈ TxM of the geodesics from y to x. Here the
KFR-geodesics (µs)s∈[0,1] from ρn to ρn+1 should solve ∂sµs + div(µs∇us) = µsus and the
terminal velocity ζ = ∂sµ(1) ∈ Tρn+1M+

KFR should be identified with some potential un+1 =
u|s=1 ∈ H1(dρn+1) through ζ = −div(ρn+1∇un+1) + ρn+1un+1, see section 2.3. We should
therefore expect

d

dε

(
1

2
KFR2(ρε, ρ

n)

)∣∣∣∣
ε=0

= 〈∂ερ(0), ζ〉Tρn+1M+
KFR

=

∫

Ω

(∇φ · ∇un+1 + φun+1)dρn+1.

However, this can raise delicate technical issues at the cut-locus, where geodesics cease to
be minimizing and prevent any differentiability of the squared distance. Indeed, it was
shown in [29, section 5.2], [14, thm. 4.1], and [25, section 3.5] that such cut-loci do exist
for Ω = Rd, and even that the set of non-unique geodesics generically spans an infinite-
dimensional convex set. This is related to the threshold |x1−x0| = π for one-point measures,
see Remark 3.1. In other words the squared distance may very well not be differentiable,
even in the case of the simplest geometry Ω = Rd of the underlying space. This is in sharp
contrast with classical mass conservative optimal transportation, where the cut-locus in
P(X) is intimately related to the geometry of the underlying Riemannian manifold X [42].

In the context of minimizing movements one should expect two successive steps to
be extremely close, typically KFR(ρn+1, ρn) = O(

√
τ) as τ → 0. It seems reasonable to

hope that geodesics then become unique at short distance, and one might therefore think
that the previous cut-locus issue should not arise here for small τ > 0. However, even
assuming that we could somehow compute a unique minimizing geodesics (ρs)s∈[0,1] from
ρn to ρn+1 and safely evaluate the terminal velocity ∂sρ(1) = −div(ρn+1∇un+1)+ρn+1un+1
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at s = 1 in order to differentiate the squared distance, it would remain to derive a (possibly
approximated) relation between the Riemannian point of view and the more classical PDE
framework, e.g. by proving an estimate like

∫

Ω

(∇un+1 · ∇φ+ un+1φ)dρn+1 ≈
∫

Ω

ρn+1 − ρn
τ

φ+ remainder.

In this last display we see the interplay between the forward tangent vector un+1 ∈ H1(dρn+1) ∼=
Tρn+1M+

KFR, encoding the Riemannian variation from ρn to ρn+1, and the standard difference
quotient ρn+1−ρn

τ ≈ ∂tρ. One should then typically prove that the remainder is quadratic
O
(
KFR2(ρn+1, ρn)

)
. Within the framework of classical optimal transport this is usually done

exploiting the explicit representation of the MK metrics in terms of optimal transport maps
(or transference plans, or Kantorovich potentials), which are in turn related to some static
formulations of the problem. See later on section 4.1 and in particular the Taylor expansion
(32) for details, and also remark 4.2. However, and even though static formulations of the
KFR distance have been derived in [28], the current theory does not provide yet such an
asymptotic expansion.

In order to circumvent these technical issues, let us recall from the discussion in sec-
tion 3 that the inf-convolution formally uncouples at short distance. This strongly suggests
replacing KFR2 by the approximation MK2 + FR2 ≈ KFR2, and as a consequence we natu-
rally substitute the direct one-step minimizing scheme (22) by a sequence of two elementary
substeps

ρn
MK2−→ ρn+ 1

2
FR2−→ ρn+1.

Each of these substeps are pure Monge-Kantorovich/transport and Fisher-Rao/reaction vari-
ational steps, respectively and successively

(23) ρn+ 1
2 ∈ Argmin

ρ∈M+
2 , |ρ|=|ρn|

{
1

2τ
MK2(ρ, ρn) + F(ρ)

}

(24) ρn+1 ∈ Argmin
ρ∈M+

{
1

2τ
FR2(ρ, ρn+ 1

2 ) + F(ρ)

}
.

Note that the first Monge-Kantorovich step is mass preserving by construction, while the
second will account for mass variations.

The underlying idea is that the scheme follows alternatively the two privileged directions
in TρM+

KFR = TρM+
MK⊕TρM+

FR, corresponding to pure Monge-Kantorovich transport and pure
Fisher-Rao reaction respectively. Another possible interpretation is that of an operator-
splitting method: from (7)(9)(13) we get

− gradKFR F(ρ) = div(ρ∇(U ′(ρ) + Ψ +K ? ρ))− ρ(U ′(ρ) + Ψ +K ? ρ)

= − gradMK F(ρ)− gradFR F(ρ).

Viewing the same functional F(ρ) through distinct “differential lenses” (i-e using respectively
the MK and FR differential structures) gives the two transport and reaction terms in the PDE
(21). Thus it is very natural to split the PDE in two separate transport/reaction operators
and treat separately each of them in their own and intrinsic differential framework. This idea
of hybrid variational structures has been successfully applied e.g. in [23, 7, 8] for systems
of equations where each component is viewed from separate differential perspectives, but
not to the splitting of one single equation as it is the case here. A related splitting scheme
was employed in [10] to construct weak solutions of fractional Fokker-Planck equations
∂tρ = ∆2sρ+ div(ρ∇Ψ), using a Monge-Kantorovich variational scheme in order to handle
the transport term. However the discretization of the fractional Laplacian was treated in
a non metric setting, the PDE cannot be viewed as the sum of gradient-flows of the same
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functional for two different “orthogonal” metrics, and the approach therein is thus more a
technical tool than an intrinsic variational feature.

Another natural consequence of this formal point of view is the following: From the
orthogonality (14) in TρM+

KFR = TρM+
MK ⊕ TρM+

FR we can compute

D(t) := − d

dt
F(ρ(t)) = −‖ gradd F‖2TρM+

KFR

= −‖ gradMK F‖2TρM+
MK

− ‖ gradFR F‖2TρM+
FR

,

which really means that the total dissipation for the coupled KFR metrics is just the sum of
the two elementary MK, FR dissipations. One can of course check this formula by computing
d
dtF(ρt) along solutions of the PDE. This may be useful at the discrete level, since regularity
is essentially related to dissipation. For example λ-convexity ensures that the energy is
dissipated at a minimum rate, which in turn can be viewed as a quantifiable regularization
in the spirit of Brézis-Pazy. This will be illustrated in Proposition 5.4, where we show
that one indeed recovers an Energy Dissipation Inequality with respect to KFR from the two
elementary MK, FR geodesic convexity and dissipation.
We first collect some general properties of our two-steps MK/FR splitting scheme, which
share common features with the intrinsic one-step scheme (22) and only exploit the metric
structure regardless of any PDE considerations.

Lemma 4.1 (Total-square distance estimate). Let ρn, ρn+ 1
2 be recursive solutions of

(23)(24). Then

(25)
1

τ

∑

n≥0

KFR2(ρn+1, ρn) ≤ 4

(
F(ρ0)− inf

M+
F
)
.

Note that this estimate is useful only if F(ρ0) < ∞ and F is bounded from below. The
former condition is a natural restriction to finite-energy initial data, and the latter is a
reasonable assumption which holds true e.g. if U(ρ) = ρm for some m > 1 and the external
potential Ψ(x) ≥ 0 outside of a finite measure set.

Proof. Testing ρ = ρn in (23) and ρ = ρn+ 1
2 in (24) we get

1

2τ
MK2(ρn+ 1

2 , ρn) + F(ρn+ 1
2 ) ≤ F(ρn),

1

2τ
FR2(ρn+1, ρn+ 1

2 ) + F(ρn+1) ≤ F(ρn+ 1
2 ).

Summing over n ≥ 0 and noticing that the energy contributions are telescopic, we get the
mixed total-square distance estimate

(26)
1

τ

∑

n≥0

{
FR2(ρn+1, ρn+ 1

2 ) + MK2(ρn+ 1
2 , ρn)

}
≤ 2

(
F(ρ0)− inf

M+
F
)
.

By triangular inequality and Proposition 2.1 it is easy to check that

(27) KFR2(ρn+1, ρn) ≤ 2
(
FR2(ρn+1, ρn+ 1

2 ) + MK2(ρn+ 1
2 , ρn)

)
,

and our statement follows.

Remark 4.1. It is worth stressing that, when trying to handle two different functionals
∂tρ = div(ρ∇F ′1(ρ)) − ρF ′2(ρ) in the diffusion and reaction, the distance estimate for the
two successive MK, FR steps would not result in a telescopic sum

[
F(ρn+1)−F(ρn+ 1

2 )
]

+
[
F(ρn+ 1

2 )−F(ρn)
]
as above, but rather in

[
F1(ρn+1)−F1(ρn+ 1

2 )
]
+
[
F2(ρn+ 1

2 )−F2(ρn)
]
.

This can in fact be controlled with suitable compatibility conditions on F1,F2 and estimating
the crossed dissipations as in [26, 17], but we decided to focus here on F1 = F = F2 in order
to illustrate the general idea in a simpler variational setting.
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As already discussed the factor 2 in (27) is not optimal, and from the infinitesimal
decoupling we should expect KFR2(ρn+1, ρn) ≈ FR2(ρn+1, ρn+ 1

2 ) + MK2(ρn+ 1
2 , ρn). Thus our

estimate (25) should have a factor 2 instead of 4 in the right-hand side, which is exactly
the classical total square distance estimate that one would get applying the direct one-step
minimizing scheme (22) with respect to the full KFR metric.

Assuming that we can solve recursively (23)-(24) for some given initial datum

ρ0 ∈M+, F(ρ0) <∞,

we construct two piecewise-constant interpolating curves

t ∈ ((n− 1)τ, nτ ], n ≥ 0 :

{
ρ̃τ (t) = ρn+ 1

2 ,
ρτ (t) = ρn+1.

By construction we have the energy monotonicity

∀ 0 ≤ t1 ≤ t2 : F(ρτ (t2)) ≤ F(ρ̃τ (t2)) ≤ F(ρτ (t1)) ≤ F(ρ̃τ (t1)) ≤ F(ρ0),

and an easy application of the Cauchy-Schwarz inequality with the total square-distance
estimate (25) gives moreover the classical 1

2 -Hölder estimate

(28) ∀ 0 ≤ t1 ≤ t2 :

{
KFR(ρτ (t2), ρτ (t1)) ≤ C|t2 − t1 + τ | 12
KFR(ρ̃τ (t2), ρ̃τ (t1)) ≤ C|t2 − t1 + τ | 12 .

Moreover for all t > 0 we have ρ̃τ (t) = ρn+ 1
2 and ρτ (t) = ρn+1 for some n ≥ 0. From the

total square estimate (26) we have therefore FR2(ρ̃τ (t), ρτ (t)) ≤ Cτ , and by Proposition 2.1
we conclude that the two curves ρτ , ρ̃τ stay close

(29) ∀ t ≥ 0 : KFR(ρ̃τ (t), ρτ (t)) ≤ FR(ρ̃τ (t), ρτ (t)) ≤ C√τ

uniformly in τ .
As a fairly general consequence of the total-square distance estimate (25), we retrieve

an abstract convergence (pointwise in time) when τ → 0 for a weak topology:

Corollary 4.1. Assume that F(ρ0) <∞ and F is bounded from below onM+. Then
there exists a KFR-continuous curve ρ ∈ C 1

2 ([0,∞);M+
KFR) and a discrete subsequence τ → 0

(not relabeled here) such that

∀ t ≥ 0 : ρτ (t), ρ̃τ (t)→ ρ(t) weakly- ∗ when τ → 0.

Note that our statement is again unrelated to any PDE consideration, and merely exploits
the metric structure. We recall that the weak-∗ convergence of measures is defined in
duality with C0(Ω) test-functions. Observe that the two interpolated curves converge to
the same limit, and note that because ρ ∈ C([0,∞);M+

KFR) the initial datum ρ(0) = ρ0 is
taken continuously in the KFR metric sense. In particular since KFR metrizes the narrow
convergence of measures [25, thm. 3] the initial datum ρ(0) = ρ0 will be taken at least in
the narrow sense, which is stronger than weak-∗ or distributional convergence.

Proof. From the proof of [25, lem. 2.2] it is easy to see that we have mass control

∀µ, ν ∈M+ : |ν| ≤ |µ|+ KFR2(ν, µ).

Applying this with ν = ρτ (t), ρ̃τ (t) and µ = ρ0, and noting that the square-distance estimate
(25) controls KFR2(ρτ (t), ρ0), KFR2(ρ̃τ (t), ρ0) ≤ C(t+τ), we see that the masses are controlled
as |ρτ (t)| + |ρ̃τ (t)| ≤ C(1 + T ) uniformly in τ in any finite time interval t ∈ [0, T ]. By the
Banach-Alaoglu in M = C∗0 we see that ρτ (t), ρ̃τ (t) lie in the fixed weakly-∗ relatively
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compact set KT = {|ρ| ≤ C(1 + T )} for all t ∈ [0, T ]. By [25, thm. 5] we know that the KFR
distance is lower semi-continuous with respect to the weak-∗ convergence of measures, and
the metric space (M+, KFR) is complete [25, thm. 3]. Exploiting the time equicontinuity
(28), the lower semi-continuity, and the completeness, we can apply a refined version of
the Arzelà-Ascoli theorem [3, prop. 3.3.1] to conclude that, up to extraction of a discrete
subsequence if needed, ρτ (t)→ ρ(t) and ρ̃τ (t)→ ρ̃(t) pointwise in t ∈ [0, T ] for the weak-∗
convergence and for some limit curves ρ, ρ̃ ∈ C 1

2 ([0, T ];M+
KFR). Moreover ρ(t), ρ̃(t) ∈ KT for

all t ∈ [0, T ], and by diagonal extraction we can assume that this holds for all T > 0. Finally
as we already know that ρτ (t) and ρ̃τ (t) converge weakly-∗ to ρ(t) and ρ̃(t) respectively, we
conclude by (29) and lower semi-continuity that KFR(ρ(t), ρ̃(t)) ≤ lim inf

τ→0
KFR(ρτ (t), ρ̃τ (t)) =

0 for any arbitrary t ≥ 0. Thus ρ = ρ̃ as desired and the proof is complete.

In order to connect now the previous abstract metric considerations with the PDE frame-
work, we detail each of the substeps (23)(24) and exploit the particular MK, FR Riemannian
structures to retrieve the corresponding Euler-Lagrange equations.

In order to keep our notations light we write µ for the previous step and ρ∗ for the
minimizer. Thus µ = ρn and ρ∗ = ρn+ 1

2 in the first MK step ρn → ρn+ 1
2 , while µ = ρn+ 1

2

and ρ∗ = ρn+1 in the next FR step ρn+ 1
2 → ρn+1.

4.1. The Monge-Kantorovich substep. For some fixed absolutely continuous mea-
sure µ ∈M+

2 (finite second moment) and mass |µ| = m, let us consider here an elementary
minimization step

(30) ρ∗ ∈ Argmin
ρ∈M+

2 , |ρ|=m

{
1

2τ
MK2(ρ, µ) + F(ρ)

}
.

Note that, if Ω is bounded, the restriction on finite second moments can be relaxed. Further
assuming that F is lower semi-continuous with respect to the weak L1 convergence (which
is typically satisfied for the classical models), it is easy to obtain an absolutely continuous
minimizer ρ∗ ∈ M+

2 with mass |ρ∗| = m = |µ|. Additional assumptions (e.g. strict convex-
ity) sometimes guarantee uniqueness. Here we do not take interest in optimal conditions
guaranteeing existence and/or uniqueness of minimizers, and this should be checked on a
case-to-case basis depending on the structure of U,Ψ,K.

From the classical theory of optimal transportation we know that there exists a (back-
ward) optimal map t from ρ∗ to µ, such that

MK2(ρ∗, µ) =

∫

Ω

|x− t(x)|2 dρ∗(x).

A by-now standard computation [38, 41] shows that the Euler-Lagrange equation associated
with (30) can be written in the form

(31) ∀ ζ ∈ C∞c (Ω;Rd) :

∫

Ω

id−t
τ
· ζ dρ∗ +

∫

Ω

∇(U ′(ρ∗) + Ψ +K ? ρ∗) · ζ dρ∗ = 0.

Using the definition of the pushforward µ = t#ρ∗ we recall the classical Taylor expansion

(32)
∫

Ω

(ρ∗ − µ)φ =

∫

Ω

(ρ∗ − t#ρ∗)φ =

∫

Ω

(
φ(x)− φ(t(x))

)
ρ∗(x)

=

∫

Ω

(
x− t(x)) · ∇φ(x) +O

(
‖D2φ‖∞|x− t(x)|2

) )
dρ∗(x)

=

∫

Ω

(id−t) · ∇φdρ∗ +O
(
‖D2φ‖∞MK2(ρ∗, µ)

)

for all φ ∈ C∞c (Ω). Taking ζ = ∇φ in (31) and substituting finally yields

(33)
∫

Ω

(ρ∗ − µ)φ = −τ
∫

Ω

∇(U ′(ρ∗) + Ψ +K ? ρ∗) · ∇φ dρ∗ +O
(
‖D2φ‖∞MK2(ρ∗, µ)

)
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for all smooth test functions φ. This is of course an approximation of the implicit implicit
Euler scheme

ρ∗ − µ
τ

= div(ρ∗∇(U ′(ρ∗ + Ψ +K ? ρ∗)),

the approximate error being controlled quadratically in the MK distance. Note that this
corresponds to the pure transport part ∂tρ = div(ρ∇(U ′(ρ) + Ψ + K ? ρ∗)) + (. . .) in the
PDE (21).

4.2. The Fisher-Rao substep. Let us fix as before an arbitrary measure µ ∈ M+

(no restriction on the second moment), and assume that there exists somehow an absolutely
continuous minimizer

(34) ρ∗ ∈ Argmin
ρ∈M+

{
1

2τ
FR2(ρ, µ) + F(ρ)

}
.

The existence and uniqueness of minimizers can again be obtained under suitable superlin-
earity, lower semi-continuity, and convexity assumptions on U,Ψ,K, and we do not worry
about this issue.

Let us start by differentiating the squared distance for suitable perturbations ρε of the
minimizer ρ∗. According to section 2.2 an arbitrary ψ ∈ C∞c (Ω) is identified to a tangent
vector in Tρ∗M+

FR through
{
∂ερε = ρεψ
ρε(0) = ρ∗

⇔ ρε = ρ∗eεψ.

Denoting by µs = [(1−s)√µ+s
√
ρ∗]2 the Fisher-Rao geodesics from µ to ρ∗, the terminal ve-

locity ∂sµ(1) = 2
√
ρ∗(
√
ρ∗−√µ) can be represented by the L2(dρ∗) action of r = 2

√
ρ∗−√µ√
ρ∗ .

Using the first variation formula d
dt

(
1
2d

2(x(t), y)
)∣∣
t=0

= 〈x′(0), y′(1)〉x(0) and our L2(dρ)
identification of the tangent spaces in section 2.3 we can guess that

d

dε

(
1

2
FR2(ρε, µ)

)∣∣∣∣
ε=0

= 〈∂ερ(0), ∂sµ(1)〉Tρ∗M+
FR

= (ψ, r)L2(dρ∗) = 2

∫

Ω

(
√
ρ∗ −√µ)

√
ρ∗ψ,

which can be checked by differentiating w.r.t. ε in the explicit representation (8). Using the
same Riemannian formalism we similarly anticipate that

d

dε
F(ρε)

∣∣∣∣
ε=0

= 〈gradFR F , ∂ερ(0)〉Tρ∗M+
FR

= 〈F ′(ρ∗), ψ〉L2(dρ∗) =

∫

Ω

ρ∗(U ′(ρ∗) + Ψ +K ? ρ∗)ψ,

and this can be checked again by differentiating d
dεF(ρε) =

∫
Ω
∂ε(. . .) under the integral

sign. Writing the the optimality condition d
dε

(
1
2τ FR

2(ρε, µ) + F(ρε)
)∣∣
ε=0

= 0 thus gives the
Euler-Lagrange equation

(35) ∀ψ ∈ C∞c (Ω) :

∫

Ω

(
√
ρ∗ −√µ)

√
ρ∗ψ = −τ

2

∫

Ω

{
U ′(ρ∗) + Ψ +K ? ρ∗

}
ρ∗ψ.

In order to relate this with the more standard Euclidean difference quotient, we first assume
that U ′(ρ∗) + Ψ + K ? ρ∗ ∈ L2(dρ∗), or in other words that gradFR F(ρ∗) can indeed be
considered as a tangent vector of Tρ∗M+

FR. This should be natural, but may require a case-
to-case analysis depending on the structure of U,Ψ,K. Then an easy density argument
shows that the previous equality holds for all ψ ∈ L2(dρ∗). Taking in particular ψ =
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√
ρ∗+
√
µ√

ρ∗ φ ∈ L2(dρ∗) for arbitrary φ ∈ C∞c (Ω), we obtain a slight variant of the previous
Euler-Lagrange equation (35) in the form

(36) ∀φ ∈ C∞c (Ω) :

∫

Ω

(ρ∗ − µ)φ = −τ
∫

Ω

√
ρ∗(
√
ρ∗ +

√
µ)

2

{
U ′(ρ∗) + Ψ +K ? ρ∗

}
φ.

Recalling that in the minimizing scheme we only deal with measures at shortO(
√
τ) distance,

one should essentially think of this as if ρ∗ ≈ µ in the right-hand side, and (36) is thus an
approximation of the implicit Euler scheme

ρ∗ − µ
τ

= −ρ∗(U ′(ρ∗) + Ψ +K ? ρ∗).

Note that this is the reaction part ∂tρ = (. . .)− ρ(U ′(ρ) + Ψ +K ? ρ∗) in the PDE (21).

Remark 4.2. Contrarily to the corresponding approximate Euler-Lagrange equation (33)
for one elementary Monge-Kantorovich substep, (36) does not involve any quadratic remain-
der O(FR2(ρ∗, µ)). The price to pay for this is that the right-hand side appears now as a
slight “twist” of the more natural and purely Riemannian object −ρ∗(U ′(ρ∗) + Ψ +K ?ρ∗) =

− gradFR F(ρ∗) in (35), the twist occurring through the approximation
√
ρ∗(
√
ρ∗+
√
µ)

2 ≈ ρ∗.
Remark 4.3. A technical issue might arise here for unbounded domains. Indeed since

we construct recursively ρn MK2−→ ρn+ 1
2

FR2−→ ρn+1 one should make sure that, in the second
reaction substep, the minimizer ρn+1 keeps finite second moment so that the scheme can
be safely iterated afterward. This should be generally guaranteed if the external potential
Ψ is quadratically confining, but may require once again a delicate analysis depending on
the structure of U,Ψ,K (we will show in section 5 that this holds e.g. in the simple case
Ψ,K ≡ 0).

4.3. Convergence to a weak solution. We can now show that, under some strong
compactness assumptions, the limit ρ = lim ρτ = lim ρ̃τ is generically a weak solution to the
original PDE.

Theorem 4.1. Let ρτ , ρ̃τ , ρ as in Corollary 4.1, and assume that

(37)
{

ρ̃τ∇ (U ′(ρ̃τ ) + Ψ +K ? ρ̃τ ) ⇀ ρ∇ (U ′(ρ) + Ψ +K ? ρ)√
ρτ
√
ρτ+
√
ρ̃τ

2 (U ′(ρτ ) + Ψ +K ? ρτ ) ⇀ ρ(U ′(ρ) + Ψ +K ? ρ)

at least weakly in L1
loc((0,∞)× Ω). Then ρ is a nonnegative weak solution of

{
∂tρ = div(ρ∇(U ′(ρ) + Ψ +K ? ρ))− ρ(F ′(ρ) + Ψ +K ? ρ) in (0,∞)× Ω
ρ|t=0 = ρ0 inM+(Ω)

For the sake of generality we simply assumed here that the nonlinear terms pass to the limit
as in (37). This is of course a strong hypothesis to be checked in each case of interest, and
usually requires strong convergence ρτ , ρ̃τ → ρ (e.g. pointwise a.e.). We shall discuss in
section 5 some strategies to retrieve such compactness.

Proof. As already discussed after Corollary 4.1, the initial datum ρ(0) = ρ0 is taken
continuously at least in the metric sense (M+, KFR). Moreover, any limit ρ = lim

τ→0
ρτ in any

weak sense will automatically be nonnegative.
Fix now any 0 < t1 < t2 and φ ∈ C∞c (Ω). For fixed τ we have ρτ (ti) = ρNi for

Ni = dti/τe, and Ti = Niτ → ti as τ → 0. Moreover for fixed n ≥ 0 we have by construction
the two Euler-Lagrange equations (33)(36), one for each Monge-Kantorovich and Fisher-Rao
substep as in section 4.1 and section 4.2 respectively. More explicitly, there holds
∫

Ω

(ρn+ 1
2 − ρn)φ = −τ

∫

Ω

ρn+ 1
2∇(U ′(ρn+ 1

2 ) + Ψ +K ? ρn+ 1
2 ) · ∇φ

+O
(
‖D2φ‖∞MK2(ρn+ 1

2 , ρn)
)
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and

∫

Ω

(ρn+1 − ρn+ 1
2 )φ = −τ

∫

Ω

√
ρn+1(

√
ρn+1 +

√
ρn+ 1

2 )

2

{
U ′(ρn+1) + Ψ +K ? ρn+1

}
φ.

Summing from n = N1 to n = N2 − 1, using the square-distance estimate (26) to con-
trol the remainder term in the first Euler-Lagrange equation above, and recalling that the
interpolated curves are piecewise constant, we immediately get

∫

Ω

(ρτ (t2)− ρτ (t1))φ =

N2−1∑

n=N1

∫

Ω

{
(ρn+1 − ρn+ 1

2 ) + (ρn+ 1
2 − ρn)

}
φ

= −
N2−1∑

n=N1

τ

∫

Ω

√
ρn+1(

√
ρn+1 +

√
ρn+ 1

2 )

2

{
U ′(ρn+1) + Ψ +K ? ρn+1

}
φ

−
N2−1∑

n=N1

τ

∫

Ω

ρn+ 1
2∇(U ′(ρn+ 1

2 ) + Ψ +K ? ρn+ 1
2 ) · ∇φ

+O
(
‖D2φ‖∞

N2−1∑

n=N1

MK2(ρn+ 1
2 , ρn)

)

= −
∫ T2

T1

∫

Ω

√
ρτ (
√
ρτ +

√
ρ̃τ )

2

{
U ′(ρτ ) + Ψ +K ? ρτ

}
φ

−
∫ T2

T1

∫

Ω

ρ̃τ∇(U ′(ρ̃τ ) + Ψ +K ? ρ̃τ ) · ∇φ +O
(
‖D2φ‖∞τ

)
.

From Corollary 4.1 we know that ρτ (t) converge weakly-∗ to ρ(t) pointwise in time, so the
left-hand side passes to the limit when τ → 0. Due to our strong assumption (37) and
because Ti → ti the right-hand side also passes to the limit. As a consequence we get
∫

Ω

(ρ(t2)− ρ(t1))φ = −
∫ t2

t1

∫

Ω

ρ
(
∇(U ′(ρ) + Ψ +K ? ρ) · ∇φ+

(
U ′(ρ) + Ψ +K ? ρ

)
φ
)

for all 0 < t1 < t2 and φ ∈ C∞c (Ω), which is clearly an admissible weak formulation of
∂tρ = div(ρ∇(U ′(ρ) + Ψ +K ? ρ))− ρ(U ′(ρ) + Ψ +K ? ρ).

If Ω 6= Rd some further work may be needed to retrieve the homogeneous Neumann
condition ρ∇(U ′(ρ) + Ψ + K ? ρ) · ν = 0 on ∂Ω. This amounts to extending the class of
C∞c (Ω) test functions to C1

loc(Ω) and should generically hold with just enough regularity on
the solution, but we will disregard this technical issue for the sake of simplicity.

5. Compactness issues: an illustrative example. In Theorem 4.1 we assumed for
simplicity that the nonlinear terms pass to the limit, mainly in the distributional sense.
In order to prove this, the usual strategy is to obtain first some energy/dissipation-type
estimates to show that the nonlinear terms have a weak limit, and then prove pointwise
convergence ρτ (t, x) → ρ(t, x) a.e. (t, x) ∈ R+ × Ω to identify the weak limit (typically
as weak-strong products of limits). Thus the problem should amount to retrieving enough
compactness on the interpolating curves ρτ , ρ̃τ . With the help of any Aubin-Lions-Simon
type results this essentially requires compactness in time and space, which can be handled
separately for different topologies in a flexible way. Compactness in space usually follows
from the aforementioned energy/dissipation estimates, and the energy monotonicity should
of course help: if e.g. the total energy F(ρ) =

∫
Ω
U(ρ) + (. . .) controls any Lq(Ω) norm then

F(ρτ (t)) ≤ F(ρ0) immediately controls ‖ρτ‖L∞(0,∞;Lq) uniformly in τ . A rule of thumbs
for parabolic equations is usually that space regularity can be transferred to time regularity.
Thus the parabolic nature of the scheme should allow here to transfer space estimates,
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if any, to time estimates. Note also that some sort of time compactness (approximate
equicontinuity) is already guaranteed by (28), but in a very weak metric sense for which the
standard Aubin-Lions-Simon theory does not apply directly.

A slight modification of the usual arguments should however be required here, because
the scheme is decomposed in two separate substeps. The first Monge-Kantorovich substep
(30) encodes the higher order part of the PDE, which is parabolic and should therefore
be smoothing. This regularization can often be quantified using by-now classical methods
in (Monge-Kantorovich) optimal transport theory, such as BV estimates [16], the flow-
interchange technique from [30], regularizing λ-displacement convexity in the spirit of [3, 31],
or any other strategy. On the other hand the second Fisher-Rao substep (34) encodes the
reaction part of the PDE, hence we cannot expect any smoothing at this stage. One should
therefore make sure that, in the step ρn+ 1

2
FR−→ ρn+1, the regularity of ρn+ 1

2 inherited from
the previous step ρn MK−→ ρn+ 1

2 propagates to ρn+1 at least to some extent.
At this stage we would like to point out one other possible advantage of our splitting

scheme: it is well known [3] that λ-geodesic convexity is a central tool in the theory of
gradient flows in abstract metric spaces, and leads to quantified regularization properties at
the discrete level. Second order differential calculus à la Otto [34] with respect to the KFR

Riemannian structure was discussed in [25, 29] (also earlier suggested in [27]) and allows to
determine at least formally if a given functional F is λ-geodesically convex for the distance
KFR. However, in our scheme each step only sees either one of the differential MK/FR struc-
tures and therefore only separate geodesic convexity comes into play. Consider for example
the case of internal energies F(ρ) =

∫
Ω
U(ρ). Then the celebrated condition for McCann’s

displacement convexity [31] with respect to MK reads ρP ′(ρ) −
(
1− 1

d

)
P (ρ) ≥ 0 in space

dimension d, where the pressure P (ρ) := ρU ′(ρ)− U(ρ). On the other hand using the Rie-
mannian formalism in section 2.2 it is easy to see that, at least formally, this same functional
is λ-geodesically convex with respect to FR if and only if ρU ′′(ρ)+ U ′(ρ)

2 ≥ λ. This condition
can be interpreted as s 7→ U(s2) being λ/4-convex in s =

√
ρ, the latter change of variables

naturally arising through (8) and FR2(ρ0, ρ1) = 4‖√ρ1 − √ρ0‖2L2 . Those two conditions
are very easy to check separately and, in the light of the infinitesimal uncoupling, it seems
likely that simultaneous convexity with respect to each of the MK, FR metrics is equivalent
to convexity with respect to the coupled KFR structure. See [25, section 3] and [29, section
5.1] for related discussions.

The rest of this section is devoted to the illustration of possible compactness strategies
in the simple case

(H)





Ψ,K ≡ 0,
U ∈ C1([0,∞)) ∩ C2(0,∞) with U(0) = 0,
U ′, U ′′ ≥ 0,
ρU ′′(ρ) is bounded for small ρ ∈ (0, ρ0],

which from now will be assumed without further mention. We would like to stress here that
(H) holds for any Porous-Medium-type nonlinearity Um(ρ) = 1

m−1ρ
m at least in the slow

diffusion regime m > 1, but not for the Boltzmann entropy H(ρ) = ρ log ρ−ρ. Even though
the latter is well behaved (displacement convex) with respect to the Monge-Kantorovich
structure [21, 41], it is not with respect to the Fisher-Rao one. Indeed it is easy to check
that H(ρ) is not convex in √ρ, so that the Boltzmann entropy is not λ-displacement convex
with respect to FR for any λ ∈ R. This would require ρH ′′(ρ) + H′(ρ)

2 = 1 + log ρ
2 ≥ λ for

some constant λ, which obviously fails for small ρ (this can be related to ρ = 0 being an
extremal point inM+, where all the Riemannian formalism from section 2.3 degenerates).
Since the purpose of this section is to illustrate that strong compactness can be retrieved
at least in some particular cases, we chose to set Ψ ≡ 0 to make the computations and
estimates as light as possible. The case Ψ 6≡ 0 follows with only minor modifications at
least for reasonable potentials (see e.g. remark 5.1 and [26, 17]). Including interaction
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terms K 6≡ 0 may be more involved and require additional assumptions, and we shall not
comment further on this.

5.1. Propagation of regularity at the discrete level. Whenever U ′, U ′′ ≥ 0, the
PDE ∂tρ = div(ρ∇U ′(ρ))−ρU ′(ρ) = div(ρU ′′(ρ)∇ρ)−ρU ′(ρ) is formally parabolic, satisfies
the maximum principle ‖ρ(t)‖∞ ≤ ‖ρ0‖∞, and initial regularity should propagate. We prove
below that this holds at the discrete level:

Proposition 5.1 (BV and L∞ estimates). Assume that the initial datum ρ0 ∈ BV ∩
L∞(Ω). Then for any τ < 2/U ′(‖ρ0‖∞) there holds

∀ t ≥ 0 : ‖ρτ (t)‖BV(Ω) ≤ ‖ρ̃τ (t)‖BV(Ω) ≤ ‖ρ0‖BV(Ω)

and
∀ t ≥ 0 : ‖ρτ (t)‖L∞(Ω) ≤ ‖ρ̃τ (t)‖L∞(Ω) ≤ ‖ρ0‖L∞(Ω).

Proof. We argue at the discrete level by showing that the estimates propagate in each
substep. We shall actually prove a more precise result, namely

(38) ‖ρn+ 1
2 ‖BV ≤ ‖ρn‖BV, ‖ρn+ 1

2 ‖L∞ ≤ ‖ρn‖L∞

and

(39) ‖ρn+1‖BV ≤ ‖ρn+ 1
2 ‖BV, ρn+1(x) ≤ ρn+ 1

2 (x) a.e.

The propagation (38) in the first MK step only requires convexity U ′′ ≥ 0 and no small-
ness condition on the time step τ . This should be expected since the MK step is an im-
plicit discretization of ∂tρ = div(ρ∇U ′(ρ)) = div(ρU ′′(ρ)∇ρ), which is formally parabolic
as soon as U ′′ ≥ 0. We recall first that by construction the step is mass preserving,
‖ρn+ 1

2 ‖L1 = ‖ρn‖L1 . With our assumption U ′′ ≥ 0 we can directly apply [16, thm. 1.1] to
obtain ‖ρn+ 1

2 ‖TV ≤ ‖ρn‖TV, which immediately entails the BV estimate. An early proof of
‖ρn+ 1

2 ‖L∞ ≤ ‖ρn‖L∞ can be found in [33] for the particular case U(ρ) = ρ2, and the case
of general convex U is covered by [38, prop. 7.32] (see also [12, 39]). For the propagation
(39) in the FR step we show below that the minimizer ρn+1 can be written as

ρn+1(x) = R(ρn+ 1
2 (x)) a.e. x ∈ Ω

for some 1-Lipschitz function R : R+ → R+ with R(0) = 0. This will ensure that 0 ≤
ρn+1(x) ≤ ρn+ 1

2 (x) and entail the L∞ and L1 bounds as well as the total variation estimate
(see [1] for the Lip ◦ BV composition of maps). Note that ρn+1(x) ≤ ρn+ 1

2 (x) shows in
particular that the second moments propagate to the next step, which should require further
assumptions on U,Ψ in the general case. In the rest of the proof we write ρ∗ = ρn+1 and
µ = ρn+ 1

2 for simplicity, in agreement with our previous notations in section 4.2.
By (35) with Ψ,K ≡ 0 we see that

(40) (
√
ρ∗ −√µ)

√
ρ∗ = −τ

2
ρ∗U ′(ρ∗)

at least in L1
loc(Ω), hence a.e. x ∈ Ω. From U ′ ≥ 0 we immediately get that either ρ∗ = 0

or
√
ρ∗ ≤ √µ, which gives in any case ρ∗(x) ≤ µ(x) a.e.

We show now that if the CFL condition τ ≤ 2/U ′(‖ρ0‖∞) holds then ρ∗ and µ share the
same support, i-e ρ∗(x) > 0⇔ µ(x) > 0. From the previous inequality ρ∗ ≤ µ we only have
to show that ρ∗(x) > 0 as soon as µ(x) > 0. Assume by contradiction that there is some
subset E ⊂ Ω with positive Lebesgue measure such that ρ∗(x) = 0 but µ(x) > 0 in E. We
claim that

ρ := ρ∗χE{ + µχE
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is then a strictly better competitor than the minimizer ρ∗. In order to check this we first
compute the square distance

1

4

(
FR2(ρ, µ)− FR2(ρ∗, µ)

)
=

∫

Ω

∣∣∣
√
ρ−√µ

∣∣∣
2

−
∫

Ω

∣∣√ρ∗ −√µ
∣∣2

=

(∫

E{

∣∣√ρ∗ −√µ
∣∣2 +

∫

E

|√µ−√µ|2
)

−
(∫

E{

∣∣√ρ∗ −√µ
∣∣2 +

∫

E

|0−√µ|2
)

= −
∫

E

µ < 0.

For the energy contribution we have by convexity

F(ρ)−F(ρ∗) =

∫

Ω

U(ρ)− U(ρ∗) ≤
∫

Ω

U ′(ρ)(ρ− ρ∗)

=

∫

E

U ′(ρ)(µ− 0) ≤ U ′(‖ρ0‖∞)

∫

E

µ.

Note that 0 ≤ ρ∗, ρ, µ ≤ ‖ρ0‖∞ almost everywhere, so that all these integrals are well-
defined. Gathering these two inequalities we obtain

1

2τ

(
FR2(ρ, µ)− FR2(ρ∗, µ)

)
+ (F(ρ)−F(ρ∗)) ≤

(
−2

τ
+ U ′(‖ρ0‖∞)

)∫

E

µ < 0

because
∫
E
µ > 0 and τ < 2/U ′(‖ρ0‖∞). This shows that ρ is a strictly better competitor

and yields the desired contradiction, thus ρ∗ > 0⇔ µ > 0.
Now inside the common support of ρ∗, µ we can divide (40) by

√
ρ∗ > 0, and ρ = ρ∗(x)

is a solution of the implicit equation

f(ρ, µ) = 0 with f(ρ, µ) :=
√
ρ
(

1 +
τ

2
U ′(ρ)

)
−√µ

with µ = µ(x) and a.e. x ∈ supp ρ∗ = suppµ. An easy application of the implicit functions
theorem shows that, for any µ > 0, this has a unique solution ρ = R(µ) for a C1(0,∞)
function R satisfying 0 < R(µ) ≤ µ for µ > 0. Moreover one can compute explicitly for all
µ > 0

0 <
dR

dµ
(µ) = − ∂µf

∂ρf

∣∣∣∣
ρ=R(µ)

=

1
2
√
µ

1
2
√
ρ

(
1 + τ

2U
′(ρ)
)

+ τ
2

√
ρU ′′(ρ)

≤
1

2
√
µ

1
2
√
ρ

(
1 + τ

2U
′(ρ)
) =

1
√
µ√
ρ

(
1 + τ

2U
′(ρ)
) =

ρ

µ
≤ 1,

where we used successively U ′′ ≥ 0, f(ρ, µ) = 0 ⇔ 1 + τ
2U
′(ρ) =

√
µ√
ρ , and ρ = R(µ) ≤ µ.

Extending by continuity R(0) = 0, we have shown that ρ∗(x) = R(µ(x)) a.e. x ∈ Ω for
some 1-Lipschitz function R : R+ → R+ with R(0) = 0, and the proof is complete.

Remark 5.1. A closer analysis of the implicit functions theorem above reveals that the
argument only requires U ′ ≥ 0 and ρU ′′(ρ) + U ′(ρ)/2 ≥ 0, which is less stringent than our
assumption U ′, U ′′ ≥ 0 as in (H). As already suggested this former condition corresponds to
convexity of s 7→ U(s2) in the s =

√
ρ variable, or more intrinsically to geodesic convexity

of F(ρ) =
∫

Ω
U(ρ) with respect to the Fisher-Rao distance. We also point out that the

same approach works with external potentials Ψ 6≡ 0 under suitable structural assumptions:
one shows first that strict positivity is preserved in the sense that supp ρn+1 = supp ρn+ 1

2 ,
which is to be expected since the ODE ∂tρ = −ρ(U ′(ρ) + Ψ(x)) formally preserves positivity.
Exploiting the Euler-Lagrange equations (35)(36), an implicit functions theorem f(ρ, µ,Ψ) =
0 ⇔ ρ = R(µ,Ψ) then applies inside the common support to propagate the regularity. This
still controls ∇ρ = ∂µR∇µ + ∂ΨR∇Ψ provided that Ψ is smooth enough, see [17, 26] for
details.
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5.2. Compactness and Energy Dissipation Inequality. In this section we check
that our strong assumption (37) in Theorem 4.1 holds in the particular case of internal
energies only, i-e that the nonlinear terms in the PDE pass to the limit. We start by
improving the weak convergence in Corollary 4.1:

Proposition 5.2. Assume (H). Then

ρτ , ρ̃τ → ρ in L1
loc([0,∞);L1)

for some (discrete) subsequence τ → 0.

We give two proofs: the first one is elementary and fully exploits the uniform-in-time com-
pactness estimates from Proposition 5.1, which were derived here for the particular case
Ψ ≡ K ≡ 0 only. The second proof is less straightforward but enlightens the general idea
of transferring space regularity to time regularity through the PDE itself, and should apply
to non-trivial potentials and interactions with minor modifications.

First proof of Proposition 5.2. Let us recall from Proposition 4.1 that ρτ (t), ρ̃τ (t) both
converge weakly-∗ to the same limit ρ(t) pointwise in time. We claim that this weak-
∗ convergence can be strengthened into strong L1(Ω) convergence. Indeed for any fixed
t ≥ 0 we have ‖ρτ (t)‖BV, ‖ρ̃τ (t)‖BV ≤ ‖ρ0‖BV so by compactness BV(Ω) ⊂⊂ L1(Ω) we see
that {ρτ (t)}τ>0, {ρ̃τ (t)}τ>0 are L1 relatively compact for fixed t ≥ 0. Because strong L1

convergence implies in particular weak-∗ convergence of measures, and because we already
know that these sequences are weakly-∗ convergent, uniqueness of the limit shows in fact
that the whole sequences are strongly converging in L1 to the same limit

∀ t ≥ 0 : lim
L1

ρτ (t) = lim
w−∗

ρτ (t) = ρ(t) = lim
w−∗

ρ̃τ (t) = lim
L1

ρ̃τ (t).

From this strong pointwise-in time L1 convergence and the uniform L∞(0,∞;L1) bounds
from Proposition 5.1, an easy application of Lebesgue’s dominated convergence theorem in
any finite time interval [0, T ] finally gives strong L1((0, T );L1) convergence for all T > 0.

Before giving the second proof we need a well known technical result:

Lemma 5.1. Let µ0, µ1 be any absolutely continuous measures with finite second mo-
ments, same mass |µ0| = |µ1|, and bounded in Lp(Ω) for some 1 ≤ p ≤ ∞ by the same
constant Cp. Then

∀φ ∈W 1,2p′(Ω) :

∣∣∣∣
∫

Ω

(µ1 − µ0)φ

∣∣∣∣ ≤
√
CpMK(µ0, µ1)‖∇φ‖L2p′ ,

with the convention 1′ =∞ and ∞′ = 1.

Proof. Let (µt,vt)t∈[0,1] be the unique Monge-Kantorovich geodesics from µ0 to µ1,
satisfying ∂tµt + div(µtvt) = 0 with constant metric speed ‖vt‖L2(dµt) = cst = MK(µ0, µ1).
We first claim that ‖µt‖Lp ≤ Cp as well along this geodesics. Indeed if p = 1 this is simply
the mass conservation, and the proof for p = ∞ can be found in [33]. For 1 < p < ∞ this
is a simple consequence of the displacement convexity of Ep[µ] =

∫
Ω

µp

p−1 , [41, thm. 5.15].
Using the weak formulation of the continuity equation, we compute by Hölder’s inequality

∣∣∣∣
∫

Ω

(µ1 − µ0)φ

∣∣∣∣ =

∣∣∣∣
∫ 1

0

∫

Ω

vt · ∇φ dµtdt

∣∣∣∣ ≤
∫ 1

0

(∫

Ω

|vt|2dµt

) 1
2
(∫

Ω

|∇φ|2µt
) 1

2

dt

≤ MK(µ0, µ1)

∫ 1

0

(‖µt‖Lp‖|∇φ|2‖Lp′ )
1
2 dt ≤

√
CpMK(µ0, µ1)‖∇φ‖L2p′

and the proof is complete.
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Second proof of Proposition 5.2. Here we assume that Ω is bounded for simplicity, but
the same argument would actually work for unbounded domains simply replacing all the
functional spaces by their local counterparts (BVloc, H1

loc, L
p
loc. . . ).

We first control the difference quotient ‖ρn+1 − ρn‖Y in the dual space Y := H1(Ω)∗.
For the Monge-Kantorovich step we can apply the previous Lemma 5.1 with p =∞, 2p′ = 2,
‖ρn+ 1

2 ‖L∞ ≤ ‖ρn‖L∞ ≤ ‖ρ0‖L∞ and obtain by duality

‖ρn+ 1
2 − ρn‖Y ≤ C MK(ρn+ 1

2 , ρn).

For the reaction step we recall the Euler-Lagrange equation (36), which reads for Ψ,K ≡ 0

∀φ ∈ C∞c (Ω) :

∫

Ω

(ρn+1 − ρn+ 1
2 )φ = −τ

∫

Ω

√
ρn+1(

√
ρn+1 +

√
ρn+ 1

2 )

2
U ′(ρn+1)φ.

Because in the right-hand side ρn+ 1
2 , ρn+1 are bounded in L1 ∩ L∞(Ω) uniformly in n this

gives
‖ρn+1 − ρn+ 1

2 ‖Y ≤ ‖ρn+ 1
2 − ρn+1‖L2 ≤ Cτ.

By triangular inequality we deduce from the previous two estimates that

‖ρn+1 − ρn‖Y ≤ C(τ + MK(ρn+1, ρn)),

and using the square distance estimate (26) and Cauchy-Schwarz inequality we obtain the
approximate equicontinuity

∀ 0 ≤ t1 ≤ t2 : ‖ρτ (t2)− ρτ (t1)‖Y ≤ C(|t2 − t1 + τ |+ |t2 − t1 + τ | 12 ).

Because the embedding H1 ⊂⊂ L2 is compact we have L2 ⊂⊂ Y as well. Thanks to the
L1 ∩ L∞(Ω) bounds from Proposition 5.1 we have τ -uniform bounds ‖ρτ (t)‖L2 ≤ C, and
we see that there is a Y -relatively compact set KY = {‖ρ‖L2 ≤ C} such that ρτ (t) ∈ KY
for all t ≥ 0. Exploiting the above equicontinuity we can apply again the same variant
of the Arzelá-Ascoli theorem [3, prop. 3.3.1] in any bounded time interval to deduce that
there exists a subsequence (not relabeled) and ρ ∈ C([0, T ];Y ) such that ρτ (t)→ ρ(t) in Y
for all t ∈ [0, T ]. A further application of Lebesgue’s dominated convergence theorem with
‖ρτ (t)‖Y ≤ C shows that ρτ → ρ in Lp([0, T ];Y ) for all p ≥ 1 and fixed T > 0, and by
Cantor’s procedure

ρτ → ρ in Lploc([0,∞);Y ).

Let now X := BV ∩ L∞(Ω) ⊂⊂ L2(Ω) =: B. We just proved that

X ⊂⊂ B ⊂ Y and
{
ρτ is bounded in L∞(0,∞;X),
ρτ is relatively compact in Lploc([0,∞);Y )

for all p ≥ 1. By standard Aubin-Lions-Simon theory [40, lem. 9] we get that ρτ is relatively
compact in Lploc([0,∞);B) for all p ≥ 1. In particular we get pointwise a.e. convergence
ρτ (t, x) → ρ(t, x) (up to extraction of a further subsequence), and a last application of
Lebesgue’s dominated convergence allows to conclude. The argument is identical for ρ̃τ .

In order to show that the nonlinear terms pass to the limit as in (37) we shall need the
following variant of the Banach-Alaoglu theorem with varying measures:

Lemma 5.2 (compactness for vector-fields). Let O ⊂ Rm be an open set (not necessar-
ily bounded), {σn}n≥0 ⊂M+(O) a sequence of finite nonnegative Radon measures narrowly
converging to σ ∈M+(O), and vn a sequence of vector fields on O. If

‖vn‖L2(O,dσn;Rm) ≤ C

then there exists v ∈ L2(O,dσ;Rm) such that, up to extraction of some subsequence,

∀ ζ ∈ C∞c (O;Rm) : lim
n→∞

∫

O
vn · ζdσn =

∫

O
v · ζdσ
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and
‖v‖L2(O,dσ;Rm) ≤ lim inf

n→∞
‖vn‖L2(O,dσn;Rm).

The proof can be found in [3, thm. 5.4.4] for probability measures, see also [25, prop. 5.3]
for an abstract version. As anticipated, we have now

Proposition 5.3. Assume (H). Then ρτ , ρ̃τ satisfy the compactness assumption (37)
in Theorem 4.1.

Proof. From the strong L1
loc([0,∞);L1) convergence in Proposition 5.2 and the uniform

L1 ∩ L∞(Ω) bounds in Proposition 5.1, a straightforward application of Lebesgue’s domi-
nated convergence theorem yields strong convergence

√
ρτ
√
ρ̃τ+
√
ρτ

2 U ′(ρτ )→ ρU ′(ρ) at least
in L1

loc((0,∞)× Ω). Therefore the reaction terms pass to the limit as in (37), and we only
have to check that the diffusion part does too.

Let tn+ 1
2 be the (backwards) optimal map from ρn+ 1

2 to ρn, and recall that the Euler-
Lagrange equation (31) holds with µ = ρn and minimizer ρ∗ = ρn+ 1

2 . An easy density

argument shows that (31) can in fact be written as id−tn+1
2

τ = −∇U ′(ρn+ 1
2 ) in L2(dρn+ 1

2 ),
which should be interpreted as an equality in the tangent plane T

ρn+1
2
M+

MK. Taking thus

the L2(dρn+ 1
2 ) norm we obtain

τ‖∇U ′(ρn+ 1
2 )‖2

L2(dρn+1
2 )

=
1

τ
‖ id−tn+ 1

2 ‖2
L2(dρn+1

2 )
=

1

τ
MK2(ρn+ 1

2 , ρn).

Recalling that the interpolated curve ρ̃τ (t) is piecewise constant and summing from n = 0
to n = dT/τe + 1 for fixed any T > 0, we obtain from the total square-distance estimate
(26)

(41)
∫ T

0

∫

Ω

|∇U ′(ρ̃τ (t))|2dρ̃τ (t) dt ≤ C ⇔
∫

O
|∇U ′(ρ̃τ )|2dστ ≤ C

with O = (0, T )×Ω ⊂ R1+d and dστ (t, x) = dρ̃τt (x)⊗dt. Recall that ‖ρ̃τ (t)‖L1(Ω) ≤ ‖ρ0‖Ω,
so that στ is really a finite measure on O for finite T > 0. From the strong L1

loc([0,∞);L1)
convergence ρ̃τ → ρ (Proposition 5.2) it is easy to check that στ converges narrowly to
dσ(t, x) = dρt(x)⊗dt = ρ(t, x)dxdt. Applying Lemma 5.2 we see that there is a vector-field
v ∈ L2(O,dσ) = L2(0, T ;L2(dρt)) such that, up to extraction of a subsequence,

∫ T

0

∫

Ω

ρ̃τ∇U ′(ρ̃τ ) · ζ →
∫ T

0

∫

Ω

ρ(t, x)v(t, x) · ζ(t, x) dxdt

for all ζ ∈ C∞c ((0, T ) × Ω;Rn). In order to identify the weak limit v, recall that the
thermodynamic pressure P (ρ) := ρU ′(ρ)−U(ρ). Since P ′(ρ) = ρU ′′(ρ) our assumptions on
U show that P is Lipschitz in any bounded interval ρ ∈ [0,M ]. With the strong convergence
ρτ → ρ and the uniform L1 ∩ L∞(Ω) bounds one immediately gets P (ρ̃τ ) → P (ρ) in
L1

loc((0,∞) × Ω), and as a consequence ∇P (ρ̃τ ) ⇀ ∇P (ρ) in the sense of distributions
D′((0, T ) × Ω). Note that the measure dσ(t, x) = dρt(x) ⊗ dt is finite on any subdomain
(0, T ) × Ω, hence v ∈ L2(O,dσ) ⊂ L1(O,dσ) and ρv ∈ L1((0, T ) × Ω). Writing ∇P (ρ) =
P ′(ρ)∇ρ = ρU ′′(ρ)∇ρ = ρ∇U ′(ρ) we conclude that ρv = ∇P (ρ) = ρ∇U ′(ρ), thus v =
∇U ′(ρ) at least in L2(dρ). A further diagonal extraction shows that the limit v can be
chosen independent of T , and the proof is complete.

As an immediate consequence, we get

Theorem 5.1. Assume (H). Then, up to extraction of a discrete subsequence not rela-
beled here, the solution of the MK-FR splitting scheme ρτ converges to a weak solution ρ of
the PDE (21).

Proof. Simply use Proposition 5.3 to apply Theorem 4.1.
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Our next and final result illustrates perhaps even better the deep interplay between our
two-steps variational discretization and the full KFR metric:

Proposition 5.4. In addition to (H), assume that F(ρ) is geodesically convex with
respect to the MK structure, i-e ρP ′(ρ) ≥

(
1− 1

d

)
P (ρ) with P (ρ) = ρU ′(ρ)−U(ρ) [41]. Then

we have

(42) F(ρ(t2)) +

∫ t2

t1

∫

Ω

(|∇U ′(ρ)|2 + |U ′(ρ)|2) dρdt ≤ F(ρ(t1))

and for all 0 ≤ t1 ≤ t2.
From the discussion in section 2.3 we known that ‖U ′(ρ)‖2H1(dρ) can be interpreted either
as the metric slope |∂F(ρ)|2 = ‖ gradKFR F(ρ)‖2KFR or, through the continuity equation ∂tρ =
div(ρ∇U ′(ρ))− ρU ′(ρ), as the metric speed |ρ′(t)|2 with respect to our distance KFR. Hence
(42) can be rephrased as the Energy Dissipation Inequality (EDI)

F(ρ(t2)) +

∫ t2

t1

{
1

2
|ρ′(t)|2 +

1

2
|∂F(ρ(t))|2

}
dt ≤ F(ρ(t1)),

which is one of the possible formulations of gradient flows in abstract metric spaces. We
refer the reader to [2, 3] for the connection between EDIs in abstract metric spaces and
gradient flow formulations. However, and to the best of our knowledge, no full and tractable
characterizations of metric speeds |ρ′(t)| and metric slopes |∂F(ρ)| are available at this early
stage of the general KFR theory (see however [25] for the characterization of Lipschitz curves).
For the sake of rigor we thus prefer to state the dissipation inequality in the PDE-oriented
form (42), rather than in the abstract metric setting.

Note that (H) already implies ρU ′′(ρ)+U ′(ρ)/2 ≥ 0, which is equivalent to geodesic con-
vexity with respect to FR. Thus we essentially assumed here that F is separately geodesically
convex with respect to each of the MK, FR structures, respectively, and it is not surprising
that we recover in the end a dissipation inequality for the full KFR metrics.

Proof. Let tn+ 1
2 be the optimal map from ρn+ 1

2 to ρn. By the above-tangent charac-
terization of the displacement convexity with respect to MK [41, prop. 5.29] we have

F(ρn) ≥ F(ρn+ 1
2 ) +

∫

Ω

(tn+ 1
2 − id) · ∇U ′(ρn+ 1

2 )dρn+ 1
2

= F(ρn+ 1
2 ) + τ

∫

Ω

|∇U ′(ρn+ 1
2 )|2dρn+ 1

2 ,

where the last equality follows by reinterpreting the Euler-Lagrange (31) as tn+ 1
2 − id =

τ∇U ′(ρn+ 1
2 ) in L2(dρn+ 1

2 ).
For the reaction part let us recall that ρU ′′(ρ) + U ′(ρ)

2 ≥ 0 corresponds to the convexity
of s 7→ U(s2) in s =

√
ρ. Using this convexity we obtain

F(ρn+ 1
2 ) ≥ F(ρn+1) +

∫

Ω

2
√
ρn+1U ′(ρn+1)

(√
ρn+ 1

2 −
√
ρn+1

)

= F(ρn+1) + τ

∫

Ω

|U ′(ρn+1)|2dρn+1,

where the last equality follows now by reinterpreting the Euler-Lagrange equation (35) as

2

√
ρn+1−

√
ρn+1

2√
ρn+1

= −τU ′(ρn+1) in L2(dρn+1). We get altogether

F(ρn+1) + τ

(∫

Ω

|∇U ′(ρn+ 1
2 )|2dρn+ 1

2 +

∫

Ω

|U ′(ρn+1)|2dρn+1

)
≤ F(ρn).
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For any 0 ≤ t1 ≤ t2 let now N1, N2 ∈ N such that ρτ (ti) = ρNi , and Ti = Niτ . Summing
the previous inequality from n = N1 to n = N2 − 1 gives

(43) F(ρτ (t2)) +

∫ T2

T1

∫

Ω

|∇U ′(ρ̃τ )|2 dρ̃τdt+

∫ T2

T1

∫

Ω

|U ′(ρτ )|2 dρτdt ≤ F(ρτ (t1)).

We proved in Proposition 5.3 that ρ̃τ∇U ′(ρ̃τ ) ⇀ ρ∇U ′(ρ), and observe that Ti → ti as
τ → 0. From the energy estimate (41) and the lower semi-continuity in Lemma 5.2 we
deduce that

∫ t2

t1

∫

Ω

|∇U ′(ρ)|2 dρdt ≤ lim inf
τ→0

∫ T2

T1

∫

Ω

|∇U ′(ρ̃τ )|2 dρ̃τdt,

and from the strong convergence in Proposition 5.2 with the uniform L1 ∩ L∞(Ω) bounds
(Proposition 5.1) it is easy to see that

∫ t2

t1

∫

Ω

|U ′(ρ)|2 dρdt = lim
τ→0

∫ T2

T1

∫

Ω

|U ′(ρτ )|2 dρτdt.

Similarly one can verify that

∀ t ≥ 0 : F(ρτ (t)) =

∫

Ω

U(ρτ (t))→
∫

Ω

U(ρ(t)) = F(ρ(t)).

Indeed with our assumptions U is Lipschitz in any bounded interval ρ ∈ [0,M ], ‖ρτ (t)‖L∞ ≤
M = ‖ρ0‖L∞ uniformly in τ , and in the first proof of Proposition 5.2 we obtained strong
L1(Ω) convergence ρτ (t) → ρ(t) pointwise in time. As a consequence we can pass to the
lim inf in (43) to retrieve (42) and the proof is complete.
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An unbalanced Optimal Transport splitting scheme for
general advection-reaction-diffusion problems
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Abstract

In this paper, we show that unbalanced optimal transport provides a convenient framework
to handle reaction and diffusion processes in a unified metric framework. We use a constructive
method, alternating minimizing movements for the Wasserstein distance and for the Fisher-Rao
distance, and prove existence of weak solutions for general scalar reaction-diffusion-advection
equations. We extend the approach to systems of multiple interacting species, and also consider
an application to a very degenerate diffusion problem involving a Gamma-limit. Moreover,
some numerical simulations are included.

1 Introduction
Since the seminal works of Jordan-Kinderlehrer-Otto [19], it is well known that certain diffusion
equations can be interpreted as gradient flows in the space of probability measures, endowed with
the quadratic Wasserstein distance W. The well-known JKO scheme (a.k.a. minimizing movement),
which is a natural implicit Euler scheme for such gradient flows, naturally leads to constructive
proofs of existence for weak solutions to equations or systems with mass conservation such as,
for instance, Fokker-Planck equations [19], Porous Media Equations [32], aggregation equation [9],
double degenerate diffusion equations [31], general degenerate parabolic equation [1] etc. We refer
to the classical textbooks of Ambrosio, Gigli and Savaré [4] and to the books of Villani [43, 44]
for a detailed account of the theory and extended bibliography. Recently, this theory has been
extended to study the evolution of interacting species with mass-conservation, see for examples
[15, 45, 23, 20, 8].

Nevertheless in biology, for example for diffusive prey-predator models, the conservation of mass
may not hold, and the classical optimal transport theory does not apply. An unbalanced optimal
transport theory was recently introduced simultaneously in [11, 12, 21, 25, 26], and the resulting
Wasserstein-Fisher-Rao (WFR) metrics (also referred to as the Hellinger-Kantorovich distance HK)
allows to compute distances between measures with variable masses while retaining a convenient
Riemannian structure. See section 2 for the definition and a short discussions on this WFR metric.
We also refer to [37, 16] for earlier attempts to account for mass variations within the framework
of optimal transport.

The WFR metrics can be seen as an inf-convolution between Wasserstein/transport and Fisher-
Rao/reaction processes, and is therefore extremely convenient to control both in a unified metric
setting. This allows to deal with non-conservative models of population dynamics, see e.g. [21, 22].
In [18], the first and third authors proposed a variant of the JKO scheme for WFR-gradient flows
corresponding to some particular class of reaction-diffusion PDEs: roughly speaking, the reaction
and diffusion were handled separately in two separate FR, W metrics, and then patched together
using a particular uncoupling of the inf-convolution, namely WFR2 ≈ W2 + FR2 in some sense (see
[18, section 3] for a thorough discussion). However, the analysis was restricted to very particular
structures for the PDE, corresponding to pure WFR gradient-flows.

In this work we aim at extending this splitting scheme in order to handle more general reaction-
diffusion problems, not necessarily corresponding to gradient flows. Roughly speaking, the structure
of our splitting scheme is the following: the transport/diffusion part of the PDE is treated by a
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single Wasserstein JKO step
ρk

W−−−−−−−→
transport

ρk+1/2,

and the next Fisher-Rao JKO step

ρk+1/2 FR−−−−−−→
reaction

ρk+1

handles the reaction part of the evolution. As already mentioned, the WFR metric will allow to
suitable control both steps in a unified metric framework. We will first state a general convergence
result for scalar reaction-diffusion equations, and then illustrate on a few particular examples how
the general idea can be adapted to treat e.g. prey-predator systems or very degenerate Hele-Shaw
diffusion problems. In this work we do not focus on optimal results and do not seek full generality,
but rather wish to illustrate the efficiency of the general approach.

Another advantage of the splitting scheme is that is well adapted to existing Monge/Kan-
torovich/Wasserstein numerical solvers, and the Fisher-Rao step turns out to be a simple pointwise
convex problem which can be implemented in a very simple way. See also [10, 13] for a more direct
numerical approach by entropic regularization. Throughout the paper we will illustrate the the-
oretical results with a few numerical tests. All the numerical simulations were implemented with
the augmented Lagrangian ALG2-JKO scheme from [6] for the Wasserstein step, and we used a
classical Newton algorithm for the Fisher-Rao step.

The paper is organized as follows. In section 2 we recall the basic definitions and useful prop-
erties of the Wasserstein-Fisher-Rao distance WFR. Section 3 contains the precise description of the
splitting scheme and a detailed convergence analysis for a broad class of reaction-diffusion equa-
tions. In section 4 we present an extension to some prey-predator multicomponent systems with
nonlocal interactions. In section 5 we extend the general result from section 3 to a very degenerate
tumor growth model studied in [34], corresponding to a pure WFR gradient flow: we show that the
splitting scheme captures fine properties of the model, particularly the Γ-convergence of discrete
gradient flows as the degenerate diffusion parameter of Porous Medium type m → ∞. The last
section 6 contains an extension to a tumor-growth model coupled with an evolution equation for
the nutrients.

2 Preliminaries
Let us first fix some notations. Throughout the whole paper, Ω denotes a possibly unbounded
convex subset of Rd, QT represents the product space [0, T ] × Ω, for T > 0, and we writeM+ =
M+(Ω) for the set of nonnegative finite Radon measures on Ω. We say that a curve of measures
t 7→ ρt ∈ Cw([0, 1];M+) is narrowly continuous if it is continuous with respect to the narrow
convergence of measures, namely for the duality with Cb(Ω) test-functions.

Definition 2.1. The Fisher-Rao distance between ρ0, ρ1 ∈M+ is

FR(ρ0, ρ1) := min
(ρt,rt)∈AFR[ρ0,ρ1]

ˆ 1

0

ˆ

Ω

|rt|2 dρt(x)dt,

where the admissible set AFR[ρ0, ρ1] consists in curves [0, 1] 3 t 7→ (ρt, rt) ∈ M+ ×M such that
t 7→ ρt ∈ Cw([0, 1];M+) is narrowly continuous with endpoints ρt(0) = ρ0, ρt(1) = ρ1, and

∂tρt = ρtrt

in the sense of distributions D′((0, 1)× Ω).

The Monge-Kantorovich-Wasserstein admits several equivalent definitions and formulations,
and we refer e.g. to [43, 44, 4, 41] for a complete description. For our purpose we shall only need
the dynamical Benamou-Brenier formula:

2



Theorem 2.2 (Benamou-Brenier formula, [5, 4]). There holds

W2(ρ0, ρ1) = min
(ρ,v)∈AW[ρ0,ρ1]

ˆ 1

0

ˆ

Ω

|vt|2dρtdt, (2.1)

where the admissible set AW[ρ0, ρ1] consists in curves (0, 1) 3 t 7→ (ρt,vt) ∈M+ ×M(Ω;Rd) such
that t 7→ ρt is narrowly continuous with endpoints ρt(0) = ρ0, ρt(1) = ρ1 and solving the continuity
equation

∂tρt + div(ρtvt) = 0

in the sense of distributions D′((0, 1)× Ω).

According to the original definition in [11] we have

Definition 2.3. The Wasserstein-Fisher-Rao distance between ρ0, ρ1 ∈M+(Ω) is

WFR2(ρ0, ρ1) := inf
(ρ,v,r)∈AWFR[ρ0,ρ1]

ˆ 1

0

ˆ

Ω

(|vt(x)|2 + |rt|2) dρt(x)dt, (2.2)

where the admissible set AWFR[ρ0, ρ1] is the set of curves t ∈ [0, 1] 7→ (ρt, vt, rt) ∈M+×M(Ω;Rd)×
M such that t 7→ ρt ∈ Cw([0, 1],M+) is narrowly continuous with endpoints ρ|t=0 = ρ0, ρ|t=1 = ρ1

and solves the continuity equation with source

∂tρt + div(ρtvt) = ρtrt.

Comparing definition 2.3 with definition 2.1 and Theorem 2.2, this dynamical formulation
à la Benamou-Brenier shows that the WFR distance can be viewed as an inf-convolution of the
Wasserstein and Fisher-Rao distances W, FR. From [11, 12, 21, 25] the infimum in (2.2) is always a
minimum, and the corresponding minimizing curves t 7→ ρt are of course constant-speed geodesics
WFR(ρt, ρs) = |t− s|WFR(ρ0, ρ1). Then (M+, WFR) is a complete metric space, and WFR metrizes the
narrow convergences of measures (see again [11, 12, 21, 25]). Interestingly, there are other possible
formulations of the distance in terms of static unbalanced optimal transportation, primal-dual
characterizations with relaxed marginals, lifting to probability measures on a cone over Ω, duality
with subsolutions of Hamilton-Jacobi equations, and we refer to [11, 12, 21, 26, 25] for more details.

As a first useful interplay between the distances WFR, W, FR we have

Proposition 2.4 ([18]). Let ρ0, ρ1 ∈M+
2 such that |ρ0| = |ρ1|. Then

WFR2(ρ0, ρ1) 6 W2(ρ0, ρ1).

Similarly for all µ0, µ1 ∈M+ (with possibly different masses) there holds

WFR2(µ0, µ1) 6 FR2(µ0, µ1).

Finally, for all ν0, ν1 ∈M+
2 such that |ν0| = |ν1| and all ν ∈M+, there holds

WFR2(ν0, ν) 6 2(W2(ν0, ν1) + FR2(ν1, ν)).

Moreover, we have the following link between the reaction and the velocity in (2.2), which was
the original definition in [21]:

Proposition 2.5 ([18]). The definition (2.3) of the WFR distance can be restricted to the subclass
of admissible paths (vt, rt) = (∇ut, ut) for potentials ut ∈ H1(dρt) and continuity equations

∂tρt + div(ρt∇ut) = ρtut.

This shows that (M+, WFR) can be endowed with the formal Riemannian structure constructed
as follow: any two tangent vectors ξ1 = ∂tρ

1, ξ2 = ∂tρ
2 can be uniquely identified with potentials

ui by solving the elliptic equations

ξi = −div(ρ∇ui) + ρui.
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Then the Riemaniann tensor is naturally constructed on the H1(dρ) scalar product, i-e

gρ(ξ
1, ξ2) := 〈u1, u2〉H1(dρ) =

ˆ

Ω

(∇u1 · ∇u2 + u1u2)dρ.

This is purely formal, and we refer again to [18] for discussions. Given a functional

F(ρ) :=

ˆ

Ω

F (ρ) +

ˆ

Ω

ρV +
1

2

ˆ

Ω

(K ∗ ρ)ρ,

this Riemannian structure also allows to compute WFR gradients as

gradWFR F(ρ) = − div

(
ρ∇δF

δρ

)
+ ρ

δF
δρ

= gradW F(ρ) + gradFR F(ρ),

where δF
δρ = F ′(ρ)+V +K ∗ρ denotes the Euclidean first variation of F with respect to ρ. In other

words, the Riemannian tangent vector gradWFR F(ρ) is represented in the previous H1(dρ) duality
by the scalar potential u = δF

δρ .

3 An existence result for general parabolic equations
In this section, we propose to solve scalar parabolic equations of the form





∂tρ = div(ρ∇(F ′1(ρ) + V1))− ρ(F ′2(ρ) + V2)
ρ|t=0 = ρ0

ρ∇(F ′1(ρ) + V1)|∂Ω · ν = 0
(3.1)

in a bounded domain Ω ⊂ Rd with Neumann boundary condition and suitable initial conditions.
Our goal is to extend to the case F1 6= F2, V1 6= V2 the method initially introduced in [18] for
variational WFR-gradient flows, i-e (3.1) with F1 = F2 and V1 = V2.

We assume for simplicity that F1 : R→ R is given by

F1(z) =





z log z − z (linear diffusion)
or

1
m1−1z

m1 (Porous Media diffusion)
, (3.2)

and F2 : R→ R is given by

F2(z) =
1

m2 − 1
zm2 , for some m2 > 1. (3.3)

Note that we cannot take F2(z) = z log z − z because the Boltzmann entropy is not well behaved
(neither regular nor convex) with respect to the Fisher-Rao metric in the reaction step, see [18, 26,
25] for discussions. In addition, we assume that

V1 ∈W 1,∞(Ω) and V2 ∈ L∞(Ω).

We denote E1, E2 : M+ → R the energy functionals

Ei(ρ) := Fi(ρ) + Vi(ρ),

where
Fi(ρ) :=

{ ´
Ω
Fi(ρ) if ρ� L|Ω

+∞ otherwise, and Vi(ρ) :=

ˆ

Ω

Viρ.

Although more general statements with suitable structural assumptions could certainly be proved,
we do not seek full generality here and choose to restrict from the beginning to the above simple
(but nontrivial) setting for the sake of exposition.
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Definition 3.1. A weak solution of (3.1) is a curve [0,+∞) 3 t 7→ ρ(t, ·) ∈ L1
+∩L∞(Ω) such that

for all T <∞ the pressure P1(ρ) := ρF ′1(ρ)− F1(ρ) satisfies ∇P1(ρ) ∈ L2([0, T ]× Ω), and
ˆ +∞

0

(
ˆ

Ω

(ρ∂tφ−∇V1 · ∇φρ−∇P1(ρ) · ∇φ− ρ(F ′2(ρ) + V2)φ) dx

)
dt = −

ˆ

Ω

φ(0, x)ρ0(x) dx

for every φ ∈ C∞c ([0,+∞)× Rd).

Note that the pressure P1 is defined so that the diffusion term div(ρ∇F ′1(ρ)) = ∆P1(ρ), at least
for smooth solutions.

The starting point of our analysis is that (3.1) can be written, at least formally as,

∂tρ = div(ρ∇(F ′1(ρ) + V1))− ρ(F ′2(ρ) + V2) ↔ ∂tρ = − gradW E1(ρ)− gradFR E2(ρ).

Our splitting scheme is a variant of that originally introduced in [18], and can be viewed as an
operator splitting method: each part of the PDE above is discretized (in time) in its own W, FR
metric, and corresponds respectively to a W/transport/diffusion step and to a FR/reaction step.
More precisely, let h > 0 be a small time step. Starting from the initial datum ρ0

h := ρ0, we
construct two recursive sequences (ρkh)k and (ρ

k+1/2
h )k such that





ρ
k+1/2
h ∈ argmin

ρ∈M+,|ρ|=|ρkh|

{
1

2hW
2(ρ, ρkh) + E1(ρ)

}
,

ρk+1
h ∈ argmin

ρ∈M+

{
1

2hFR
2
2(ρ, ρ

k+1/2
h ) + E2(ρ)

}
.

(3.4)

With our structural assumptions on Fi, Vi and arguing as in [18], the direct method shows that
this scheme is well-posed, i-e that each minimizing problem in (3.4) admits a unique minimizer.
We construct next two piecewise-constant interpolating curves

{
ρh(t) = ρk+1

h ,

ρ̃h(t) = ρ
k+1/2
h ,

for all t ∈ (kh, (k + 1)h]. (3.5)

Our main results in this section is the constructive existence of weak solutions to (3.1):

Theorem 3.2. Assume that ρ0 ∈ L1
+ ∩ L∞(Ω). Then, up to a discrete subsequence (still denoted

h→ 0 and not relabeled here), ρh and ρ̃h converge strongly in L1((0, T )× Ω) to a weak solution ρ
of (3.1).

Note that any uniqueness for (3.1) would imply convergence of the whole (continuous) sequence
ρh, ρ̃h → ρ as h→ 0, but for the sake of simplicity we shall not address this issue here.

The main technical obstacle in the proof of Theorem 3.2 is to retrieve compactness in time. For
the classical minimizing scheme of any energy E on any metric space (X, d), suitable time com-
pactness is usually retrieved in the form of the total-square distance estimate 1

2h

∑
k≥0

d2(xk, xk+1) 6

E(x0) − inf E . This usually works because only one functional is involved, and E(x0) − inf E is
obtained as a telescopic sum of one-step energy dissipations E(xk+1) − E(xk). Here each of our
elementary step in (3.1) involves one of the W, FR metrics, and we will use the WFR distance to
control both simultaneously: this strongly leverages the inf-convolution structure, the WFR distance
being precisely built on a compromise between W/transport and FR/reaction. On the other hand
we also have two different functionals E1, E2, and we will have to carefully estimate the dissipa-
tion of E1 during the FR reaction step (driven by E2) as well as the dissipation of E2 during the W

transport/diffusion step (driven by E1).
We start by collecting one-step estimates, exploiting the optimality conditions for each elemen-

tary minimization procedure, and postpone the proof of Theorem 3.2 to the end of the section.
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3.1 Optimality conditions and pointwise L∞ estimates
The optimality conditions for the first Wasserstein step ρk → ρk+1/2 in (3.4) are by now classical,
and can be written for example

−∇ϕk+1/2
h

h
ρ
k+1/2
h = ∇P1(ρ

k+1/2
h ) + ρ

k+1/2
h ∇V1 a.e. (3.6)

Here ϕk+1/2
h is an optimal (backward) Kantorovich potential from ρ

k+1/2
h to ρkh.

Lemma 3.3. For all k > 0,
‖ρk+1/2
h ‖L1 = ‖ρkh‖L1 (3.7)

and for all constant C such that V1 6 C,

ρkh(x) 6 (F ′1)−1(C − V1(x)) a.e. ⇒ ρ
k+1/2
h (x) 6 (F ′1)−1(C − V1(x)) a.e. (3.8)

Proof. The Wasserstein step is mass conservative by construction, so the first part is obvious. The
second part is a direct consequence of a generalization [36, lemma 2] of Otto’s maximum principle
[32].

Remark 3.4. Note that if ρkh 6 M , we may take C = F ′1(M) + ‖V1‖L∞ in (3.8). Formally,
this corresponds to taking ρ(x) := (F ′1)−1(C − V1(x)) as a stationary Barenblatt supersolution
for ∂tρ = div(ρ∇(F ′1(ρ) + V1)) at the continuous level. In addition, if V1 ≡ 0 we recover Otto’s
maximum principle [32] in the form ‖ρk+1/2‖L∞ 6 ‖ρk‖L∞ .

For the second Fisher-Rao reaction step, the optimality condition has been obtained in [18,
section 4.2] in the form

(√
ρk+1
h −

√
ρ
k+1/2
h

)√
ρk+1
h = −h

2
ρk+1
h

(
F ′2(ρk+1

h ) + V2

)
a.e. (3.9)

As a consequence we have

Lemma 3.5. There is C ≡ C(V2) > 0 such that for h 6 h0(V2) small enough we have

ρk+1
h (x) 6 (1 + Ch)ρ

k+1/2
h (x) a.e., (3.10)

and for all M > 0 there is c ≡ c(M,V2) such that if ‖ρk+1/2
h ‖∞ 6M then

(1− ch)ρ
k+1/2
h (x) 6 ρk+1

h (x) a.e. (3.11)

Note in particular that this immediately implies

supp ρk+1
h = supp ρ

k+1/2
h , (3.12)

which was to be expected since the reaction part ∂tρ = −ρ(F ′2(ρ) + V2) of the PDE (3.1) preserves
strict positivity.

Proof. We start with the upper bound: inside supp ρk+1
h , (3.9) and F ′2 > 0 give

√
ρk+1
h (x)−

√
ρ
k+1/2
h (x) = −h

√
ρk+1
h (x)(F ′2(ρk+1

h (x)) + V2(x))

6 −hV2(x)

√
ρk+1
h (x) 6 h‖V2‖∞

√
ρk+1
h (x)

whence √
ρk+1
h (x) 6 1

1− h‖V2‖∞

√
ρ
k+1/2
h (x).
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Taking squares and using

1

(1− h‖V2‖∞)2
= 1 + 2‖V2‖L∞h+O(h2) 6 1 + 3‖V2‖L∞h

for small h gives the desired inequality.
For the lower bound (3.11), we first observe that since F ′′2 > 0 and from (3.10) we have

F ′2(ρk+1
h ) 6 F ′2((1 + Ch)ρ

k+1/2
h ) 6 F ′2(2M) if h is small enough. Then (3.9) gives inside supp ρk+1

√
ρk+1
h (x)−

√
ρ
k+1/2
h (x)) = −h

√
ρk+1
h (x)(F ′2(ρk+1

h (x)) + V2(x))

> −h(F ′2(2M) + ‖V2‖∞)

√
ρk+1
h (x),

hence
ρk+1
h (x) > 1

(1 + h(F ′2(2M) + ‖V2‖∞))2
ρ
k+1/2
h (x) > (1− ch)ρ

k+1/2
h (x)

for small h.

Combining Lemma 3.3 and Lemma 3.5, we obtain at the continuous level

Proposition 3.6. For all T > 0 there exist constants MT ,M
′
T such that for all t ∈ [0, T ],

‖ρh(t)‖L1∩L∞ , ‖ρ̃h(t)‖L1∩L∞ 6MT

and
‖ρh(t)− ρ̃h(t)‖L1 6 hM ′T

uniformly in h > 0.

Note from the second estimate that strong L1((0, T ) × Ω) convergence of ρh will immediately
imply convergence of ρ̃h to the same limit.

Proof. By induction combining (3.8) and (3.10), we obtain, for all t ∈ [0, T ],

‖ρh(t)‖L∞ , ‖ρ̃h(t)‖L∞ 6 CT ,

where CT is a constant depending on ‖V1‖L∞ , see [36, lemma 2]. The L1 bound is even easier:
since the Wasserstein step is mass preserving, we can integrate (3.10) in space to get

‖ρk+1
h ‖L1 6 (1 + Ch)‖ρk+1/2

h ‖L1 = (1 + Ch)‖ρk+1
h ‖L1 .

For t 6 T ⇔ k 6 bT/hc the L1 bounds immediately follow by induction, with (1+Ch)bT/hc . eCT .
and we conclude again by induction.

In order to compare now ρh and ρ̃h, we take advantage of the above upper bound to write
ρ
k+1/2
h 6MT as long as kh 6 T . Taking c = c(MT ) in (3.11) and combining with (3.10), we have

−chρk+1/2
h 6 ρk+1/2

h − ρk+1
h 6 Chρk+1/2

h a.e.

Integrating in Ω we conclude that

‖ρh(t)− ρ̃h(t)‖1 = ‖ρk+1
h − ρk+1/2

h ‖1 6 hmax{c, C}‖ρk+1/2
h ‖1 6 hmax{c, C}MT = hM ′T

and the proof is complete.
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3.2 Energy dissipation
Our goal is here to estimate the crossed dissipation along each elementary W, FR step.

Testing ρ = ρkh in the first Wasserstein step in (3.4), we get as usual

1

2h
W2(ρ

k+1/2
h , ρkh) 6 F1(ρkh)−F1(ρ

k+1/2
h ) +

ˆ

Ω

V1(ρkh − ρk+1/2
h ). (3.13)

Since V1 is Globally Lipschitz we can first use standard methods from [15, 23] to control
´

Ω
V1(ρkh−

ρ
k+1/2
h ) in terms of W2(ρ

k+1/2
h , ρkh), and suitably reabsorb in the left-hand side to obtain

1

4h
W2(ρ

k+1/2
h , ρkh) 6 F1(ρkh)−F1(ρ

k+1/2
h ) + CTh. (3.14)

The dissipation of F1 along the Fisher-Rao step is controlled as

Proposition 3.7. For all T > 0 there exists a constant CT > 0 such that, for all k > 0 and
k ≤ bT/hc,

F1(ρk+1
h ) 6 F1(ρ

k+1/2
h ) + CTh. (3.15)

Proof. We first treat the case of F1(z) = 1
m1−1z

m1 with m1 > 1. Since F1 is increasing, we use
(3.10) to obtain

F1(ρk+1
h )−F1(ρ

k+1/2
h ) 6 ((1 + Ch)m1 − 1)

m1 − 1

ˆ

Ω

(ρ
k+1/2
h )m1

6 Ch‖ρk+1/2‖m1−1
L∞ ‖ρk+1/2‖L1 ,

and we conclude from Proposition 3.6.
In the second case F1(z) = z log(z)− z, we have

F1(ρk+1
h ) =

ˆ

{ρk+1
h 6e−1}

ρk+1
h log(ρn+1

h ) +

ˆ

{ρk+1
h >e−1}

ρk+1
h log(ρk+1

h )−
ˆ

Ω

ρk+1
h .

Note from Proposition 3.6 that the z contribution in F1(z) = z log z − z is immediately controlled
by |
´

ρk+1
h −

´

ρ
k+1/2
h | 6 ‖ρk+1

h − ρ
k+1/2
h ‖L1 6 hM ′T , so we only have to estimate the z log z

contribution. Since z 7→ z log z is increasing on {z > e−1} and using (3.10), the second term in the
right hand side becomes

ˆ

{ρk+1
h >e−1}

ρk+1
h log(ρk+1

h ) 6
ˆ

{ρk+1
h >e−1}

(1 + Ch)ρ
k+1/2
h log((1 + Ch)ρ

k+1/2
h )

6
ˆ

{ρk+1
h >e−1}

ρ
k+1/2
h log(ρ

k+1/2
h ) + Ch

ˆ

{ρk+1
h >e−1}

ρ
k+1/2
h log(ρ

k+1/2
h )

+(1 + Ch)

ˆ

{ρk+1
h >e−1}

ρ
k+1/2
h log(1 + Ch)

6
ˆ

{ρk+1
h >e−1}

ρ
k+1/2
h log(ρ

k+1/2
h ) + CTh,

where we used ‖ρk+1/2
h ‖L1 6 MT from Proposition 3.6 as well as log(1 + Ch) 6 Ch in the last

inequality. Using the same method with the bound from below (3.11) on {ρk+1
h 6 e−1} (where

z 7→ z log z is now decreasing), we obtain similarly
ˆ

{ρk+1
h 6e−1}

ρk+1
h log(ρk+1

h ) 6
ˆ

{ρk+1
h 6e−1}

ρ
k+1/2
h log(ρ

k+1/2
h ) + CTh.

Combining both inequalities gives
ˆ

Ω

ρk+1
h log(ρk+1

h ) 6
ˆ

Ω

ρ
k+1/2
h log(ρ

k+1/2
h ) + CTh

and the proof is complete.
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Summing (3.14) and (3.15) over k we obtain

1

2h

N−1∑

k=0

W2(ρ
k+1/2
h , ρkh) 6 F1(ρ0)−F1(ρNh ) + CT , (3.16)

where N = bTh c.

In the above estimate we just controlled the dissipation of F1 along the FR/reaction steps, and
the goal is now to similarly estimate the dissipation of F2 along the Wasserstein step. Testing
ρ = ρ

k+1/2
h in the second Fisher-Rao step in (3.4), we obtain

1

2h
FR2(ρk+1

h , ρ
k+1/2
h ) 6 F2(ρ

k+1/2
h )−F2(ρk+1

h ) +

ˆ

Ω

V2(ρ
k+1/2
h − ρk+1

h ). (3.17)

Since we assumed V2 ∈ L∞(Ω) and because ρh(t) = ρk+1
h remains close to ρ̃h(t) = ρ

k+1/2
h in L1

uniformly in t, h by Proposition 3.6, we immediately control the potential part as
ˆ

Ω

V2(ρ
k+1/2
h − ρk+1

h ) 6 ‖V2‖∞CTh. (3.18)

For the internal energy we argue exactly as in the proof Proposition 3.7 (for the Porous Media
part, since we chose here F2(z) = 1

m2−1z
m2), and obtain

F2(ρ
k+1/2
h )−F2(ρk+1

h ) 6 CTh. (3.19)

Combining (3.17), (3.18) and (3.19), we immediately deduce that

1

2h

N−1∑

k=0

FR2(ρ
k+1/2
h , ρk+1

h ) 6 CT , (3.20)

where N = bTh c as before.

Finally, we recover an approximate compactness in time in the form

Proposition 3.8. There exists a constant CT > 0 such that for all h small enough and k 6 N =
bT/hc,

1

h

N−1∑

k=0

WFR2(ρkh, ρ
k+1
h ) 6 4F1(ρ0) + CT . (3.21)

Proof. Adding (3.16) and (3.20) gives

1

h

N−1∑

k=0

W2(ρkh, ρ
k+1/2
h ) + FR2(ρ

k+1/2
h , ρk+1

h ) 6 2
(
F1(ρ0)−F1(ρNh ) + CT

)
+ 2CT 6 2F1(ρ0) + CT ,

since in any case F1(z) = 1
m1−1z

m1 > 0 and F1(z) = z log z − z > −1 is bounded from below
on the bounded domain Ω, hence F1(ρNh ) > −CΩ uniformly. It then follows from Proposition
2.4 that W2(ρkh, ρ

k+1/2
h ) + FR2(ρ

k+1/2
h , ρk+1

h ) > 1
2WFR

2ρkh, ρ
k+1
h in the left-hand side, and the result

immediately follows.

3.3 Estimates and convergences
From the total-square distance estimate (3.21) we recover as usual the approximate 1

2 -Hölder
estimate

WFR(ρh(t), ρh(s)) + WFR(ρ̃h(t), ρ̃h(s)) 6 CT |t− s+ h|1/2 (3.22)
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for all fixed T > 0 and t, s ∈ [0, T ]. From (3.20) and Proposition 2.4 we have moreover

WFR(ρh(t), ρ̃h(t)) 6 FR(ρh(t), ρ̃h(t)) 6 C
√
h. (3.23)

Using a refined version of Ascoli-Arzelà theorem, [4, prop. 3.3.1] and arguing exactly as in [18,
prop. 4.1], we see that for all T > 0 and up to extraction of a discrete subsequence, ρh and ρ̃h
converge uniformly to the same WFR-continuous curve ρ ∈ C1/2([0, T ],M+

WFR) as

sup
t∈[0,T ]

(WFR(ρh(t), ρ(t)) + WFR(ρ̃h(t), ρ(t)))→ 0.

In order to pass to the limit in the nonlinear terms, we first strengthen this WFR-convergence
into a more tractable L1 convergence. The first step is to retrieve compactness in space:

Proposition 3.9. For all T > 0, ρh and ρ̃h satisfies

‖P1(ρ̃h)‖L2([0,T ];H1(Ω)) 6 CT . (3.24)

Proof. From (3.6) and the L1 ∩ L∞ bounds from Proposition 3.6 we see that
ˆ

Ω

|∇P1(ρ
k+1/2
h )|2 6 1

2h2

ˆ

Ω

|∇ϕk+1/2
h |2(ρ

k+1/2
h )2 +

1

2

ˆ

Ω

|∇V1|2(ρ
k+1/2
h )2

6 CT
2h2

ˆ

Ω

|∇ϕk+1/2
h |2ρk+1/2

h +
1

2
‖∇V1‖2∞

ˆ

Ω

(ρ
k+1/2
h )2

6 CT

(
W2(ρ

k+1/2
h , ρkh)

h2
+ 1

)

since ϕk+1/2
h is the optimal (backward) Kantorovich potential from ρ

k+1/2
h to ρkh. Multiplying by

h > 0, summing over k, and exploiting (3.16) gives

‖P1(ρ̃h)‖2L2([0,T ];H1(Ω)) 6
N−1∑

k=0

h‖P1(ρ
k+1/2
h )‖2H1 6 CT (F1(ρ0)−F1(ρNh ) + 1) 6 CT ,

where we used as before F1(ρNh ) > −CΩ in the last inequality.

We are now in position of proving our main result:

Proof of Theorem 3.2. Exploiting (3.21) and (3.24), we can apply the extension of the Aubin-Lions
lemma established by Rossi and Savaré in [39] to obtain that ρ̃h converges to ρ strongly in L1(QT )
(see [23]). By diagonal extraction if needed, we can assume that the convergence holds in L1(QT )
for all fixed T > 0. Then by Proposition 3.6 we have

‖ρh − ρ‖L1(QT ) 6 ‖ρh − ρ̃h‖L1(QT + ‖ρ̃h − ρ‖L1(QT ) 6 CTh+ ‖ρ̃h − ρ‖L1(QT ) → 0

hence ρh → ρ as well.
Moreover, since P1(ρ̃h) is bounded in L2((0, T ), H1(Ω)) we can assume that ∇P1(ρ̃h) ⇀ ∇P1(ρ)

in L2((0, T ), H1(Ω)) for all T > 0. Exploiting the Euler-Lagrange equations (3.6)(3.9) and arguing
exactly as in [18, Theorem 4], it is easy to pass to the limit to conclude that

ˆ

Ω

ρ(t2)ϕ− ρ(t1)ϕ = −
ˆ t2

t1

ˆ

Ω

{
∇P (ρ) · ∇ϕ+ ρ∇V1 · ∇ϕ− ρ(F ′2(ρ) + V2)ϕ

}

for all 0 < t1 < t2 and ϕ ∈ C1
b (Ω). Since ρ ∈ C([0, T ];M+

WFR) takes the initial datum ρ(0) = ρ0 and
WFR metrizes the narrow convergence of measures, this is well-known to be equivalent to our weak
formulation in Definition 3.1, and the proof is complete.
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Remark 3.10. In the above proofs one can check that Theorem 3.2 extends in fact to all C1

nonlinearities F2 such that F ′2 > C for some C ∈ R. Likewise, we stated and proved our main
result in bounded domains for convenience: all the above arguments immediately extend to Ω = Rd
at least for F1(z) = 1

m1−1z
m1 > 0. The only place where we actually used the boundedness of Ω was

in the proof of Proposition 3.8, when we bounded from below F1(ρNh ) > −CΩ in order to retrieve the
total-square distance estimate. When Ω = Rd and F1(z) = z log z−z a lower bound F1(ρNh ) > −CT
still holds, but the proof requires a tedious control of the second moments m2(ρ) =

´

Rd |x|2ρ hence
we did not address this technical issue for the sake of brevity.

4 Application to systems
In this section we shall try to illustrate that the previous scheme is very tractable and allows to
solve systems of the form





∂tρ1 = div(ρ1∇(F ′1(ρ1) + V1[ρ1, ρ2]))− ρ1(G′1(ρ1) + U1[ρ1, ρ2]),
∂tρ2 = div(ρ2∇(F ′2(ρ2) + V2[ρ1, ρ2]))− ρ2(G′2(ρ2) + U2[ρ1, ρ2]),
ρ1|t=0 = ρ1,0, ρ2|t=0 = ρ2,0.

(4.1)

For simplicity we assume again that Ω is a smooth, bounded subset of Rd. Then the system (4.1)
is endowed with Neumann boundary conditions,

ρ1∇(F ′1(ρ1) + V1[ρ1, ρ2]) · ν = 0 and ρ2∇(F ′2(ρ2) + V2[ρ1, ρ2]) · ν = 0 on R+ × ∂Ω,

where ν is the outward unit normal to ∂Ω. In system of the form (4.1), we allow interactions
between densities in the potential terms Vi[ρ1, ρ2] and Ui[ρ1, ρ2]. In the mass-conservative case
(without reaction terms), this system has already been studied in [15, 23, 8], using a semi-implicit
JKO scheme introduced by Di Francesco and Fagioli, [15]. This section combines the splitting
scheme introduced in the previous section and semi-implicit schemes both for the Wasserstein
JKO step and for the Fisher-Rao JKO step.

For the ease of exposition we keep the same assumptions for Fi and Gi as in the previous section,
i.e the diffusion terms Fi satisfy (3.2) and the reaction terms Gi satisfy (3.3). Moreover, since the
potentials depend now on the densities ρ1 and ρ2, we need stronger hypotheses: we assume that
Vi : L1(Ω;R+)2 → C1(Ω) are continuous and verify, uniformly in ρ1, ρ2 ∈ L1(Ω;R+),

‖Vi[ρ1, ρ2]‖W 1,∞(Ω) 6 K(1 + ‖ρ1‖L1(Ω) + ‖ρ2‖L1(Ω)),
‖∇(Vi[ρ1, ρ2])−∇(Vi[µ1, µ2])‖L∞(Ω) 6 K(‖ρ1 − µ1‖L1(Ω) + ‖ρ2 − µ2‖L1(Ω)).

(4.2)

The interacting potentials we have in mind are of the form Vi[ρ1, ρ2] = Ki,1 ∗ ρ1 + Ki,2 ∗ ρ2,
where Ki,1,Ki,2 ∈ W 1,∞(Ω) and then Vi satisfies (4.2). For the reaction, we assume that the
potentials Ui are continuous from L1(Ω)2

+ to L1 with moreover

Ui[ρ1, ρ2] > −K, ∀ ρ1, ρ2 ∈ L1(Ω;R+) (4.3)

for some K ∈ R, and

‖Ui[ρ1, ρ2]‖L∞(Ω) 6 KM , ∀‖ρ1‖L1(Ω), ‖ρ2‖L1(Ω) 6M (4.4)

for some nondecreasimg function KM > 0 of M . The examples we have in mind are of the form

U1[ρ1, ρ2] = C1
ρ2

1 + ρ1
, U2[ρ1, ρ2] = −C2

ρ1

1 + ρ1

for some constants Ci ≥ 0, or nonlocal reactions

Ui[ρ1, ρ2](x) =

ˆ

Ω

Ki,1(x, y)ρ1(y) dy +

ˆ

Ω

Ki,2(x, y)ρ2(y) dy

for some nonnegative kernelsKi,j ∈ L1∩L∞. Such reaction models appear for example in biological
adaptive dynamics [33].

11



Definition 4.1. We say that (ρ1, ρ2) : R+ → L1
+ ∩ L∞+ (Ω) is a weak solution of (4.1) if, for i ∈

{1, 2} and all T < +∞, the pressure Pi(ρi) := ρiF
′
i (ρi)− Fi(ρi) satisfies ∇Pi(ρi) ∈ L2([0, T ]×Ω),

and

ˆ +∞

0

(
ˆ

Ω

(ρ∂tφi − ρi∇Vi[ρ1, ρ2] · ∇φi −∇Pi(ρi) · ∇φi − ρi(G′i(ρi) + Ui[ρ1, ρ2])φi) dx

)
dt

= −
ˆ

Ω

φi(0, x)ρi,0(x) dx, (4.5)

for all φi ∈ C∞c ([0,+∞)× Rd).

Then, the following result holds,

Theorem 4.2. Assume that ρ1,0, ρ2,0 ∈ L1 ∩ L∞+ (Ω) and that Vi, Ui satisfy (4.2)(4.3)(4.4). Then
(4.1) admits at least one weak solution.

Note that this result can be easily adapted to systems with an arbitrary number of species
N > 2, coupled by nonlocal terms Vi[ρ1, . . . , ρN ] and Ui[ρ1, . . . , ρN ].

Remark 4.3. A refined analysis shows that our approach would allow to handle systems of the
form {

∂tρ1 − div(ρ1∇(F ′1(ρ1) + V1)) = −ρ1h1(ρ1, ρ2),
∂tρ2 − div(ρ2∇(F ′2(ρ2) + V2)) = +ρ2h2(ρ1),

where h1 is a nonnegative continuous function and h2 is a continuous functions.
Indeed since h1 ≥ 0 the reaction term is the first equation is nonpositive, hence ‖ρ1(t)‖L∞(Ω) 6

CT . Then it follows that −h2(ρ1) satisfies assumptions (4.3) and (4.4). A classical example is
h2(ρ1) = ρα1 and h1(ρ1, ρ2) = ρα−1

1 ρ2, where α > 1, see for example [38] for more discussions.

As already mentioned, the proof of theorem 4.2 is based on a semi-implicit splitting scheme.
More precisely, we construct four sequences ρk+1/2

1,h , ρk+1
1,h , ρ

k+1/2
2,h , ρk+1

2,h defined recursively as




ρ
k+1/2
i,h ∈ argmin

ρ∈M+,|ρ|=|ρki,h|

{
1

2hW
2(ρ, ρki,h) + Fi(ρ) + Vi(ρ|ρk1,h, ρk2,h)

}

ρk+1
i,h ∈ argmin

ρ∈M+

{
1

2hFR
2(ρ, ρ

k+1/2
i,h ) + Gi(ρ) + Ui(ρ|ρk1,h, ρk2,h)

} , (4.6)

where the fully implicit terms

Fi(ρ) :=

{ ´
Ω
Fi(ρ) if ρ� L|Ω

+∞ otherwise and Gi(ρ) :=

{ ´
Ω
Gi(ρ) if ρ� L|Ω

+∞ otherwise ,

and the semi-implicit terms

Vi(ρ|µ1, µ2) :=

ˆ

Ω

Vi[µ1, µ2]ρ and Ui(ρ|µ1, µ2) :=

ˆ

Ω

Ui[µ1, µ2]ρ.

In the previous section, the proof of theorem 3.2 for scalar equations strongly leveraged the
uniform L∞(Ω)-bounds on the discrete solutions. Here an additional difficulty arises due to the
nonlocal terms ∇Vi[ρ1, ρ2] and Ui[ρ1, ρ2], which are a priori not uniformly bounded in L∞(Ω).
Using assumption (4.3) we will first obtain a uniform L1(Ω)-bound on ρ1, ρ2, and then extend
proposition 3.6 to the system (4.1). This in turn will give a uniform W 1,∞ control on Vi[ρ1, ρ2]
and L∞ control on Ui[ρ1, ρ2] through our assumptions (4.2)-(4.3)-(4.4), which will finally allow to
argue as in the previous section and give L∞ control on ρ1, ρ2.

Numerical simulations for a diffusive prey-predator system are presented at the end of this
section.
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4.1 Properties of discrete solutions
Arguing as in the case of one equation, the optimality conditions for the Wasserstein step and for
the Fisher-Rao step first give

Lemma 4.4. For all k > 0 and i ∈ {1, 2}, we have

‖ρk+1/2
i,h ‖L1 = ‖ρki,h‖L1 . (4.7)

Moreover, there exists Ci ≡ C(Ui) > 0 (uniform in k) such that

ρk+1
i,h (x) 6 (1 + Cih)ρ

k+1/2
i,h (x) a.e. (4.8)

Proof. The first part is simply the mass conservation in the Wasserstein step, and the second part
follows the lines of the proof of (3.10) in Lemma 3.5 using assumption (4.3).

As a direct consequence we have uniform control on the L1-norms:

Lemma 4.5. For all T > 0 there exist constants CT , C ′T > 0 such that, for all t ∈ [0, T ],

‖ρi,h(t)‖L1 , ‖ρ̃i,h(t)‖L1 6 CT
and

‖Vi[ρ1,h(t), ρ2,h(t)]‖W 1,∞ , ‖Vi[ρ̃1,h(t), ρ̃2,h(t)]‖W 1,∞ 6 C ′T . (4.9)

Proof. Integrating (4.8) and iterating with (4.7), we obtain for all t 6 T and k 6 bT/hc

‖ρk+1
i,h ‖L1 6 (1 + Cih)‖ρki,h‖L1 6 (1 + Cih)k‖ρi,0‖L1 6 eCiT ‖ρi,0‖L1 .

Then (4.9) follows from our assumption (4.2) on the interactions.

Combining (4.8) and (4.9), we deduce

Proposition 4.6. For all T > 0, there exists MT such that for all t ∈ [0, T ],

‖ρi,h(t)‖L∞ , ‖ρ̃i,h(t)‖L∞ 6MT .

Then, there exists ci ≡ c(MT , Ui) ≥ 0, such that, for all k 6 bT/hc and h 6 h0(U1, U2),

(1− cih)ρ
k+1/2
i,h 6 ρk+1

i,h .

In particular, there exist M ′T > 0 such that for all t ∈ [0, T ],

‖ρi,h(t)− ρ̃i,h(t)‖L1 6 hM ′T .

Proof. The first L∞ estimate can be found in [36, Lemma 2], and the rest of our statement can be
proved exactly as in Lemma 3.5 and Proposition 3.6.

4.2 Estimates and convergences
Since we proved that V1[ρ1,h, ρ2,h] and V2[ρ1,h, ρ2,h] are bounded in L∞([0, T ],W 1,∞(Ω)), we can
argue exactly as in the previous section for the Wasserstein step and obtain

1

4h
W2(ρ

k+1/2
i,h , ρki,h) 6 Fi(ρki,h)−Fi(ρk+1/2

i,h ) + CTh, (4.10)

see (3.13)-(3.14) for details. Since ρ̃1,h and ρ̃2,h are uniformly bounded in L1(Ω) (Lemma 4.5), our
assumption (4.4) ensures that U1[ρ

k+1/2
1,h , ρ

k+1/2
2,h ] and U2[ρ

k+1/2
1,h , ρ

k+1/2
2,h ] are uniformly bounded in

L∞(Ω). Proposition 4.6 then allows to argue exactly as in (3.17)-(3.18)-(3.19) for the Fisher-Rao
step, and we get

1

2h
FR2(ρk+1

h , ρ
k+1/2
h ) 6 Gi(ρk+1/2

i,h )− Gi(ρk+1
i,h ) + CTh. (4.11)

The dissipation of Fi along the Fisher-Rao step is obtained in the same way as Proposition 3.7
and we omit the details:
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Proposition 4.7. For all T > 0 and i ∈ {1, 2}, there exist constants CT , C ′T > 0 such that, for
all k > 0 with hk 6 T ,

Fi(ρk+1
i,h ) 6 Fi(ρk+1/2

i,h ) + CTh,

Gi(ρk+1/2
i,h ) 6 Gi(ρk+1

i,h ) + C ′Th.

From (4.10) and (4.11) this immediately gives a telescopic sum

1

2h

(
W2(ρki,h, ρ

k+1/2
i,h ) + FR2(ρ

k+1/2
h , ρkh)

)
6 2[Fi(ρki,h)−Fi(ρk+1

i,h )] + CTh

which in turn yields an approximate 1
2 -Hölder estimate (with respect to the WFR distance) as in

Proposition 3.8. The rest of the proof of Theorem 4.2 is then identical to section 3 and we omit
the details.

4.3 Numerical application: prey-predator systems
Our constructive scheme can be implemented numerically, by simply discretizing (4.6) in space.
We use the augmented Lagrangian method ALG-JKO from [6] to solve the Wasserstein step, and
the Fisher-Rao step is just a convex pointwise minimization problem. Indeed, it is known [18, 27]
that FR2(ρ, µ) = 4‖√ρ − √µ‖2L2 , hence the Fisher-Rao step in (4.6) is a mere convex pointwise
minimization problem of the form: for all x ∈ Ω (and omitting all indexes ρi,h),

ρk+1(x) = argmin
ρ≥0

{
4

∣∣∣∣
√
ρ−

√
ρk+1/2(x)

∣∣∣∣
2

+ 2hF (ρ)

}
.

This is easily solved using any simple Newton procedure.
Figure (1) shows the numerical solution of the following diffusive prey-predator system

{
∂tρ1 −∆ρ1 − div(ρ1∇V1[ρ1, ρ2]) = Aρ1 (1− ρ1)−B ρ1ρ2

1+ρ1
,

∂tρ2 −∆ρ2 − div(ρ2∇V2[ρ1, ρ2]) = Bρ1ρ2

1+ρ1
− Cρ2,

.

Here the ρ1 species are preys and ρ2 are predators, see for example [30], the parameters A =
10, C = 5, B = 70, and the interactions are chosen as

V1[ρ1, ρ2] = |x|2 ∗ ρ1 − |x|2 ∗ ρ2, V2[ρ1, ρ2] = |x|2 ∗ ρ1 + |x|2 ∗ ρ2.

In (4.1) this corresponds to

G1(ρ1) = A
ρ2

1

2
, G2(ρ2) = 0, U1[ρ1, ρ2] =

Bρ2

1 + ρ1
−A, U2[ρ1, ρ2] = − Bρ1

1 + ρ1
+ C.

Of course, U1 and U2 satisfy assumptions (4.3) and (4.4), and then Theorem 4.2 gives a solution
of the prey-predator system. As before, we shall disregard the uniqueness issue for the sake of
simplicity. Figure (2) depicts the mass evolution of the prey and predator species: we observe
the usual oscillations in time with phase opposition, a characteristic behaviour for Lotka-Volterra
types of systems.

5 Application to a tumor growth model with very degenerate
enery

In this section we take interest in the equation




∂tρ = div(ρ∇p) + ρ(1− p),
p > 0 and p(1− ρ) = 0
0 6 ρ 6 1,
ρ|t=0 = ρ0.

(5.1)
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Figure 1: Evolution of two species with prey-predator interactions. First row: display of ρ1 + ρ2.
Second row: display of the prey ρ1. Third row: display of the predator ρ1.
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Figure 2: Mass evolution for two-species prey-predator interactions.

This equation is motivated by tumor growth models [34, 35] and exhibits a Hele-Shaw patch
dynamics: if ρ0 = χΩ0

then the solution remains an indicator ρ(t) = χΩ(t) and the boundary moves
with normal velocity V = −∇p|∂Ω(t), see [2] for a rigorous analysis in the framework of viscosity
solutions.

At least formally, we remark that (5.1) is the Wasserstein-Fisher-Rao gradient flow of the
singular functional

F(ρ) := F∞(ρ)−
ˆ

Ω

ρ,

where
F∞(ρ) :=

{
0 if ρ 6 1 a.e,
+∞ otherwise.

Indeed, the compatibility conditions p > 0 and p(1− ρ) = 0 in (5.1) really mean that the pressure
p belongs to the subdifferential ∂F∞(ρ), and (5.1) thus reads as the gradient flow

∂tρ = div(ρ∇u)− ρu, u = p− 1 ∈ −∂F(ρ).

However, this functional is too singular for the previous splitting scheme to correctly capture the
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very degenerate diffusion. Indeed, the naive and direct approach from section 3 would lead to




ρ
k+1/2
h ∈ argmin

ρ61, |ρ|=|ρkh|

{
1

2hW
2(ρ, ρkh)−

´

Ω
ρ
}
,

ρk+1
h ∈ argmin

ρ61

{
1

2hFR
2(ρ, ρ

k+1/2
h )−

´

Ω
ρ
}
.

Since the Wasserstein step is mass-conservative by definition, the
´

ρ term has no effect in the first
step and the latter reads as “project ρkh on {ρ 6 1} w.r.t to the W distance”. Since the output of the
reaction step ρk+1

h 6 1, the Wasserstein step will never actually project anything, and the diffusion
is completly shut down. As an example, it is easy to see that if the initial datum is an indicator
ρ0 = χΩ0 then the above naive scheme leads to a stationary solution ρk+1

h = ρ
k+1/2
h = ρ0 for all

k > 0, while the real solution should evolve according to the aforementioned Hele-Shaw dynamics
ρ(t) = χΩ(t) [2, 34]. One could otherwise try to write a semi-implicit scheme as follows: 1) keep the
projection on {ρ 6 1} in the first Wasserstein step. As in [29] a pressure term p

k+1/2
h appears as a

Lagrange multiplier in the Wasserstein projection. 2) in the FR/reaction step, relax the constraint
ρ 6 1 and minimize instead ρk+1 ∈ argmin

{
1

2hFR
2(ρ) +

´

ρpk+1/2 −
´

ρ
}
, and keep iterating. This

seems to correctly capture the diffusion at least numerically speaking, but raises technical issues in
the rigorous proof of convergence and most importantly destroys the variational structure at the
discrete level (due to the fact that the reaction step becomes semi-explicit).

We shall use instead an approximation procedure, which preserves the variational structure at
the discrete level: it is well-known that the Porous-Medium functional

Fm(ρ) :=

{
´

Ω
ρm

m−1 if ρm ∈ L1(Ω)

+∞ otherwise

Γ-converges to F∞ as m → ∞, see [7]. In the spirit of [40], one should therefore expect that the
gradient flow ρm of Fm(ρ)−

´

ρ converges to the gradient flow ρ∞ of the limiting functional F(ρ) =
F∞(ρ) −

´

ρ. Implementing the splitting scheme for the regular energy functional Fm(ρ) −
´

ρ
gives a sequence ρh,m, and we shall prove below that ρh,m converges to a solution of the limiting
gradient flow as m → ∞ and h → 0. However, it is known [17] that the limit depends in general
on the interplay between the time-step h and the regularization parameter (m→∞ here), and for
technical reasons we shall enforce the condition

mh→ 0 as m→∞ and h→ 0.

Note that [34] already contained a similar approximation m→∞ but without exploiting the varia-
tional structure of them- gradient flow, and our approach is thus different. The above gradient-flow
structure was already noticed and fully exploited in the ongoing work [10], where existence and
uniqueness of weak solutions is proved and numerical simulations are performed needless of any
splitting an using directly the WFR structure. Here we rather emphasize the fact that the splitting
does capture delicate Γ-convergence phenomena.

In order to make this rigorous, we fix a time step h > 0 and construct two sequences (ρ
k+1/2
h,m )k

and (ρkh,m)k, with ρ0
h,m = ρ0, defined recursively as





ρ
k+1/2
h ∈ argmin

ρ∈M+, |ρ|=|ρkh|

{
1

2hW
2(ρ, ρkh,m) + Fm(ρ)−

´

Ω
ρ
}
,

ρk+1
h ∈ argmin

ρ∈M+

{
1

2hFR
2(ρ, ρ

k+1/2
h ) + Fm(ρ)−

´

Ω
ρ
}
.

(5.2)

As is common in the classical theory of Porous Media Equations [42], we define the pressure as
the first variation

pm := F ′m(ρ) =
m

m− 1
ρm−1.
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We accordingly write

p
k+1/2
h,m :=

m

m− 1
(ρ
k+1/2
h,m )m−1 and pk+1

h,m :=
m

m− 1
(ρk+1
h,m)m−1

for the discrete pressures. As in section 3 we denote by ρh,m(t), ph,m(t) and ρ̃h,m(t), p̃h,m(t) the
piecewise constant interpolations of ρk+1

h,m , p
k+1
h,m and ρk+1/2

h,m , p
k+1/2
h,m , respectively.

Our main result is

Theorem 5.1. Assume that ρ0 ∈ BV (Ω), ρ0 6 1, and mh→ 0 as h→ 0 and m→∞. Then for
all T > 0, ρh,m, ρ̃h,m both converge to some ρ strongly in L1((0, T )× Ω), the pressures ph,m, p̃h,m
both converge to some p weakly in L2((0, T ), H1(Ω)), and (ρ, p) is the unique weak solution of (5.1).

Since we have a WFR gradient-flow structure, uniqueness should formally follows from the −1
geodesic convexity of the driving functional E∞(ρ)−

´

Ω
ρ with respect to the WFR distance [24, 26]

and the resulting contractivity estimate WFR(ρ1(t), ρ2(t)) ≤ etWFR(ρ1
0, ρ

2
0). This is proved rigorously

in [10], and therefore we retrieve convergence of the whole sequence ρh,m → ρ in Theorem 5.1 (and
not only for subsequences). Given this uniqueness, it is clearly enough to prove convergence along
any discrete (sub)sequence, and this is exactly what we show below.

The strategy of proof for Theorem 5.1 is exactly as in section 3, except that we need now the
estimates to be uniform in both in h→ 0 and m→∞.

5.1 Estimates and convergences
In this section, we improve the previous estimates from section 3. We start with an explicit L∞-
bound:

Lemma 5.2. Assume that ρ0 6 1, then for all t ∈ R+,

‖ρh,m(t, ·)‖∞, ‖ρ̃h,m(t, ·)‖∞ 6 1.

Proof. We argue by induction at the discrete level, starting from ρ0 = ρ0
h,m 6 1 by assumption.

If ‖ρkh,m‖∞ 6 1, Otto’s maximum principle [31] implies that ‖ρk+1/2
h,m ‖∞ 6 ‖ρkh,m‖∞ 6 1 in the

Wasserstein step.
Assume now by contradiction that E := {ρk+1

h,m > 1} has positive Lebesgue measure. The

optimality condition (3.9) for the Fisher-Rao minimization step gives, dividing by
√
ρk+1
h,m > 0 in

E, √
ρk+1
h,m −

√
ρ
k+1/2
h,m =

h

2

√
ρk+1
h,m

(
1− m

m− 1
(ρk+1
h,m)m−1

)

Then 1 − m
m−1 (ρk+1

h,m)m−1 6 1 − m
m−1 < 0 in the right-hand side, hence the desired contradiction

ρk+1
h,m < ρ

k+1/2
h,m 6 1.

Noticing that the functional 1
m−1

´

ρm−
´

ρ corresponds to taking explicitly F2(z) = zm/m−1
and V2(x) ≡ −1 in section 3, it is easy to reproduce the computations from the proof of Lemma 3.5
and carefully track the dependence of the constants w.r.t m > 1 to obtain

Lemma 5.3. There exists c > 0 such that, for all m > m0 large enough and all h ≤ h0 small
enough,

(1− ch)ρ
k+1/2
h,m (x) 6 ρk+1

h,m(x) 6 (1 + h)ρ
k+1/2
h,m (x) a.e. (5.3)

Note that this holds regardless of any compatibility such as hm → 0. The key point is here
that the lower bound c previously depended on an upper bound M on ρk+1/2 in Lemma 3.5, but
since we just obtained in Lemma 5.2 the universal upper bound ρk+1/2 6 1 we end up with a lower
bound which is also uniform in h,m. The proof is identical to that of Lemma 3.5 and we omit the
details for simplicity.

Recalling that the Wasserstein step is mass-preserving, we obtain by immediate induction and
for all 0 ≤ t ≤ T

‖ρh,m(t)‖L1 , ‖ρ̃h,m(t)‖L1 6 eT ‖ρ0‖L1
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as well as
‖ρh,m(t)− ρ̃h,m(t)‖L1 6 CTh. (5.4)

Testing successively ρ = ρkh,m and ρ = ρ
k+1/2
h,m in (5.2), we get

1

2h

(
W2(ρkh,m, ρ

k+1/2
h,m ) + FR2(ρ

k+1/2
h,m , ρk+1

h,m)
)
6 Fm(ρkh,m)−Fm(ρk+1

h,m) +

ˆ

Ω

(ρ
k+1/2
h,m − ρk+1

h,m).

Using Proposition 2.4 to control WFR2 . 2(W2 + FR2) and the lower bound in (5.3) yields

1

4h
WFR2(ρk+1

h,m , ρ
k
h,m) 6 1

2h

(
W2(ρkh,m, ρ

k+1/2
h,m ) + FR2(ρ

k+1/2
h,m , ρk+1

h,m)
)

6 Fm(ρkh,m)−Fm(ρk+1
h,m) +

ˆ

Ω

(ρ
k+1/2
h,m − ρk+1

h,m)

6 Fm(ρkh,m)−Fm(ρk+1
h,m) + ch

ˆ

Ω

ρ
k+1/2
h,m

6 Fm(ρkh,m)−Fm(ρk+1
h,m) + cheT

for all k 6 N := bT/hc.
Summing over k we get

1

4h

N−1∑

k=0

WFR2(ρkh,m, ρ
k+1
h,m) 6 Fm(ρ0)−Fm(ρNh,m) + CT

6 1

m− 1

ˆ

Ω

ρm0 + CT 6
1

m− 1

ˆ

Ω

ρ0 + CT 6 CT ,

where we used successively Fm ≥ 0 to get rid of Fm(ρNh,m), and ρm0 ≤ ρ0 for ρ0 ≤ 1 and m > 1.
Consequently, for all fixed T > 0 and any t, s ∈ [0, T ] we obtain the classical 1

2 -Hölder estimate
{

WFR(ρh,m(t), ρh,m(s)) 6 CT |t− s+ h|1/2,
WFR(ρ̃h,m(t), ρ̃h,m(s)) 6 CT |t− s+ h|1/2. (5.5)

Exploiting the explicit algebraic structure of Fm(z) = 1
m−1z

m, compactness in space will be
given here by

Lemma 5.4. If ρ0 ∈ BV (Ω) then

sup
t∈[0,T ]

{
‖ρh,m(t, ·)‖BV (Ω), ‖ρ̃h,m(t, ·)‖BV (Ω)

}
6 eT ‖ρ0‖BV (Ω).

Proof. The argument closely follows the lines of [18, prop. 5.1]. We first note from [14, thm. 1.1]
that the BV -norm is nonincreasing during the Wasserstein step,

‖ρk+1/2
h,m ‖BV (Ω) 6 ‖ρkh,m‖BV (Ω).

Using as before the implicit function theorem, we show below that ρk+1
h,m = R(ρ

k+1/2
h,m ) for some

suitable (1 + h)-Lispchitz function R. By standard Lip ◦BV composition [3] this will prove that

‖ρk+1
h,m‖BV (Ω) 6 (1 + h)‖ρk+1/2

h,m ‖BV (Ω)

and will conclude the proof by immediate induction.
Indeed, we already know from (5.3) that ρk+1/2

h,m and ρk+1
h,m share the same support. In this

support and from (3.9) it is easy to see that ρ = ρk+1
h,m(x) is the unique positive solution of

f(ρ, ρ
k+1/2
h,m (x)) = 0 with

f(ρ, µ) =
√
ρ

(
1− h

2

(
1− m

m− 1
ρm−1

))
−√µ.
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For µ > 0, the implicit function theorem gives the existence of a C1 map R such that f(ρ, µ) = 0⇔
ρ = R(µ), with R(0) = 0. An algebraic computation shows moreover that 0 < dR

dµ = −∂µf∂ρf |ρ=R(µ)
6

(1 + h) uniformly in m > 1, hence R is (1 + h)-Lipschitz as claimed and the proof is complete.

Proposition 5.5. Up to extraction of a discrete sequence h→ 0,m→∞, there holds

ρh,m, ρ̃h,m → ρ strongly in L1(QT )

ph,m ⇀ p and p̃h,m ⇀ p̃ weakly in all Lq(QT )

for all T > 0. If in addition mh→ 0 then p = p̃.

Proof. The first part of the statement follows exactly as in section 3, exploiting the 1
2 -Hölder

estimates (5.5) and the space compactness from Proposition 5.4 in order to apply the Rossi-Savaré
theorem [39]. The fact that ρh,m, ρ̃h,m have the same limit comes from (5.4).

For the pressures, we simply note from ρh,m 6 1 and m� 1 that ph,m = m
m−1ρ

m−1
h,m 6 2ρh,m is

bounded in L1∩L∞(QT ) uniformly in h,m in any finite time interval [0, T ]. Thus up to extraction
of a further sequence we have ph,m ⇀ p in all Lq(QT ), and likewise for p̃h,m ⇀ p̃.

Finally, we only have to check that p = p̃ if hm→ 0. Because ρh,m, ρ̃h,m 6 1 and z 7→ zm−1 is
(m− 1)-Lipschitz on [0, 1] we have for all fixed t > 0 that

ˆ

Ω

|pm,h(t, ·)− p̃m,h(t, ·)| =

ˆ

Ω

m

m− 1
|ρm−1
h,m (t, ·)− ρ̃m−1

h,m (t, ·)|

6 m

ˆ

Ω

|ρh,m(t)− ρ̃h(t)| 6 CThm −→ 0,

where we used (5.4) in the last inequality. Hence p = p̃ and the proof is complete.

In order to pass to the limit in the diffusion term div(ρ∇p) we first improve the convergence of
p̃h,m:

Lemma 5.6. There exists a constant CT , independent of h and m, such that

‖p̃h,m‖L2((0,T ),H1(Ω)) 6 CT

for all T > 0. Consequently, up to a subsequence, p̃h,m converges weakly in L2((0, T ), H1(Ω)) to p.

Proof. The proof is based on the flow interchange technique developed by Matthes, McCann and
Savaré in [28]. Let η be the (smooth) solution of

{
∂tη = ∆ηm−1 + ε∆η,

η|t=0 = ρ
k+1/2
h,m .

It is well known [4] that η is the Wasserstein gradient flow of

G(ρ) :=

ˆ

Ω

ρm−1

m− 2
+ ε

ˆ

Ω

ρ log(ρ).

Since G is geodesically 0-convex, η satisfies the Evolution Variational Inequality (EVI)

1

2

d+

dt

∣∣∣∣
t=s

W2(η(s), ρ) 6 G(ρ)− G(η(s)),

for all s > 0 and for all ρ ∈ Pac(Ω), where d+

dt f(t) := lim sup
s→0+

f(t+s)−f(t)
s . By optimality of ρk+1/2

h,m

in (5.2), we obtain that

1

2

d+

dt

∣∣∣∣
t=s

W2(η(s), ρkh,m) > −h d+

dt

∣∣∣∣
t=s

Fm(η(s)).
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Since η is smooth due to the regularizing ε∆ term, we can legitimately integrate by parts for all
s > 0

d

ds
Fm(η(s)) =

ˆ

Ω

m

m− 1
η(s)m−1(∆η(s)m−1 + ε∆η(s))

= −
ˆ

Ω

m

m− 1
|∇η(s)m−1|2 − ε

ˆ

Ω

mη(s)m−2|∇η(s)|2

6 −
ˆ

Ω

m

m− 1
|∇η(s)m−1|2 = −m− 1

m

ˆ

Ω

∣∣∣∣∇
(

m

m− 1
η(s)m−1

)∣∣∣∣
2

Remarking that m
m−1η(s)m−1 → m

m−2ρ
k+1/2
h,m = p

k+1/2
h,m as s → 0, an easy lower semi-continuity

argument gives that
ˆ

Ω

m− 1

m
|∇pk+1/2

h,m |2 =

ˆ

Ω

m

m− 1
|∇(ρ

k+1/2
h,m )m−1|2 6 lim inf

s↘0

d+

dt

∣∣∣∣
t=s

Fm(η(s)).

Then we have

h

ˆ

Ω

m− 1

m
|∇pk+1/2

h,m |2 6 Fm−1(ρkh,m)−Fm−1(ρ
k+1/2
h,m )

+ ε

(
ˆ

Ω

ρkh,m log(ρkh,m)−
ˆ

Ω

ρ
k+1/2
h,m log(ρ

k+1/2
h,m )

)
.

First arguing as in Proposition 3.7 to control

Fm−1(ρk+1
h,m) 6 Fm−1(ρ

k+1/2
h,m ) + CTh,

and then passing to the limit ε↘ 0, we obtain

h

ˆ

Ω

m− 1

m
|∇pk+1/2

h,m |2 6 Fm−1(ρkh,m)−Fm−1(ρk+1
h,m) + CTh.

Summing over k gives
ˆ T

0

ˆ

Ω

|∇p̃h,m(t, x)|2 dxdt 6 m

m− 1
(Fm−1(ρ0)−Fm−1(ρNh,m) + CT ) 6 2Fm−1(ρ0) + CT

for all T < +∞. Due to ρ0 6 1 and m� 1 we can bound Fm−1(ρ0) = 1
m−2

´

ρm−1
0 6 1

m−2

´

ρ0 6
‖ρ0‖L1(Ω) and the result finally follows.

5.2 Properties of the pressure p and conclusion
We start by showing that the limits ρ, p satisfy the compatibility conditions in (5.1).

Lemma 5.7. There holds

0 6 ρ, p 6 1 and p(1− ρ) = 0 a.e. in QT .

Proof. By Lemma 5.2 it is obvious that 0 6 ρ 6 1 and 0 6 p 6 1 are inherited from 0 6 ρh,m 6 1
and 0 6 ph,m = m

m−1ρ
m−1
h,m 6 m

m−1 .
In order to prove that p(1− ρ) = 0, we first observe that

ph,m(1− ρh,m)→ 0 a.e. in QT .

Indeed, since ρh,m → ρ strongly in L1(QT ) we have ρh,m(t, x)→ ρ(t, x) a.e. If the limit ρ(t, x) < 1
then ρh,m(t, x) 6 (1−ε) for small h and largem. Hence ph,m(t, x) = m

m−1ρ
m−1
h,m 6 m

m−1 (1−ε)m−1 →
0 while 1− ρh,m remains bounded, and therefore the product ph,m(1− ρh,m)→ 0. Now if the limit
ρ(t, x) = 1 then the pressure ph,m = m

m−1ρ
m−1
h,m 6 m

m−1 remains bounded, while 1− ρh,m(t, x)→ 0
hence the product goes to zero in this case too.
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Thanks to the uniform L∞ bounds ρh,m 6 1 and ph,m 6 m
m−1 6 2 we can apply Lebesgue’s

convergence theorem to deduce from this pointwise a.e. convergence that, for all fixed nonnegative
ϕ ∈ C∞c (QT ), there holds

lim

ˆ

QT

ph,m(1− ρh,m)ϕ = 0.

On the other hand since ρh,m → ρ strongly in L1(QT ) hence a.e, and because 0 6 ρh,m 6 1, we
see that (1 − ρh,m)ϕ → (1 − ρ)ϕ in all Lq(QT ). From Proposition 5.5 we also had that ph,m ⇀ p
in all Lq(QT ), hence by strong-weak convergence we have that

ˆ

QT

p(1− ρ)ϕ = lim

ˆ

QT

ph,m(1− ρh,m)ϕ = 0

for all ϕ > 0. Because p(1 − ρ) > 0 we conclude that p(1 − ρ) = 0 a.e. in QT and the proof is
achieved.

We end this section with

Proof of Theorem 5.1. We only sketch the argument and refer to [18] for the details. Fix any
0 < t1 < t2 and ϕ ∈ C2

c (Rd). Exploiting the Euler-Lagrange equations (3.6)(3.9) and summing
from k = k1 = bt1/hc to k = k2 − 1 = bt2/hc − 1, we first obtain
ˆ

Rd
ρh,m(t2)ϕ− ρh,m(t1)ϕ+

ˆ k2h

k1h

ˆ

Rd
ρ̃h,m∇p̃h,m · ∇ϕ = −

ˆ k2h

k1h

ˆ

Rd
ρh,m(1− ph,m)ϕ+R(h,m),

where the remainder R(h,m) → 0 for fixed ϕ. The strong convergence ρh,m, ρ̃h,m → ρ and the
weak convergences ∇p̃h,m ⇀ ∇p̃ = ∇p and ph,m ⇀ p are then enough pass to the limit to get the
corresponding weak formulation for all 0 < t1 < t2. Moreover since the limit ρ ∈ C([0, T ];M+

WFR)
the initial datum ρ(0) = ρ0 is taken at least in the sense of measures. This gives an admissible
weak formulation of (5.1), and the proof is complete.

5.3 Numerical simulation
The constructive scheme (5.2) naturally leads to a fully discrete algorithm, simply discretizing
the minimization problem in space for each W, FR step. We use again the ALG2-JKO scheme [6]
for the Wasserstein steps. As already mentioned the Fisher-Rao step is a mere convex pointwise
minimization problem, here explicitly given by: for all x ∈ Ω,

ρk+1
h,m(x) = argmin

ρ≥0

{
4

∣∣∣∣
√
ρ−

√
ρ
k+1/2
h,m (x)

∣∣∣∣
2

+ 2h

(
ρm

m− 1
− 1

)}

and poses no difficulty in the practical implementation using a standard Newton method.
Figure 3 depicts the evolution of the numerical solution ρh,m for m = 100 and with a time step

h = 0.005. We remark that the tumor first saturates the constraint (ρ↗ 1) in its initial support,
and then starts diffusing outwards. This is consistent with the qualitative behaviour described in
[34].
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Figure 3: Snapshot of the approximate solution ρh,m(t, .) to (5.1), with m = 100, h = 0.005.
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6 A tumor growth model with nutrient
In this section we use the same approach for the following tumor growth model with nutrients,
appearing e.g. in [34]





∂tρ− div(ρ∇p) = ρ ((1− p)(c+ c1)− c2) ,
∂tc−∆c = −ρc,
0 6 ρ 6 1,
p > 0 and p(1− ρ) = 0,
ρ|t=0 = ρ0, c|t=0 = c0.

(6.1)

Here c1 and c2 are two positive constants, and the nutrient c is now diffusing in Ω in addition to
begin simply consumed by the tumor ρ, according to the second equation. For technical convenience
we work here on a convex bounded domain Ω ⊂ Rd, endowed with natural Neumann boundary
conditions for both ρ and c.

Contrarily to section 5 this is not a WFR gradient flow anymore, and we therefore introduce a
semi-implicit splitting scheme. Starting from the initial datum ρ0

h,m := ρ0, c
0
h,m := c0 we construct

four sequences ρk+1/2
h,m , ρkh,m, c

k+1/2
h,m , ckh,m, defined recursively as





ρ
k+1/2
h,m ∈ argmin

ρ∈M+,|ρ|=|ρkh,m|

{
1

2hW
2(ρ, ρkh,m) + Fm(ρ)

}
,

c
k+1/2
h,m ∈ argmin

c∈M+,|c|=|ckh,m|

{
1

2hW
2(c, ckh,m) + E(ρ)

}
,

(6.2)

and




ρk+1
h,m ∈ argmin

ρ∈M+

{
1

2hFR
2(ρ, ρ

k+1/2
h,m ) + E1,m(ρ|ck+1/2

h,m )
}
,

ck+1
h,m ∈ argmin

c∈M+

{
1

2hFR
2(c, c

k+1/2
h,m ) + E2(c|ρk+1/2

h,m )
}
,

(6.3)

where
E(ρ) :=

ˆ

Ω

ρ log(ρ),

E1,m(ρ|c) :=

ˆ

Ω

(c+ c1)
ρm

m− 1
+

ˆ

Ω

(c2 − c− c1)ρ,

and
E2(c|ρ) :=

ˆ

Ω

ρc.

As earlier it is easy to see that these sequences are well-defined (i-e there exists a unique
minimizer for each step), and the pressures are defined as before as

p
k+1/2
h,m :=

m

m− 1
(ρ
k+1/2
h,m )m−1 and pk+1

h,m :=
m

m− 1
(ρk+1
h,m)m−1.

We denote again by ah,m(t), ãh,m(t) the piecewise constant interpolation of any discrete quantity
ak+1
h,m , a

k+1/2
h,m respectively. Our main result reads:

Theorem 6.1. Assume ρ0 ∈ BV (Ω) with ρ0 6 1 and c0 ∈ L∞(Ω) ∩ BV (Ω). Then ρh,m
and ρ̃h,m strongly converge to ρ in L1((0, T ) × Ω) and ch,m and c̃h,m strongly converge to c in
L1((0, T )× Ω) when h↘ 0 and m↗ +∞. Moreover, if mh→ 0, then ph,m, p̃h,m converge weakly
in L2((0, T ), H1(Ω)) to a unique p, and (ρ, p, c) is a solution of (6.1).
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Note that uniqueness of solutions would result in convergence of the whole sequence. Uniqueness
was proved in [34, thm. 4.2] for slightly more regular weak solutions, but we did not push in this
direction for the sake of simplicity. The method of proof is almost identical to section 5 so we only
sketch the argument and emphasize the main differences.

We start by recalling the optimality conditions for the scheme (6.2)-(6.3). The Euler-Lagrange
equations for the tumor densities in the Wasserstein and Fisher-Rao steps are





ρ
k+1/2
h,m ∇pk+1/2

h,m = ∇ϕ
h ρ

k+1/2
h,m ,√

ρk+1
h,m −

√
ρ
k+1/2
h,m = h

2

√
ρk+1
h,m

(
(1− pk+1

h,m)(c
k+1/2
h,m + c1)− c2

)
,

(6.4)

where ϕ is a (backward) Kantorovich potential for W(ρ
k+1/2
h,m , ρkh,m). For the nutrient, the Euler-

Lagrange equations are



∇ck+1/2

h,m = ∇ψ
h c

k+1/2
h,m ,√

ck+1
h,m −

√
c
k+1/2
h,m = −h2

√
ck+1
h,mρ

k+1/2
h,m ,

(6.5)

with ψ a Kantorovich potential for W(c
k+1/2
h,m , ckh,m).

Using the optimality conditions for the Fischer-Rao steps, we obtain directly the following L∞
bounds:

Lemma 6.2. For all k > 0

‖ck+1
h,m‖L∞(Ω) 6 ‖ck+1/2

h,m ‖L∞(Ω) 6 ‖ckh,m‖L∞(Ω),

and at the continuous level

‖ch,m(t, ·)‖L∞(Ω), ‖c̃h,m(t, ·)‖L∞(Ω) 6 ‖c0‖L∞(Ω) ∀ t ≥ 0.

Moreover,
‖ρh,m(t, ·)‖∞, ‖ρ̃h,m(t, ·)‖∞ 6 1

and there exists cT ≡ cT (‖c0‖L∞), CT ≡ CT (‖c0‖L∞) > 0 such that

(1− cTh)ρ
k+1/2
h,m (x) 6 ρk+1

h,m(x) 6 (1 + CTh)ρ
k+1/2
h,m (x) a.e. in Ω.

(1− h)c
k+1/2
h,m (x) 6 ck+1

h,m(x) 6 ck+1/2
h,m (x) a.e. in Ω.

(6.6)

Proof. The proof of the estimates on ch,m and c̃h,m is obvious because one step of Wasserstein
gradient flow with the Boltzmann entropy decreases the L∞-norm in (6.2) (see [32, 1]), and, because

the product
√
ck+1
h,mρ

k+1/2
h,m is nonnegative in (6.5), the L∞-norm is also nonincreasing during the

Fischer-Rao step. The proof for ρh,m and ρ̃h,m is the same as in lemma 5.2. Using the fact that
‖ρ̃h,m(t, ·)‖∞ 6 1, we see that the term Φ(pk+1

h,m , c
k+1/2
h,m ) := (1 − pk+1

h,m)(c
k+1/2
h,m + c1) − c2 in (6.4)

is bounded in L∞ uniformly in k. This allows to argue exactly as in Lemma 3.5 to retrieve the
estimate (6.6) and concludes the proof.

With these bounds it is easy to prove as in proposition 3.15 that

Fm(ρk+1
h,m) 6 Fm(ρ

k+1/2
h,m ) + CTh,

E1,m(ρ
k+1/2
h,m |ck+1/2

h,m )− E1,m(ρk+1
h,m |c

k+1/2
h,m ) 6 CTh,

E(ck+1
h,m) 6 E(c

k+1/2
h,m ) + CTh,

E2(c
k+1/2
h,m |ρk+1/2

h,m )− E2(ck+1
h,m |ρ

k+1/2
h,m ) 6 CTh,

.

for some CT independent of m. Then we obtain the usual 1
2 -Hölder estimates in time with respect

to the WFR distance, which in turn implies that ρh,m, ρ̃h,m converge to some ρ ∈ L∞([0, T ], L1(Ω))
and ch,m, c̃h,m converge to some c ∈ L∞([0, T ], L1(Ω)) pointwise in time with respect to WFR, see
(3.20), Proposition 3.8, and (3.22) for details.

As before we need to improve the convergence in order to pass to the limit in the nonlinear
terms. For ρh,m and ρ̃h,m, this follows from
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Lemma 6.3. For all T > 0, if ρ0, c0 ∈ BV (Ω),

sup
t∈[0,T ]

{
‖ρh,m(t, ·)‖BV (Ω) + ‖ch,m(t, ·)‖BV (Ω)

}
6 eCTT (‖ρ0‖BV (Ω) + ‖c0‖BV (Ω))

sup
t∈[0,T ]

{
‖ρ̃h,m(t, ·)‖BV (Ω) + ‖c̃h,m(t, ·)‖BV (Ω)

}
6 eCTT (‖ρ0‖BV (Ω) + ‖c0‖BV (Ω)).

Proof. The argument is a generalization of Lemma 5.4, see [18, remark 5.1]. First, the BV -norm
is nonincreasing during the Wasserstein step, [14, thm. 1.1],

‖ρk+1/2
h,m ‖BV (Ω) 6 ‖ρkh,m‖BV (Ω) and ‖ck+1/2

h,m ‖BV (Ω) 6 ‖ckh,m‖BV (Ω).

Arguing as in Lemma 5.4, we observe that, inside supp ρ
k+1/2
h,m = supp ρk+1

h,m , the minimizer ρ =

ρk+1
h,m(x) is the unique positive solution of f(ρ, ρ

k+1/2
h,m (x), c

k+1/2
h,m (x)) = 0, with

f(ρ, µ, c) =
√
ρ

(
1− h

2

((
1− m

m− 1
ρm−1

)
(c+ c1)− c2

))
−√µ.

For µ > 0 the implicit function theorem gives as before a C1 map R such that f(ρ, µ, c) = 0 ⇔
ρ = R(µ, c). An easy algebraic computation and (6.6) then gives 0 < ∂µR(µ, c) 6 (1 + CTh) and
|∂cR(µ, c)| 6 CTh for some constant CT > 0 independent of h,m, k. This implies that

‖ρk+1
h,m‖BV (Ω) 6 (1 + CTh)‖ρk+1/2

h,m ‖BV (Ω) + CTh‖ck+1/2
h,m ‖BV (Ω)

6 (1 + CTh)‖ρkh,m‖BV (Ω) + CTh‖ckh,m‖BV (Ω).

The same argument shows that

‖ck+1
h,m‖BV (Ω) 6 (1 + CTh)‖ckh,m‖BV (Ω) + CTh‖ρkh,m‖BV (Ω),

and a simple induction allows to conclude.

Proposition 6.4. Up to extraction of a discrete sequence h→ 0,m→ +∞,

ρh,m, ρ̃h,m → ρ strongly in L1(QT )

ph,m ⇀ p and p̃h,m ⇀ p̃ weakly in all Lq(QT )

for all T > 0. If in addition mh→ 0 then p = p̃ ∈ L2((0, T ), H1(Ω)) and (ρ, p) satisfies

0 6 ρ, p 6 1 and p(1− ρ) = 0 a.e. in QT .

Proof. The proof is the same as Proposition 5.5, Lemma 5.6, and Lemma 5.7.

In order to conclude the proof of Theorem 6.1 we only need to check that ρ, p, c satisfy the
weak formulation of (6.1): the strong convergence of ρh,m, ch,m and the weak convergence of ph,m
are enough to take the limit in the nonlinear terms as in section 5.2, and we omit the details.

Acknowledgements
We warmly thank G. Carlier for fruitful discussions and suggesting us the problem in section 3

References
[1] Martial Agueh. Existence of solutions to degenerate parabolic equations via the Monge-

Kantorovich theory. Adv. Differential Equations, 10(3):309–360, 2005.

[2] Damon Alexander, Inwon Kim, and Yao Yao. Quasi-static evolution and congested crowd
transport. Nonlinearity, 27(4):823, 2014.

24



[3] Luigi Ambrosio, Nicola Fusco, and Diego Pallara. Functions of bounded variation and free
discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford
University Press, New York, 2000.

[4] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows in metric spaces and in
the space of probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag,
Basel, 2005.

[5] Jean-David Benamou and Yann Brenier. A computational fluid mechanics solution to the
Monge-Kantorovich mass transfer problem. Numer. Math., 84(3):375–393, 2000.

[6] Benamou, Jean-David, Carlier, Guillaume, and Laborde, Maxime. An augmented lagrangian
approach to wasserstein gradient flows and applications. ESAIM: ProcS, 54:1–17, 2016.

[7] Andrea Braides. Γ-convergence for beginners, volume 22 of Oxford Lecture Series in Mathe-
matics and its Applications. Oxford University Press, Oxford, 2002.

[8] G. Carlier and M. Laborde. A splitting method for nonlinear diffusions with nonlocal, nonpo-
tential drifts. Nonlinear Analysis: Theory, Methods & Applications, 150:1 – 18, 2017.

[9] J. A. Carrillo, M. DiFrancesco, A. Figalli, T. Laurent, and D. Slepčev. Global-in-time weak
measure solutions and finite-time aggregation for nonlocal interaction equations. Duke Math.
J., 156(2):229–271, 2011.

[10] Lénaic Chizat and Simone Di Marino. A tumor growth hele-shaw problem as a gradient flow.
Work in progress, 2017.

[11] Lenaic Chizat, Gabriel Peyré, Bernhard Schmitzer, and François-Xavier Vialard. An interpo-
lating distance between optimal transport and Fischer-Rao. arXiv preprint arXiv:1506.06430,
2015.

[12] Lenaic Chizat, Gabriel Peyré, Bernhard Schmitzer, and François-Xavier Vialard. Unbalanced
optimal transport: geometry and Kantorovich formulation. arXiv preprint arXiv:1508.05216,
2015.

[13] Lenaic Chizat, Gabriel Peyré, Bernhard Schmitzer, and François-Xavier Vialard. Scaling
algorithms for unbalanced transport problems. arXiv preprint arXiv:1607.05816, 2016.

[14] Guido De Philippis, Alpár Richárd Mészáros, Filippo Santambrogio, and Bozhidar Velichkov.
BV estimates in optimal transportation and applications. Arch. Ration. Mech. Anal.,
219(2):829–860, 2016.

[15] Marco Di Francesco and Simone Fagioli. Measure solutions for non-local interaction PDEs
with two species. Nonlinearity, 26(10):2777–2808, 2013.

[16] Alessio Figalli and Nicola Gigli. A new transportation distance between non-negative mea-
sures, with applications to gradients flows with dirichlet boundary conditions. Journal de
mathématiques pures et appliquées, 94(2):107–130, 2010.

[17] Florentine Fleißner. Gamma-convergence and relaxations for gradient flows in metric spaces:
a minimizing movement approach. arXiv preprint arXiv:1603.02822, 2016.

[18] Thomas Gallouët and Leonard Monsaingeon. A JKO splitting scheme for kantorovich-fischer-
rao gradient flows. working paper or preprint, February 2016.

[19] Richard Jordan, David Kinderlehrer, and Felix Otto. The variational formulation of the
Fokker-Planck equation. SIAM J. Math. Anal., 29(1):1–17, 1998.

[20] David Kinderlehrer, Léonard Monsaingeon, and Xiang Xu. A wasserstein gradient flow ap-
proach to poisson-nernst-planck equations. arXiv preprint arXiv:1501.04437, 2015.

[21] Stanislav Kondratyev, Léonard Monsaingeon, and Dmitry Vorotnikov. A new optimal trans-
port distance on the space of finite radon measures. arXiv preprint arXiv:1505.07746, 2015.

25



[22] Stanislav Kondratyev, Léonard Monsaingeon, and Dmitry Vorotnikov. A fitness-driven cross-
diffusion system from population dynamics as a gradient flow. Journal of Differential Equa-
tions, 261(5):2784 – 2808, 2016.

[23] M. Laborde. On some non linear evolution systems which are perturbations of Wasserstein
gradient flows. to appear in Radon Ser. Comput. Appl. Math., 2015.

[24] Matthias Liero and Alexander Mielke. Gradient structures and geodesic convexity for reaction–
diffusion systems. Phil. Trans. R. Soc. A, 371(2005):20120346, 2013.

[25] Matthias Liero, Alexander Mielke, and Giuseppe Savaré. Optimal Entropy-Transport prob-
lems and a new Hellinger-Kantorovich distance between positive measures. arXiv preprint
arXiv:1508.07941, 2015.

[26] Matthias Liero, Alexander Mielke, and Giuseppe Savaré. Optimal transport in competi-
tion with reaction: the Hellinger-Kantorovich distance and geodesic curves. arXiv preprint
arXiv:1509.00068, 2015.

[27] Stefano Lisini, Daniel Matthes, and Giuseppe Savaré. Cahn-Hilliard and thin film equations
with nonlinear mobility as gradient flows in weighted-Wasserstein metrics. J. Differential
Equations, 253(2):814–850, 2012.

[28] Daniel Matthes, Robert J. McCann, and Giuseppe Savaré. A family of nonlinear fourth order
equations of gradient flow type. Comm. Partial Differential Equations, 34(10-12):1352–1397,
2009.

[29] Bertrand Maury, Aude Roudneff-Chupin, Filippo Santambrogio, and Juliette Venel. Handling
congestion in crowd motion modeling. Netw. Heterog. Media, 6(3):485–519, 2011.

[30] J. D. Murray. Mathematical biology. II, volume 18 of Interdisciplinary Applied Mathematics.
Springer-Verlag, New York, third edition, 2003. Spatial models and biomedical applications.

[31] Felix Otto. Double degenerate diffusion equations as steepest descent, 1996.

[32] Felix Otto. The geometry of dissipative evolution equations: the porous medium equation.
Comm. Partial Differential Equations, 26(1-2):101–174, 2001.

[33] Benoît Perthame. Transport equations in biology. Frontiers in Mathematics. Birkhäuser Verlag,
Basel, 2007.

[34] Benoît Perthame, Fernando Quirós, and Juan Luis Vázquez. The Hele-Shaw asymptotics for
mechanical models of tumor growth. Arch. Ration. Mech. Anal., 212(1):93–127, 2014.

[35] Benoît Perthame, Min Tang, and Nicolas Vauchelet. Traveling wave solution of the Hele-Shaw
model of tumor growth with nutrient. Math. Models Methods Appl. Sci., 24(13):2601–2626,
2014.

[36] Luca Petrelli and Adrian Tudorascu. Variational principle for general diffusion problems. Appl.
Math. Optim., 50(3):229–257, 2004.

[37] Benedetto Piccoli and Francesco Rossi. Generalized Wasserstein distance and its application
to transport equations with source. Archive for Rational Mechanics and Analysis, 211(1):335–
358, 2014.

[38] Michel Pierre. Global existence in reaction-diffusion systems with control of mass: a survey.
Milan J. Math., 78(2):417–455, 2010.

[39] Riccarda Rossi and Giuseppe Savaré. Tightness, integral equicontinuity and compactness for
evolution problems in Banach spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 2, 2003.

[40] Etienne Sandier and Sylvia Serfaty. Gamma-convergence of gradient flows with applications
to ginzburg-landau. Communications on Pure and Applied mathematics, 57(12):1627–1672,
2004.

26



[41] Filippo Santambrogio. Optimal Transport for Applied Mathematicians. Progress in Nonlinear
Differential Equations and Their Applications 87. Birkasauser Verlag, Basel, 2015.

[42] Juan Luis Vázquez. The porous medium equation: mathematical theory. Oxford University
Press, 2007.

[43] Cédric Villani. Topics in optimal transportation, volume 58 of Graduate Studies in Mathemat-
ics. American Mathematical Society, Providence, RI, 2003.

[44] Cédric Villani. Optimal transport, volume 338 of Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2009.
Old and new.

[45] Jonathan Zinsl. Geodesically convex energies and confinement of solutions for a multi-
component system of nonlocal interaction equations. Technical report, 2014.

27





3.3. Camassa-Holm 327

3.3 Camassa-Holm

Articles:

• The Camassa-Holm equation as an incompressible Euler equation: a geo-
metric point of view. Journal of Differential Equations, Volume 264, Issue 7,
Pages 4199-4234. (2018) https://arxiv.org/abs/1609.04006. Gal-
louët T.O. and Vialard F.X.

• Generalized compressible flows and solutions of the H(div) geodesic prob-
lem. Archive for Rational Mechanics and Analysis, Springer Verlag (2020)
https://hal.science/hal-01815531v3. Gallouët T.O., Natale A. et
Vialard F.X.

Collaborators: These works are based on a collaboration with F.X. Vialard. The
second paper was done also with Andrea Natale. At this moment he was a post-
doc in our Inria team and under our shared supervision.

Main contributions:

• In the first paper we explain that the Camassa-Holm equation is for the Un-
balanced Optimal Transport what the Incompressible Euler equation is for
Optimal Transport.

• In particular we proved that Camassa-Holm equation is a particular solutions
of the Incompressible Euler equation for a singular reference measure.

• In the second paper we used the previous observation in order to built gen-
eralized solutions for the Camassa-Holm geodesic problem.

• We proved the existence of such solutions and uniqueness of a pressure term.
This quantity seems important and new.

• We proved that the relaxation is tight: for short time classical solutions of
Camassa-Holm are solutions of the Camassa-Holm geodesic problem.

Research directions: One direction to pursue this work is to take advantage of
this formulation in order to built numerical scheme that approximate solutions of
the Camassa-Holm equation in the sprite of what we have done in Section 2.3.
Another interesting question is to understand if the unique pressure term that we
highlighted can be used in more classical PDE approach for this equation.

https://arxiv.org/abs/1609.04006
https://hal.science/hal-01815531v3


ar
X

iv
:1

60
9.

04
00

6v
3 

 [
m

at
h.

D
G

] 
 1

4 
D

ec
 2

01
7

THE CAMASSA-HOLM EQUATION AS AN INCOMPRESSIBLE EULER

EQUATION: A GEOMETRIC POINT OF VIEW

THOMAS GALLOUËT AND FRANÇOIS-XAVIER VIALARD

Abstract. The group of diffeomorphisms of a compact manifold endowed with the L2 metric
acting on the space of probability densities gives a unifying framework for the incompressible Eu-
ler equation and the theory of optimal mass transport. Recently, several authors have extended
optimal transport to the space of positive Radon measures where the Wasserstein-Fisher-Rao dis-
tance is a natural extension of the classical L2-Wasserstein distance. In this paper, we show a
similar relation between this unbalanced optimal transport problem and the Hdiv right-invariant
metric on the group of diffeomorphisms, which corresponds to the Camassa-Holm (CH) equation

in one dimension. Geometrically, we present an isometric embedding of the group of diffeomor-
phisms endowed with this right-invariant metric in the automorphisms group of the fiber bundle
of half densities endowed with an L2 type of cone metric. This leads to a new formulation of the
(generalized) CH equation as a geodesic equation on an isotropy subgroup of this automorphisms
group; On S1, solutions to the standard CH thus give radially 1-homogeneous solutions of the
incompressible Euler equation on R2 which preserves a radial density that has a singularity at 0.
An other application consists in proving that smooth solutions of the Euler-Arnold equation for
the Hdiv right-invariant metric are length minimizing geodesics for sufficiently short times.

1. Introduction

In his seminal article [2], Arnold showed that the incompressible Euler equation can be viewed
as a geodesic flow on the group of volume preserving diffeomorphisms of a Riemannian manifold
M . His formulation had an important impact in the mathematical literature and it has led to many
different works. Among others, let us emphasize two different points of view which have proven to
be successful.

The first one has been investigated by Ebin and Marsden in [20] where the authors have taken an
intrinsic point of view on the group of diffeomorphisms as an infinite dimensional weak Riemannian
manifold. Formulating the geodesic equation as an ordinary differential equation in a Hilbert man-
ifold of Sobolev diffeomorphisms, they proved, among others, local well-posedness of the geodesic
equation for smooth enough initial conditions. Since then, many fluid dynamic equations, including
the Camassa-Holm equation, have been written as a geodesic flow on a group of diffeomorphisms
endowed with a right-invariant metric or connection [37, 32, 48, 23, 31] and analytical properties
have been derived in the spirit of [20]. Note in particular that all these works assume a strong
ambient topology such as Hs for s high enough and the topology given by the Riemannian metric
is generically weaker, typically L2 in the case of incompressible Euler.

Another point of view, motivated by the variational interpretation of geodesics as minimizers of
the action functional, was initiated by Brenier. He developed an extrinsic approach by considering
the group of volume preserving diffeomorphisms as a Riemannian submanifold embedded in the
space of maps L2(M, M) which is particularly simple when M is the Euclidean space or torus. In
particular, his polar factorization theorem [5] was motivated by a numerical scheme approximating
geodesics on the group of volume preserving diffeomorphisms. Optimal transport then appeared as
a key tool to project a map onto this group by minimizing the L2 distance and it can be interpreted
as a non-linear extension of the pressure in the incompressible Euler equation. Since then, optimal
transport has witnessed an impressive development and found many important applications inside
and outside mathematics, see for instance the gigantic monograph of Villani [56]. Brenier also used

1



2 THOMAS GALLOUËT AND FRANÇOIS-XAVIER VIALARD

optimal transport in order to define the notion of generalized geodesics for the incompressible Euler
equation in [6].

In this article, we develop Brenier’s point of view for a generalization in any dimension of the
Camassa-Holm equation. Indeed, we present an isometric embedding of the group of diffeomor-
phisms endowed with the right-invariant Hdiv metric into a space of maps endowed with an L2

metric. Moreover, the recently introduced Wasserstein-Fisher-Rao distance [14, 13], a generalization
of optimal transport to measures that do not have the same total mass, plays the role of the L2

Wasserstein distance for the incompressible Euler equation.

1.1. Contributions. The underlying key point for our work is the generalization of the (formal)
Riemannian submersion already presented in [13], which unifies the unbalanced optimal problem and
the Hdiv right-invariant metric. We rewrite the geodesic flow of the right-invariant Hdiv metric on the
diffeomorphism group as a geodesic equation on a constrained submanifold of a semidirect product
of group or equivalently on the automorphism group of the half-densities fibre bundle endowed with
the cone metric (see Section 2.3 for its definition). This point of view has three applications: (1) We
interpret solutions to the Camassa-Holm equation and one of its generalization in higher dimension
as particular solutions of the incompressible Euler equation on the plane for a radial density which
has a singularity at 0. This correspondence can be introduced via a sort of Madelung transform.
(2) We generalize a result of Khesin et al. in [32] by computing the curvature of the group as a
Riemannian submanifold. (3) Generalizing a result of Brenier to the case of Riemannian manifolds,
which states that solutions of the incompressible Euler equation are length minimizing geodesic for
sufficiently short times, we prove similar results for the Camassa-Holm equation.

Since the interpretation of the Camassa-Holm equation as an incompressible Euler equation is
one of the main results of the paper, we present it below.

Theorem 1 (Camassa-Holm as incompressible Euler). Solutions to the Camassa-Holm equation
on S1

(1.1) ∂tu − 1

4
∂txxu + 3∂xu u − 1

2
∂xxu ∂xu − 1

4
∂xxxu u = 0

are mapped to solutions of the incompressible Euler equation on R2 \ {0} for the density ρ = 1
r4 Leb,

that is

(1.2)

{
v̇ + ∇vv = −∇P ,

∇ · (ρv) = 0 ,

by the map u 7→
(
u(θ), r

2∂xu(θ)
)
.

In other words, rewriting the Camassa-Holm equation in polar coordinates transforms it into an
incompressible Euler equation. Obviously, the proof of the theorem can be reduced to a simple
calculation. In this paper, we show the geometrical structures that underpin this formulation.

1.2. Link to previous works. Recently, several authors including the second author extended
optimal transport to the case of unbalanced measures, i.e. measures that do not have the same
total mass. Although several works extended optimal transport to this setting, surprisingly enough,
the equivalent of the L2-Wasserstein distance in this unbalanced setting has been introduced in
2015 simultaneously by [14, 13] motivated by imaging applications, [39, 40] motivated by gradient
flows as well as [36] and by [54] for optimal transport of contact structures. In this paper, we show
that, in the case of the Wasserstein-Fisher-Rao metric, the equivalent to the incompressible Euler
equation is a generalization of the Camassa-Holm equation, namely the Euler-Arnold equation for
the right-invariant metric Hdiv on the group of diffeomorphisms. In one dimension, geodesics for
the right-invariant Hdiv metric are the solutions to the Camassa-Holm equation introduced in [12].
Since its introduction, the Camassa-Holm equation has attracted a lot of attention since it is a
bi-Hamiltonian system as well as an integrable system, it exhibits peakon solutions and it is a model
for waves in shallow water [18, 16, 38, 17, 9, 19, 30]. In particular, this equation is known for its
well understood blow-up in finite time and is a model for wave breaking [44].
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Although the title of [10], which refers to optimal transport and the Camassa-Holm equation, is
seemingly close to our article, the authors introduce a metric based on optimal transport which gives
Lipschitz estimates for the solutions of the Camassa-Holm equation and it is a priori completely
different to our construction. Indeed, in our article, the optimal transport metric measures the
discrepancy of not being in the stabilizer of the group action defined in Section 2.4 where the
solutions of the Camassa-Holm equation lie.

Maybe more related to our results, homogeneous solutions of Euler equations have been studied
for example in [21, 42], however the measure preserved in those works is not a singular measure, as
in our work.

1.3. Plan of the paper. In Section 2, we recall the link between optimal transport and the incom-
pressible Euler equation, then we introduce the Wasserstein-Fisher-Rao metric which generalizes
the L2 Wasserstein metric on the space of probability densities to the space of integrable densities,
thus relaxing the mass constraint. We present the generalization of Otto’s Riemannian submersion
to this unbalanced case. This generalization uses a semidirect product of group which can be in-
terestingly interpreted as the automorphism group of the principal fibre bundle of half-densities, as
explained in Section 2.4. This semidirect product of group has a natural left action on the space of
densities and it gives the Riemannian submersion between an L2 type of metric on the group and
the Wasserstein-Fisher-Rao metric on the space of densities.

In Section 3, we briefly review the result on the local well-posedness of the Camassa-Holm equation
and its Hdiv generalization and the associated metric properties.

Section 4 presents the corresponding submanifold point of view corresponding to the Camassa-
Holm equation (its generalization). The submanifold is the isotropy subgroup of the left action
of the semidirect product of group and the ambient metric is the L2 type of metric. As a direct
consequence, it gives a generalization of a result on the sectional curvature written in [32, Theorem
A.2].

The two main applications of our approach are detailed in Section 5. The one dimensional case is
developed in section 5.1 where we show that solutions of the Camassa-Holm equation (its generaliza-
tion) can be seen as particular solutions of an incompressible Euler equation for a particular density
on the cone which has a singularity at 0. We improve a result of Ebin and Marsden in dimension
1 by extending Brenier’s approach to show that every smooth geodesics are length minimizing on a
sufficiently short time interval under mild conditions. Then, these result are generalized in 5.2.

1.4. Notations. Hereafter is a non exhaustive list of notations used throughout the paper.

• (M, g) is a smooth orientable Riemannian manifold which is assumed compact and without
boundary. Its volume form is denoted by vol, TM and T ∗M denote respectively the tangent
and the cotangent bundle.

• The distance on (M, g) is sometimes denoted by dM when a confusion might occur.
• For x ∈ M , the squared norm of a vector v ∈ TxM will be denoted by ‖v‖2 or g(x)(v, v).
• For x ∈ M , we denote by expM

x : TxM → M , the exponential map, the superscript being a
reminder of the underlying manifold.

• C(M) is the Riemannian cone over (M, g) and is introduced in Definition 2.
• The operator div is the divergence w.r.t. the volume form on (M, g).
• The Lie bracket between two vector fields X, Y on M is denoted by [X, Y ].
• If f ∈ C1(M, R), then ∇f is the gradient of f w.r.t. the metric g. Sometimes, we use the

notation ∇x to make clear which variable we consider.
• The group of invertible linear maps on Rd is denoted by GLd(R).

• For a quantity f(t, x) that depends on time and space variable, we denote by ḟ its time
derivative.

• On R and C, | · | denotes respectively the absolute value and the module.
• M = Sn(r) the Euclidean sphere of radius r in Rn+1.
• The Lebesgue measure is denoted by Leb.

• Sometimes, we use the notation a
def.
= b to define a as b.
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2. A Geometric Point of View on Unbalanced Optimal Transport

Before presenting unbalanced optimal transport in more details, we give a brief overview of the
link between optimal transport and the incompressible Euler equation.

2.1. Optimal transport and the incompressible Euler equation. We first start from the
usual static formulation of optimal transport and then present the dynamical formulation proposed
by Benamou and Brenier. The link between the two formulations can be introduced via Otto’s Rie-
mannian submersion, which also provides a clear connection between incompressible Euler equation
and the dynamical formulation of optimal transport. Our presentation closely follows the discussion
in [34, Appendix A.5] and interesting complements can be found in [50, 32, 33]. In the rest of the
section, unless otherwise mentioned, M denotes a smooth Riemannian manifold without boundary,
for instance the flat torus.

Static formulation of optimal mass transport: The optimal mass transport problem as
introduced by Monge in 1781 consists in finding, between two given probability measures ν1 and ν2,
a map ϕ such that ϕ∗ν1 = ν2, i.e. the image measure of ν1 by ϕ is equal to ν2 and which minimizes
a cost given by

(2.1)

∫

M

c(x, ϕ(x)) dν1(x) ,

where c is a positive function that represents the cost of moving a particule of unit mass from
location x to location y. This problem is ill-posed in the sense that solutions may not exist and the
Kantorovich formulation of the problem is the correct relaxation of the Monge formulation, which
can be presented as follows: On the space of probability measures on the product space M × M ,
denoted by P(M × M), find a minimizer to

(2.2) I(m) =

∫

M2

c(x, y) dm(x, y) such that p1
∗(m) = ν1 and p2

∗(m) = ν2 ,

where p1
∗(m), p2

∗(m) denote respectively the image measure of m ∈ P(M ×M) under the projections
on the first and second factors on M × M . Most often in the litterature, the cost c is chosen as a
power of a distance. From now on, we will only discuss the case c(x, y) = d(x, y)2 where d is the
distance associated with a Riemannian metric on M . In this case, the Kantorovich minimization
problem defines the so-called L2-Wasserstein distance on the space of probability measures. The
Monge formulation can be expressed as a minimization problem as follows

(2.3) W2(µ, ν)2
def.
= inf

ϕ∈Diff(M)

{∫

M

d(ϕ(x), x)2 dν1(x) : ϕ∗ν1 = ν2

}
,

where Diff(M) denotes the group of smooth diffeomorphisms of M .
Dynamic formulation: In [3], Benamou and Brenier introduced a dynamical version of optimal

transport which was inspired and motivated by the study of the incompressible Euler equation. Let
ρ0, ρ1 ∈ C∞(M, R+) be integrable densities, note that all the quantities will be implicitly time
dependent. The dynamic formulation of the Wasserstein distance consists in minimizing

(2.4) E(v) =

∫ 1

0

∫

M

‖v(t, x)‖2ρ(t, x) dvol(x) dt ,

subject to the constraints ρ̇ + div(vρ) = 0 and initial condition ρ(0) = ρ0 and final condition
ρ(1) = ρ1. The notation ‖ · ‖ stands for the Euclidean norm.

Equivalently, following [3], a convex reformulation using the momentum m = ρv reads

(2.5) E(m) =

∫ 1

0

∫

M

‖m(t, x)‖2

ρ(t, x)
dvol(x) dt ,

subject to the constraints ρ̇+div(m) = 0 and initial condition ρ(0) = ρ0 and final condition ρ(1) = ρ1.
Let us underline that the functional E is convex in ρ,m and the continuity equation is linear in (ρ,m),
therefore convex optimization methods can be applied for numerical purposes. Due to the continuity
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equation, the problem is feasible if and only if the initial and final densities have the same total mass
using Moser’s lemma [51].

Otto’s Riemannian submersion: The link between the static and dynamic formulations is
made clear using Otto’s Riemannian submersion [53] which emphasizes the idea of a group action
on the space of probability densities. Let Densp(M) be the set of probability measures that have
smooth positive densities with respect to the volume measure vol. We consider such a probability
density denoted by ρ0. Otto showed that the map

π : Diff(M) → Densp(M)

π(ϕ) = ϕ∗(ρ0)

is a formal Riemannian submersion of the metric L2(ρ0) on Diff(M) to the L2-Wasserstein metric
on Densp(M). For all the basic properties of Riemannian submersions, we refer the reader to
[26]. The fiber of this Riemannian submersion at point ρ0 ≡ 1 is the subgroup of diffeomorphisms
preserving the volume measure vol, we denote it by SDiff(M) and we denote its tangent space at
Id by SVect(M), the space of divergence free vector fields. The vertical space at a diffeomorphism

ϕ ∈ Diff(M) for ρ
def.
= ϕ∗ρ0 is

(2.6) Vertϕ = {v ◦ ϕ ; v ∈ Vect(M) s.t. div(ρv) = 0} .

In particular, consider ϕ ∈ SDiff(M), the vertical space is Vertϕ = {v ◦ ϕ ; v ∈ SVect(M)} and the
horizontal space is

(2.7) Horϕ = {∇p ◦ ϕ ; p ∈ C∞(M, R)} .

Incompressible Euler equation: On the fiber SDiff(M), the L2(vol) metric is right-invariant.
In Arnold’s seminal work [2], it is shown that the Euler-Lagrange equation associated with this metric
is the incompressible Euler equation. Arnold derived this equation as a particular case of geodesic
equations on a Lie group endowed with a right-invariant metric. In its Eulerian formulation, the
incompressible Euler equation is, when M = Td the flat torus for the Lebesgue measure,

(2.8)





∂tv(t, x) + v(t, x) · ∇v(t, x) = −∇p(t, x), t > 0, x ∈ M ,

div(v) = 0 ,

v(0, x) = v0(x) ,

where v0 ∈ SVect(M) is the initial condition and p is the pressure function. On a general Riemannian
manifold (M, g) compact and without boundary, the formulation is similar, omitting the time and
space variables, for the volume measure,

(2.9)





∂tv + ∇vv = −∇p, t > 0, x ∈ M ,

div(v) = 0 ,

v(0, x) = v0(x) ,

where, in this case, the symbol ∇ denotes the Levi-Civita connection associated with the Riemannian
metric on M and div denotes the divergence w.r.t. the volume measure. Another fruitful point of
view consists in considering the group SDiff(M) as isometrically embedded in the group Diff(M)
endowed with the L2(vol) (non right-invariant) metric. Therefore the geodesic equations are simply
geodesic equations on the Riemannian submanifold SDiff(M) and the geodesic equations can be
written as

(2.10) φ̈ = −∇p ◦ φ ,

where φ ∈ SDiff(M) and p is still a pressure function. Using this Riemannian submanifold approach,
Brenier was able to prove that solutions for which the Hessian of p is bounded in L∞ are length
minimizing for short times and several of his analytical results were derived from this formulation
[4, 6].
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Inviscid Burgers equation: The geodesic equation on the group of diffeomorphisms for the
L2 metric written in Eulerian coordinates is the compressible Burgers equation. Its formulation on
M = Td is

(2.11) ∂tu(t, x) + u(t, x) · ∇u(t, x) = 0 ,

or on a general Riemannian manifold

(2.12) ∂tu + ∇uu = 0 .

This formulation is obviously related to the incompressible Euler equation where the pressure p can
be interpreted as a Lagrange multiplier associated with the incompressibility constraint, which is
not present in Burgers equation. Since the map π is a Riemannian submersion, geodesics on the
space of densities can be lifted horizontally to geodesics on the group. These horizontal geodesics are
potential solutions of the Burgers equation, if u0 = ∇q0, i.e. u is a potential at the initial time, then
ut stays potential for all time (until it is not well defined any longer). The corresponding equation
for the potential q is the Hamilton-Jacobi equation

(2.13) ∂tq(t, x) +
1

2
‖∇q(t, x)‖2 = 0 ,

which, in this formulation, makes sense on a Riemannian manifold.

2.2. The Wasserstein-Fisher-Rao metric, its dynamical formulation. The continuity equa-
tion enforces the mass conservation property in the Benamou-Brenier formulation (2.4) (or (2.5)
recalling that by definition m = ρv). This constraint can be relaxed by introducing a source term µ
in the continuity equation,

(2.14) ρ̇ = − div(ρv) + µ = − div(m) + µ .

For a given variation of the density ρ̇, there exist a priori many couples (v, µ) that reproduce this
variation. Following [55], it can be determined via the minimization of the norm of (v, µ), for a
given choice of norm. The penalization of µ was chosen in [43] as the L2 norm but a natural choice
is rather the Fisher-Rao metric

FR2(µ) =

∫

M

µ(t, x)2

ρ(t, x)
dvol(x) ,

because it is homogeneous. In other words, this is the L2 norm of the growth rate w.r.t. the density

ρ since it can be written as
∫

M
α(t, x)2ρ(t, x) dvol(x) where α is the growth rate α(t, x)

def.
= µ(t,x)

ρ(t,x) .

Note in particular that this action is 1-homogeneous with respect to the couple (µ, ρ). This point
is important for convex analysis properties and especially, in order to define the action functional
on singular measures via the same formula. Obviously, there are many other choices of norms that
satisfies this homogeneity property but this particular one can be related to the Camassa-Holm
equation.

Thus, the Wasserstein-Fisher-Rao metric tensor denoted by WFρ is simply given by the infimal
convolution, a standard tool in convex analysis, between the Wasserstein and the Fisher-Rao metric
tensors. Indeed, the metric tensor at a density ρ is defined via the minimization

(2.15) WFρ(ρ̇, ρ̇) = inf
v,α

∫

M

α(x)2 + ‖v(x)‖2 dρ(x) s.t. ρ̇ = − div(ρv) + 2αρ .

The distance associated with this metric tensor has been named Wasserstein-Fisher-Rao [14],
Hellinger-Kantorovich [39], Kantorovich-Fisher-Rao [28].

Definition 1 (WF metric). Let (M, g) be a smooth Riemannian manifold compact and without
boundary, a, b ∈ R∗

+ be two positive real numbers and ρ0, ρ1 ∈ M+(M) be two nonnegative Radon
measures. The Wasserstein-Fisher-Rao metric is defined by

(2.16) WF2(ρ0, ρ1) = inf
ρ,m,µ

J (ρ,m, µ) ,
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where

(2.17) J (ρ,m, µ) = a2

∫ 1

0

∫

M

g−1(x)(m̃(t, x), m̃(t, x))

ρ̃(t, x)
dν(t, x) + b2

∫ 1

0

∫

M

µ̃(t, x)2

ρ̃(t, x)
dν(t, x)

over the set (ρ,m, µ) satisfying ρ ∈ M([0, 1]×M), m ∈ (Γ0
M ([0, 1]×M, TM))∗ which denotes the dual

of time dependent continuous vector fields on M (time dependent sections of the tangent bundle),
µ ∈ M([0, 1] × M) subject to the constraint

(2.18)

∫ 1

0

∫

M

∂tf dρ +

∫ 1

0

∫

M

m(∇xf) − fµ dν =

∫

M

f(1, ·) dρ1 −
∫

M

f(0, ·) dρ0

satisfied for every test function f ∈ C1([0, 1] × M, R). Moreover, ν is chosen such that ρ,m, µ are
absolutely continuous with respect to ν and ρ̃, m̃, µ̃ denote their Radon-Nikodym derivative with
respect to ν.

Remark 1. Note that, in the previous definition, the divergence operator div(·) is defined by duality
on the space of C1 functions. In addition, since the functions in the integrand of formula (2.16) are
one homogeneous with respect to the triple of arguments (ρ̃, m̃, µ̃), the functional does not depend
on the choice of ν which dominates the measures. Last, the Radon-Nikodym theorem applied to the
measure m gives m = m̃ν where m̃ is a measurable section of T ∗M .

This dynamical formulation enjoys most of the analytical properties of the initial Benamou-
Brenier formulation (2.4) and especially convexity. Moreover, WF defines a distance on the space
of nonnegative Radon measures which is continuous w.r.t. to the weak-* topology. An important
consequence is the existence of optimal paths in the space of time-dependent measures [14] by
application of the Fenchel-Rockafellar duality theorem. Note in particular that the Hamiltonian
formulation of the geodesic flow can be formally derived as

{
∂tρ(t, x) + div(ρ(t, x)∇xq(t, x)) − 2q(t, x)ρ(t, x) = 0

∂tq(t, x) + ‖∇q(t, x)‖2 + q(t, x)2 = 0 ,

where the second equation corresponds to the Hamilton-Jacobi equation (2.13). In fact, not only an-
alytical properties of standard optimal transport are conserved but also some interesting geometrical
properties such as the Riemannian submersion highlighted by Otto, as explained in the introduc-
tion. More precisely, the group of diffeomorphisms can be replaced by a semi-direct product of
group between Diff(M) and the space C∞(M, R∗

+) which is a group under pointwise multiplication.
In addition, this group acts on the space of densities Dens(M) and this action gives a Riemannian
submersion between the group endowed with an L2 type of metric, namely L2(M, C(M)) and the
space of densities endowed with the Wasserstein-Fisher-Rao metric. The notation C(M) is the cone
over M defined in the next section 2.3, it is the manifold M × R∗

+ endowed with the Riemannian
metric given in Definition 2. Moreover, this semidirect product of groups is naturally identified as
the automorphism group of the fibre bundle of half densities in section 2.4.

2.3. A cone metric. To motivate the introduction of the cone metric, let us first discuss informally
what happens for a particle of mass m(t) at a spatial position x(t) in a Riemannian manifold (M, g)
under the generalized continuity constraint (2.14); If the control variables v(t, x) and α(t, x) are
Lipschitz, then the solution of the continuity equation with initial data m(0)δx(0) has the form
m(t)δx(t) where m(t) ∈ R∗

+ is the mass of the Dirac measure and x(t) ∈ M its location; The system
reads

(2.19)

{
ẋ(t) = v(t, x(t))

ṁ(t) = α(t, x(t))m(t) ,

which is directly obtained by duality since the flow map associated with (v, α) is well defined. This
result would not hold if the vector field were not smooth enough, see [1]. Let us compute the action
functional in the case where ρ(t) = m(t)δx(t). By the above result, (v, α) is completely determined

at (t, x(t)) and it is sufficient to compute the action which reads
∫ 1

0
a2|v(x(t))|2m(t) + b2 ṁ(t)2

m(t) dt.
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Thus, considering the particle as a point in M × R∗
+, the Riemannian metric seen by the particle

is a2mg + b2 dm2

m . Therefore, it will be of importance to study this Riemannian metric M × R∗
+.

Actually, this space is isometric to the standard Riemannian cone defined below.

Definition 2 (Cone). Let (M, g) be a Riemannian manifold. The cone over M denoted by C(M) is
the quotient space (M × R+) / (M × {0}). The cone point M ×{0} is denoted by S. The cone will

be endowed with the metric gC(M)
def.
= r2g + dr2 defined on M × R∗

+ and r is the variable in R∗
+.

The explicit formula for the distance on the Riemannian cone can be found in [11] and the isometry
is given by the square root change of variable on the mass, as stated in the following proposition.

Proposition 1. Let a, b be two positive real numbers and (M, g) be a Riemannian manifold. The

distance on (M × R∗
+, a2mg + b2

m dm2) is given by

(2.20) d((x1, m1), (x2, m2))
2 = 4b2

(
m2 + m1 − 2

√
m1m2 cos

( a

2b
dM (x1, x2) ∧ π

))
,

where the notation ∧ stands for the minimum, that it x ∧ y = min(x, y) for x, y ∈ R. The space
(M × R∗

+, mg + 1
4m dm2) is isometric to (C(M), gC(M)) by the change of variable r =

√
m. If c

is a unit speed geodesic for the metric a2

4b2 g, an isometry S : C \ R− → M × R∗
+ is defined by

S(reiθ) = (c(θ), r2

4b2 ).

In physical terms, it implies that mass can ”appear” and ”disappear” at finite cost. In other
words, the Riemannian cone is not complete but adding the cone point, which represents M × {0},
to M × R∗

+ turns it into a complete metric space when M is complete. Importantly, the distance
associated with the cone metric (2.20) is 1-homogeneous in (m1, m2). In the rest of the paper, unless
explicitly mentioned, we consider the case a = 1 and b = 1/2. We now collect known facts about
Riemannian cones.

Proposition 2. On the cone C(M), we denote by e the vector field defined by ∂
∂r . The Levi-Civita

connection on (M, g) will be denoted by ∇g. For a given vector field X on M , define its lift as a

vector field on M × R∗
+ by X̂(x, r) = (X(x), 0). The Levi-Civita connection on C(M) denoted by ∇

is given by

∇X̂ Ŷ = ∇̂g
XY − rg(X, Y )e , ∇ee = 0 and ∇eX̂ = ∇X̂e =

1

r
X̂ .

The curvature tensor R on the cone satisfies the following properties,

(2.21) R(X̂, e) = 0 and R(X̂, Ŷ )Ẑ = (Rg(X, Y )Z − g(Y, Z)X + g(X, Z)Y, 0)

where Rg denotes the curvature tensor of (M, g). Let X, Y be two orthornormal vector fields on M ,

(2.22) K(X̂, Ŷ ) = Kg(X, Y ) − 1

where K and Kg denote respectively the sectional curvatures of C(M) and M .

Proof. Direct computations, see [25]. �
Let us give simple comments on Riemannian cones: Usual cones, embedded in R3 are cones over S1

of length less than 2π. Although Riemannian cones over a segment in R are locally flat, the curvature
still concentrates at the cone point. The cone over the sphere is isometric to the Euclidean space
(minus the origin) and the cone over the Euclidean space has nonpositive curvature. In particular,
the cone over S1 is isometric to R2 \ {0}. We refer to [11] for more informations on cones from the
point of view of metric geometry.

We need the explicit formulas for the geodesic equations on the cone.

Corollary 3. The geodesic equations on the cone C(M) are given by

D

Dt

g

ẋ + 2
ṙ

r
ẋ = 0(2.23a)

r̈ − rg(ẋ, ẋ) = 0 ,(2.23b)
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where D
Dt

g
is the covariant derivative associated with (M, g).

Alternatively, the geodesic equations on (M × R∗
+, a2mg + b2

m dm2) can be written w.r.t. the initial
”mass” coordinate as follows

D

Dt

g

ẋ +
ṁ

m
ẋ = 0(2.24a)

m̈ − ṁ2

2m
− a2

2b2
g(ẋ, ẋ)m = 0 .(2.24b)

Note that we used the isometry given in Proposition 1 to derive the equations and in particular,
we implicitly used the equality 4b2m = r2. Since we have written the geodesic equations on the
usual cone in polar coordinates, we used the square root of the ”mass” coordinate, therefore we need
to introduce below the space of square roots of densities to discuss the infinite dimensional setting.

2.4. The automorphism group of the bundle of half-densities. The cone can be seen as a
trivial principal fibre bundle since C(M) is the direct product of M with the group R∗

+. Let us
denote pM : C(M) 7→ M the projection on the first factor. The group R∗

+ induces a group action

on C(M) defined by λ · (x, λ′)
def.
= (x, λλ′), for all x ∈ M and λ, λ′ ∈ R∗

+. We now identify the trivial
fibre bundle of half densities with the cone.

Definition 3. Let M be a smooth manifold without boundary and (Uα, uα) be a smooth atlas. The
bundle of s-densities is the line bundle given by the following cocycle

Ψαβ : Uα ∩ Uβ 7→ GL1(R) = R∗

Ψαβ(x) = | det( d(uβ ◦ u−1
α )(uα(x))|s =

1

| det(d(uα ◦ u−1
β ))(uβ(x))|s ·

We denote by Denss(M) the set of sections of this bundle and we use Dens(M) instead of
Dens1(M), the space of densities. This definition shows that this fibre bundle is also a principal
fibre bundle over R∗

+ and it will be the point of view adopted in the rest of the paper.
On any smooth manifold M , the fibre bundle of s-densities is a trivial principal bundle over R∗

+

since there exists a smooth positive density on M . Note that this trivialization depends on the
choice of this reference positive density. If one chooses such a positive density, then the 1/2-density
bundle can be identified to the cone C(M). Let us fix the reference volume form to be the volume
measure vol. By this choice, we identify Dens1/2(M) with the set of sections of the cone C(M) in
the rest of the paper. Thus every element of Dens1/2(M) is a section of the cone C(M). We are now
interested in transformations that preserve the group structure. Namely, one can define

(2.25) Aut(C(M)) =
{
Φ ∈ Diff(C(M)) ; Φ(x, r) = r · Φ(x, 1) for all r ∈ R∗

+

}
,

which is the instantiation, in this particular case, of the definition of the automorphisms group of
a principal fibre bundle. In other words, this is the subgroup of diffeomorphisms of the cone that
preserve the group action on the fibers. In particular, Aut(C(M)) is a subgroup of Diff(C(M)). Of
particular interest is the subgroup of Aut(C(M)) which is defined as

(2.26) Gau(C(M)) = {Φ ∈ Aut(C(M)) ; pM ◦ Φ = idM} .

The set Gau(C(M)) is called the gauge group and it is a normal subgroup of Aut(C(M)). We now
consider the injection Inj : Diff(M) →֒ Aut(C(M)) defined by Inj(ϕ) = (ϕ, idR∗

+
). This is the

standard situation of a semidirect product of groups between i(Diff(M)) and Gau(C(M)) since the
following sequence is exact

(2.27) Gau(C(M)) →֒ Aut(C(M)) → Diff(M) ,

where Inj defined above provides an associated section of the short exact sequence and the projection
from Aut(C(M)) onto Diff(M) is given by Φ 7→ pM ◦ Φ(x, 1). Note that we could also have chosen
the natural section associated to the natural bundle of half-densities. As is well-known for a trivial
principal bundle, Aut(C(M)) is therefore equal to the semidirect product of group:

(2.28) Aut(C(M)) = Diff(M) ⋉Ψ Gau(C(M)) ,
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where Ψ : Diff(M) 7→ Aut(Gau(C(M))) is defined by Ψ(ϕ)(λ) = ϕ−1λϕ being the associated inner
automorphism of the group Gau(C(M)), where the composition is understood as composition of
diffeomorphisms of C(M). Being a trivial principal fibre bundle, the gauge group can be identified

with the space of positive functions on M . Let us denote Λ1/2(M)
def.
= C∞(M, R∗

+) which is a group
under pointwise multiplication. The subscript 1/2 is a reminder of the fact that Λ1/2(M) is the
gauge group of C(M), the bundle of 1/2-densities. Note that we do not use the standard left action
but, instead, a right action for the inner automorphisms as presented in [35, Section 5.3], which fits
better to our notations, although these two choices are equivalent. The identification of Λ1/2 with
the gauge group Gau(C(M)) is simply λ 7→ (idM , λ) where (idM , λ) : (x, m) 7→ (x, λ(x)m). The
group composition law is given by

(2.29) (ϕ1, λ1) · (ϕ2, λ2) = (ϕ1 ◦ ϕ2, (λ1 ◦ ϕ2)λ2)

and the inverse is

(2.30) (ϕ, λ)−1 = (ϕ−1, λ−1 ◦ ϕ−1) .

By construction, the group Aut(C(M)) has a left action on the space Dens1/2(M) as well as on
Dens(M). The action on Dens(M) is explicitly defined by the map π defined by

π :
(
Diff(M) ⋉Ψ Λ1/2(M)

)
× Dens(M) 7→ Dens(M)

π ((ϕ, λ), ρ)
def.
= ϕ∗(λ

2ρ) .(2.31)

For particular choices of metrics, this left action is a Riemannian submersion as detailed below. Note
that we will use both automorphism group and semidirect product notations equally, depending on
the context.

2.5. A Riemannian submersion between the automorphism group and the space of den-
sities. The semidirect product of group Diff(M) ⋉Ψ Λ1/2(M) will be endowed with the metric

L2(M, C(M)) with respect to the reference measure on M . Let us recall it hereafter.

Definition 4 (L2 metric). Let M be a manifold endowed with a measure µ and (N, g) be a Riemann-
ian manifold. Consider a measurable map ϕ : M → N and two measurable maps, X, Y : M 7→ TN
such that pN ◦ X = pN ◦ Y = ϕ where pN : TN → N is the natural projection. Then, the L2

Riemannian metric w.r.t. to the volume form µ and the metric g at point ϕ is defined by

(2.32) 〈X, Y 〉ϕ =

∫

M

g(ϕ(x))(X(ϕ(x)), Y (ϕ(x))) dµ(x) .

This is probably the simplest type of (weak) Riemannian metrics on spaces of mappings and it
has been studied in details in [20] in the case L2(M, M) and also in [24] where, in particular, the
curvature is computed for L2(M, N) for N an other Riemannian manifold. Note in particular that
this metric is not the right-invariant metric L2 on the semidirect product of groups as in [31] or
on the automorphism group which would lead to an EPDiff equation on a principal fibre bundle as
developed in [29].

Proposition 4. The geodesic equations on Aut(C(M)) endowed with the metric L2(M, C(M)) with
respect to the reference measure on ν are given by the geodesic equations on the cone (2.23), that is
D
Dt (ϕ̇, λ̇) = 0, or more explicitely

D

Dt

g

ϕ̇ + 2
λ̇

λ
ϕ̇ = 0(2.33a)

λ̈ − λg(ϕ̇, ϕ̇) = 0 .(2.33b)

Proof. This is a consequence of [24] or a direct adaptation of [20, Theorem 9.1] to the case L2(M, C(M))
and Corollary 3. �

We now state a crucial fact that arises from an elementary observation.
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Proposition 5. The automorphism group Aut(C(M)) is totally geodesic in Diff(C(M)) for the
L2(C(M), C(M)) metric.

Proof. Note that the first equation (2.33a) is 0-homogeneous with respect to λ and the second
equation (2.33b) is one homogeneous with respect to λ. This is a consequence of the fact that
multiplication by positive reals acts as an affine isometry on C(M). Therefore, the path Φ(t) :
(x, r) 7→ (ϕ(t)(x), λ(t)r) also satisfies the geodesic equation in Diff(C(M)) for the L2(C(M), C(M))
metric. �

Note that this property does not depend on the measure on C(M) used in the definition of the
space L2(C(M), C(M)).

Let us first recall some useful notions. From the point of view of fluid dynamics, the next definition
corresponds to the change of variable between Lagrangian and Eulerian formulations.

Definition 5 (Right-trivialization). Let H be a group and a smooth manifold at the same time,
possibly of infinite dimensions, the right-trivialization of TH is the bundle isomorphism τ : TH 7→
H × TIdH defined by τ(h, Xh)

def.
= (h, dRh−1Xh), where Xh is a tangent vector at point h and

Rh−1 : H → H is the right multiplication by h−1, namely, Rh−1(f) = fh−1 for all f ∈ H .

In fluid dynamics, the right-trivialized tangent vector dRh−1Xh corresponds to the spatial or
Eulerian velocity and Xh is the Lagrangian velocity. Importantly, this right-trivialization map
is continuous but not differentiable with respect to the variable h. Indeed, right-multiplication
Rh is smooth, yet left multiplication is continuous and usually not differentiable, due to a loss of
smoothness.

Example 6. For the semi-direct product of groups defined above, we have

(2.34) τ((ϕ, λ), (Xϕ, Xλ)) = ((ϕ, λ), (Xϕ ◦ ϕ−1, (Xλλ−1) ◦ ϕ−1)) .

We will denote by (v, α) an element of the tangent space of T(Id,1) Diff(M) ⋉Ψ Λ1/2(M).

As an immediate consequence of Proposition 4, we write the geodesic equation in Eulerian coor-
dinates.

Corollary 7 (Geodesic equations in Eulerian coordinates). After right-trivialization, that is under

the change of variable v
def.
= ϕ̇ ◦ ϕ−1 and α

def.
= λ̇

λ ◦ ϕ−1, the geodesic equations read

(2.35)

{
v̇ + ∇vv + 2αv = 0

α̇ + 〈∇α, v〉 + α2 − g(v, v) = 0 .

Recall now the infinitesimal action associated with a group action.

Definition 6 (Infinitesimal action). For a smooth left action of H a Lie group on a manifold M
and q ∈ M , the infinitesimal action is the map TIdH × M 7→ TM defined by

(2.36) ξ · q
def.
=

d

dt

∣∣∣∣
t=0

(exp(ξt) · q) ∈ TqM

where · denotes the left action of H on M and exp(ξt) is the Lie exponential, that is the solution to

ḣ = dRh(ξ) and h(0) = Id.

Example 8. For Diff(M)⋉Ψ Λ1/2(M) acting on Dens(M), the previous definition gives (v, α) · ρ =
− div(vρ) + 2αρ. Indeed, one has

(ϕ(t), λ(t)) · ρ = Jac(ϕ(t)−1)(λ2(t)ρ) ◦ ϕ−1(t) .

First recall that ∂tϕ(t) = v ◦ ϕ(t) and ∂tλ = λ(t)α ◦ ϕ(t). Once evaluated at time t = 0 where
ϕ(0) = Id and λ(0) = 1, the differentiation with respect to ϕ gives − div(vρ) and the second term
2αρ is given by the differentiation with respect to λ.

We now recall the result of [46, Claim of Section 29.21] in a finite dimensional setting. This result
presents a standard construction to obtain Riemannian submersions from a transitive group action.
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Proposition 9. Consider a smooth left action of Lie group H on a manifold M which is transitive
and such that for every ρ ∈ M , the infinitesimal action ξ 7→ ξ · ρ is a surjective map. Let ρ0 ∈ M
and a Riemannian metric G on H that can be written as:

(2.37) G(h)(Xh, Xh) = g(h · ρ0)(dRh−1Xh, dRh−1Xh)

for g(h · ρ0) an inner product on TIdH. Let Xρ ∈ TρM be a tangent vector at point h · ρ0 = ρ ∈ M ,
we define the Riemannian metric g on M by

(2.38) g(ρ)(Xρ, Xρ)
def.
= min

ξ∈TIdH
g(ρ)(ξ, ξ) under the constraint Xρ = ξ · ρ .

where ξ = Xh · h−1.
Then, the map π0 : H → M defined by π0(h) = h · ρ0 is a Riemannian submersion of the metric

G on H to the metric g on M . Moreover a minimizer ξ in formula (2.38) is called an horizontal lift
of Xρ at Id.)

The formal application of this construction in our infinite dimensional situation leads to the result,
stated in [13]:

Proposition 10. Let ρ0 ∈ Dens(M) and define the map

π0 : Aut(C(M)) → Dens(M)

π0(ϕ, λ) = ϕ∗(λ
2ρ0) .

Then, the map π0 is a Riemannian submersion of the metric L2(M, C(M)) on the group Aut(C(M))
to the Wasserstein-Fisher-Rao on the space of densities Dens(M).

The horizontal space and vertical space at (ϕ, λ) ∈ Aut(C(M)) = Diff(M) ⋉Ψ Λ1/2(M) such that

ϕ∗(λ2ρ0) = ρ are then defined by,

(2.39) Vert(ϕ,λ) = {(v, α) ◦ (ϕ, λ) ; (v, α) ∈ Vect(M) × C∞(M, R) s.t. div(ρv) = 2αρ} ,

and

(2.40) Hor(ϕ,λ) =

{(
1

2
∇p, p

)
◦ (ϕ, λ) ; p ∈ C∞(M, R)

}
.

Note that the minimization in (2.38) is taken on an affine space of direction the vertical space
whereas the minimizer is an element of the horizontal space.

Note also that the fibers of the submersion are right-cosets of the subgroup H0 in H . The proof of
the previous proposition is in fact given by the change of variables associated with right-trivialization.
Let ρ0 be a reference density, the application of Proposition 9 gives

G(ϕ, λ)((Xϕ, Xλ),(Xϕ, Xλ))=

∫

M

g(v, v)ρ dx +

∫

M

α2ρ dx

(2.41)

=

∫

M

g(Xϕ ◦ ϕ−1, Xϕ ◦ ϕ−1)ϕ∗(λ
2ρ0)dx +

∫

M

(Xλλ−1)2 ◦ ϕ−1ϕ∗(λ
2ρ0)dx(2.42)

=

∫

M

g(Xϕ, Xϕ)λ2ρ0 dx +

∫

M

X2
λ ρ0 dx .(2.43)

Therefore, the metric G is the L2(M, C(M)) metric with respect to the density ρ0. Moreover, in this
particular situation, the horizontal lift is a minimizer of (2.38).

Proposition 11 (Horizontal lift). Let ρ ∈ Denss(Ω) be a smooth density and Xρ ∈ Hs(Ω, R) be a
tangent vector at the density ρ. The horizontal lift at (Id, 1) of Xρ is given by (1

2∇Φ, Φ) where Φ is
the solution to the elliptic partial differential equation:

(2.44) − 1

2
div(ρ∇Φ) + 2Φρ = Xρ .

By elliptic regularity, the unique solution Φ belongs to Hs+1(M).
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To prove Proposition 11, remark that equation (2.44) is the first order condition of the minimiza-
tion problem (2.38) where the term Xρ reads in this case Xρ = ξ · ρ = (v, α) · ρ = − div(ρv) + 2αρ.

A direct application of this Riemannian submersion viewpoint is the formal computation of the
sectional curvature of the Wasserstein-Fisher-Rao in this smooth setting by applying O’Neill’s for-
mula see [26]. To recall it hereafter, we need the Lie bracket of right-invariant vector fields on
Diff(M) ⋉Ψ Λ1/2(M).

Proposition 12. Let (v1, α1) and (v2, α2) be two tangent vectors at identity in Diff(M)⋉ΨΛ1/2(M).
Then,

(2.45) [(v1, α1), (v2, α2)] = ([v1, v2], ∇α1 · v2 − ∇α2 · v1) ,

where [v1, v2] denotes the Lie bracket of vector fields.

Note that the application of this formula to horizontal vector fields gives [(1
2∇Φ1, Φ1), (

1
2∇Φ2, Φ2)] =

(1
4 [∇Φ1, ∇Φ2], 0).

Proposition 13. Let ρ be a smooth positive density on M and X1, X2 be two orthonormal tangent
vectors at ρ and ξΦ1 , ξΦ2 be their corresponding right-invariant horizontal lifts on the group. If
O’Neill’s formula can be applied, the sectional curvature of Dens(M) at point ρ is given by,

(2.46) K(ρ)(X1, X2) =

∫

Ω

k(x, 1)(ξ1(x), ξ2(x))w(ξ1(x), ξ2(x))ρ(x) dν(x) +
3

4

∥∥[ξ1, ξ2]
V
∥∥2

where

w(ξ1(x), ξ2(x)) = gC(M)(x, 1)(ξ1(x), ξ1(x))gC(M)(x)(ξ2(x), ξ2(x)) −
(
gC(M)(x, 1)(ξ1(x), ξ2(x))

)2

and [ξΦ1 , ξΦ2 ]
V denotes the vertical projection of [ξΦ1 , ξΦ2 ] at identity, ‖·‖ denotes the norm at iden-

tity and k(x, 1) is the sectional curvature of the cone at point (x, 1) in the directions (ξ1(x), ξ2(x)).

This computation is only formal and we will not attempt here to give a rigorous meaning to this
formula similarly to what has been done in [41] for the L2 Wasserstein metric. Yet, it has interesting
consequences: the curvature of the space of densities endowed with the WF metric is always greater
or equal than the curvature of the cone C(M). In particular, it is non-negative if the curvature of
(M, g) is bigger than 1, as a consequence of Proposition 2.

3. The Hdiv right-invariant metric on the diffeomorphism group

In this section, we summarize known results on the Hdiv right-invariant metric on the diffeomor-
phism group. We now define the Hdiv right-invariant metric.

Definition 7. Let (M, g) be a Riemannian manifold and Diffs(M) be the group of diffeomorphisms
which belong to Hs(M) for s > d/2 + 1. The right-invariant Hdiv metric, implicitely dependent on
two positive real parameters a, b, is defined by

(3.1) Gϕ(Xϕ, Xϕ) =

∫

M

a2|Xϕ ◦ ϕ−1|2 + b2 div(Xϕ ◦ ϕ−1)2 dvol .

The Euler-Arnold equation in one dimension (that is on the circle S1 for instance) is the well-
known Camassa-Holm equation (actually when a = b = 1):

(3.2) a2∂tu − b2∂txxu + 3a2∂xu u − 2b2∂xxu ∂xu − b2∂xxxu u = 0 .

On a general Riemannian manifold (M, g), the equation can be written as, with n = a2u♭ + b2 dδu♭,

(3.3) ∂tn + a2
(
div(u)u♭ + d〈u, u〉 + ιu du♭

)
+ b2

(
div(u) dδu♭ + dιu dδu♭

)
= 0 ,

where the notation ♭ corresponds to lowering the indices. More precisely, if u ∈ χ(M) then u♭ is the
1-form defined by v 7→ g(u, v). The notation δ is the formal adjoint to the exterior derivative d and
ι is the insertion of vector fields which applies to forms.

On the well-posedness of the initial value problem. Although the theorem below is not
stated in this particular form in [20], this result can be seen as a byproduct of their results as
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explained in [49, Theorem 4.1]. For similar smoothness results in the case of smooth diffeomorphisms,
we refer the reader to [15, Theorem 3].

Theorem 14. On Diffs(S1) for s ≥ 2 integer, the H1 right-invariant metric is a smooth and weak
Riemannian metric. Moreover, if s ≥ 3, the exponential map is a smooth local diffeomorphism on
T Diffs(S1).

Global well-posedness does not hold in one dimension since there exist smooth initial conditions
for the Camassa-Holm equation such that the solutions blow up in finite time.

In higher dimensions, the initial value problem has been studied by Michor and Mumford [52,
Theorem 3]. This is not a direct result of [20] since the differential operator associated to the metric
is not elliptic. They prove that the initial value problem on the space of vector fields is locally well
posed for initial data in a Sobolev space of high enough order. Although the proof could probably
be adapted to the case of a Riemannian manifold, in that case, the result of local well posedness is
not proven yet.

On the metric properties of the Hdiv right-invariant metric. Michor and Mumford already
had the following non-degeneracy result in [47].

Theorem 15 (Michor and Mumford). The distance on Diff(M) induced by the Hdiv right-invariant
metric is non-degenerate. Namely, between two distinct diffeomorphisms the infimum of the lengths
of the paths joining them is strictly positive.

Due to the presence of blow up in the Camassa-Holm equation, metric completeness does not
hold since it would imply geodesic completeness, that is global well posedness. However, it is still
meaningful to ask whether geodesics are length minimizing for short times. Since the Gauss lemma
is valid in a strong Hs topology, this ensures that geodesics are length minimizing among all curves
that stay in a Hs neighborhood, see also [15]. However, this is not enough to prove that the
associated geodesic distance is non degenerate since an almost minimizing geodesic can escape this
neighborhood for arbitrarily small energy. This is what happens for the right-invariant metric H1/2

on the circle S1 where the metric is degenerate although there exists a smooth exponential map
similarly to our case in 1D, see [22].

4. A Riemannian submanifold point of view on the Hdiv right-invariant metric

The starting point of this section is the following simple proposition whose proof is omitted.

Proposition 16. Consider a Riemannian submersion constructed as in Proposition 9. Let H0 be
the isotropy subgroup of ρ0, then, considering H0 as a Riemannian submanifold of H and denoting
GH0 its induced metric, GH0 is a right-invariant metric on H0.

The Riemannian submersion π0 : Aut(C(M)) 7→ Dens(M) defined in Proposition 10 enables to
study the equivalent problem to the incompressible Euler equation. The fiber of the Riemannian
submersion at vol is π−1

0 ({vol}) and it will be denoted by Autvol(C(M)), it therefore corresponds to
the group H0 in the previous proposition. More explicitely, we have

(4.1) π−1
0 ({vol}) = {(ϕ, λ) ∈ Aut(C(M)) : ϕ∗(λ

2 vol) = vol} .

The constraint ϕ∗(λ2 vol) = vol can be made explicit as follows

(4.2) Autvol(C(M)) = {(ϕ,
√

Jac(ϕ)) ∈ Aut(C(M)) : ϕ ∈ Diff(M)} .

Note that this isotropy subgroup can be identified with the group of diffeomorphims of M since the
map ϕ 7→ (ϕ,

√
Jac(ϕ)) is also a section of the short exact sequence (2.27). This shows that there

is a natural identification between Diff(M) and Autvol(C(M)). Now, the vertical space at point

(ϕ,
√

Jac(ϕ)) ∈ Autvol(C(M)) is

(4.3) Ker
(
dπ0(ϕ,

√
Jac(ϕ))

)
= {(v, α)◦(ϕ,

√
Jac(ϕ)) : div v = 2α } ,
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and equivalently

(4.4) Ker
(
dπ0(ϕ,

√
Jac(ϕ))

)
=

{(
v,

1

2
div v

)
◦(ϕ,

√
Jac(ϕ)) : v ∈ Vect(M)

}
.

It is now possible to apply equation (2.41) to obtain the explicit formula for the right-invariant
metric on Autvol(C(M)). The metric L2(M, C(M)) on Aut(C(M)) restricted to Diff(M) ≃ Autvol(C(M))
reads

(4.5) Gϕ(Xϕ, Xϕ) =

∫

M

|v|2 dvol+
1

4

∫

M

| div v|2 dvol ,

where v = Xϕ ◦ϕ−1. Therefore, on Diff(M) ≃ Autvol(C(M)), the induced metric is a right-invariant
Hdiv metric. In other words, we have

Theorem 17. By its identification with Autvol(C(M)), the diffeomorphism group endowed with the
Hdiv right-invariant metric, see Definition 7, is isometrically embedded in L2(M, C(M)).

As a straightforward application, we retrieve theorem 15.

Corollary 18. The distance on Diff(M) with the right-invariant metric Hdiv is non degenerate.

Proof. Let ϕ0, ϕ1 ∈ Diff(M) be two diffeomorphisms and c be a path joining them. The length of
the path c for the right-invariant metric Hdiv is equal to the length of the lifted path c̃ in Aut(C(M)).
Since L2(M, C(M)) is a Hilbert manifold, the length of the path c̃ is bounded below by the length
of the geodesic joining the natural lifts of ϕ0 and ϕ1 in L2(M, C(M)). Therefore, it leads to

(4.6) dHdiv(ϕ0, ϕ1) ≥ dL2(M,C(M))

(
(ϕ0,

√
Jac(ϕ0)), (ϕ1,

√
Jac(ϕ1))

)
.

If dHdiv (ϕ0, ϕ1) = 0 then dL2(M,C(M))

(
(ϕ0,

√
Jac(ϕ0)), (ϕ1,

√
Jac(ϕ1))

)
= 0 which implies ϕ0 =

ϕ1. �

Remark 2 (The Fisher-Rao metric). In [33], it is shown that the Ḣ1 right-invariant metric descends
to the Fisher-Rao metric on the space of densities. Let us explain why this situation differs from
ours: It is well known that a left action of a group endowed with a right-invariant metric induces on
the orbit a Riemannian metric for which the action is a Riemannian submersion. However, Khesin
et al. do not consider a left action, but a right action on the space of densities: More precisely, if a
reference density ρ is chosen, the map they considered is

Diff(M) → Dens(M)

ϕ 7→ ϕ∗ρ .

Obviously, this situation is equivalent to a left action of a group of diffeomorphisms endowed with
a left-invariant metric. In such a situation, the descending metric property has to be checked [33,
Proposition 2.3].

Their result can be read from our point of view: The Ḣ1 metric is 1
4

∫
M

| div v|2 dµ and it corre-
sponds to the case where a = 0. It thus leads to a degenerate metric on the group. Viewed in the
ambient space L2(M, C(M)), the projection on the bundle component is a (pseudo-) isometry from
L2(M, C(M)) (endowed with this pseudo-metric) to the space of densities since a = 0. Moreover, on
the space of densities which lie in the image of the projection, that is, the set of probability densities,
the projected metric is the Fisher-Rao metric.

We now use the identification between Diff(M) endowed with the right-invariant Hdiv metric and
Autvol(C(M)) as a submanifold of Aut(C(M)) and write the geodesic equations in this setting. As
is standard for the incompressible Euler equation, the constraint is written in Eulerian coordinates
and the corresponding geodesic are written hereafter.
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Theorem 19. The geodesic equations on the fiber Autvol(C(M)) as a Riemannian submanifold of
Aut(C(M)) endowed with the metric L2(M, C(M)) can be written in Lagrangian coordinates

(4.7)

{
D
Dt ϕ̇ + 2 λ̇

λ ϕ̇ = − 1
2∇gp ◦ ϕ

λ̈ − λg(ϕ̇, ϕ̇) = −λp ◦ ϕ ,

with a function P : M → R.
In Eulerian coordinates, the geodesic equations read

(4.8)

{
v̇ + ∇g

vv + 2vα = − 1
2∇gp

α̇ + 〈∇α, v〉 + α2 − g(v, v) = −p ,

where α = λ̇
λ ◦ ϕ−1 and v = ∂tϕ ◦ ϕ−1.

This submanifold point of view leads to a generalization of [32, Theorem A.2] on the sectional
curvature of Diff(M) which has been computed and studied in [32]. The authors show that the
curvature of Diff(S1) can be written using the Gauss-Codazzi formula and they show the explicit
embedding in a semi-direct product of groups similar to our situation.

As mentioned above, we consider Diff(M) as a submanifold of L2(M, C(M)). The second funda-
mental form can be computed as in the case of the incompressible Euler equation.

Proposition 20. Let U, V be two smooth right-invariant vector fields on Aut(C(M)) that can be
written as U(ϕ, λ) = (u, α) ◦ (ϕ, λ) and V (ϕ, λ) = (v, β) ◦ (ϕ, λ). The second fundamental form for
the isometric embedding Diff(M) →֒ L2(M, C(M)) is

(4.9) II(U, V ) =

(
−1

2
∇p ◦ ϕ, −λp ◦ ϕ

)
,

where p = (2 Id− 1
2∆)−1A(∇(u,α)(v, β)) is the unique solution of the elliptic PDE (2.44)

(4.10) (2 Id −1

2
∆)(p) = A(∇(u,α)(v, β)) ,

where A(w, γ)
def.
= div(w) − 2γ. Using the explicit expression of ∇(u,α)(v, β) the elliptic PDE reads

(4.11) (2 Id −1

2
∆)(p) = div(∇uv + βu + αv) − 2〈∇β, u〉 + 2g(u, v) − 2αβ .

Proof. By right-invariance of the metric, it suffices to treat the case (ϕ, λ) = Id. The orthogonal
projection is the horizontal lift defined in Proposition 11. Therefore, we compute the infinitesimal
action of ∇(u,α)(v, β) on the volume form which is given by the linear operator A and we consider its

horizontal lift (− 1
2∇p, −p) given by Proposition 11. By right-invariance, the orthogonal projection

at (ϕ, λ) is given by
(
− 1

2∇p ◦ ϕ, −λp ◦ ϕ
)
.

From Proposition 2, one has

(4.12) ∇(u,α)(v, β) = (∇uv + βu + αv, 〈∇β, u〉 − g(u, v) + αβ) ,

and Formula (4.11) follows. �

We can then state the Gauss-Codazzi formula applied to our context.

Proposition 21. Let U, V be two smooth right-invariant vector fields on Autvol(C(M)) written as
U(ϕ, λ) = (u, α) ◦ (ϕ, λ) and V (ϕ, λ) = (v, β) ◦ (ϕ, λ). The sectional curvature of Diff(M) endowed
with the right-invariant Hdiv metric is

(4.13) 〈RDiff(M)(U, V )V, U〉 = 〈RL2(M,C(M))(U, V )V, U〉+ 〈II(U, U), II(V, V )〉− 〈II(U, V ), II(U, V )〉 ,

where II is the second fundamental form (4.9) and

(4.14) 〈RL2(M,C(M))(U, V )V, U〉 =

∫

M

〈RC(M)(u, v)v, u〉 ◦ (ϕ, λ) dµ ,

where (ϕ, λ) ∈ Aut(C(M)).
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Proof. The only remaining point is the computation of the sectional curvature of L2(M, C(M)) which
is done in Freed and Groisser’s article [24]. �

Note that the sectional curvature of L2(M, C(M)) vanishes if M = Sn since C(M) = Rn+1, which
is the case for the one-dimensional Camassa-Holm equation. However, for M = Tn, n ≥ 2, the
flat torus, the sectional curvature of C(M) is non-positive and bounded below by −1 and thus the
sectional curvature of L2(Tn, C(Tn)) is non-positive.

5. Applications

The point of view developed above provides an example of an isometric embedding of the group
of diffeomorphisms endowed with the right-invariant Hdiv metric in an L2 space such as L2(M, N),
here with N = C(M). In this section, we develop two applications of this point of view. The first one
consists in rewriting the Camassa-Holm equation as particular solutions of the incompressible Euler
equation on the cone; the results hold in higher dimensions for the geodesics of the Hdiv metric.
The second application is about minimizing properties of solutions of the Camassa-Holm equation
and its generalization with Hdiv. We prove that, under mild conditions, smooth solutions are length
minimizing for short times.

5.1. The Camassa-Holm equation. Let us consider the following Camassa-Holm equation,

(5.1)

{
∂tu − 1

4∂txxu + 3∂xu u − 1
2∂xxu ∂xu − 1

4∂xxxu u = 0

∂tϕ(t, x) = u(t, ϕ(t, x)) .

With respect to the standard Camassa-Holm equation, this equation has different coefficients that
are chosen here to simplify the discussion. Unless otherwise mentioned, all the results still apply to
the standard formulation of the equation. For such a choice of coefficients, the cone construction
C(S1) is isometric to R2 \ {0} with the Euclidean metric. Following Theorem 17, we have the
isometric injection

M : Diff(S1) → Aut(C(S1)) ⊂ L2(S1, R2)(5.2)

ϕ 7→ (ϕ,
√

ϕ′) =
√

ϕ′eiϕ .(5.3)

Then, solutions of the Camassa-Holm equation are geodesic for the flat metric L2(S1, R2) on the
constrained submanifold of maps (ϕ, λ) defined by the constraint ϕ′ = λ2. Note that the map M is
very similar to a Madelung transform which maps solutions of the Schrödinger equation to solutions
of a compressible Euler type of hydrodynamical equation. The geodesic equation on Aut(C(S1))
reads

(5.4)

{
ϕ̈ + 2 λ̇

λ ϕ̇ = − 1
2∂xp ◦ ϕ

λ̈ − λϕ̇2 = −λp ◦ ϕ ,

where p : S1 → R. Formula (5.4) looks similar to the incompressible Euler equation in Lagrangian
coordinates. However, this geodesic equation is apparently written on the space of maps S1 7→ C(S1).
Since Aut(C(S1)) ⊂ Diff(C(S1)), it can be expected to be a geodesic equation on the group of
diffeomorphism of the cone. Indeed, we have

Theorem 22. Solutions to the Camassa-Holm equation on S1

(5.5) ∂tu − 1

4
∂txxu + 3∂xu u − 1

2
∂xxu ∂xu − 1

4
∂xxxu u = 0

are mapped to solutions of the incompressible Euler equation on R2 \ {0} for the density ρ = 1
r4 Leb,

that is

(5.6)

{
v̇ + ∇vv = −∇P ,

∇ · (ρv) = 0 ,

by the map :

[
u : S1 → R
θ 7→ u(θ)

]
7→
[

v : S1 × R+
∗ = C(S1) → R2

(θ, r) 7→
(
u(θ), r

2∂xu(θ)
)
]
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Proof. We show that M(ϕ) provides solutions to the incompressible Euler equation written in La-
grangian coordinates. The second equation in (5.4) being linear in λ and the first equation being 0
homogeneous in λ, the geodesic equations can be rewritten as

(5.7)

{
ϕ̈ + 2 λ̇

λ ϕ̇ = − 1
2∂xp ◦ ϕ

λ̈r − λrϕ̇2 = −λrp ◦ ϕ .

Thus, the map Φ(t) : (x, r) 7→ (ϕ(t, x), λ(t, x)r) satisfies

(5.8) Φ̈(t)(x, r) = −∇Ψp(t) ◦ Φ(t) ,

where Ψp(x, r) = 1
2r2p(x). This formulation is close to the incompressible Euler equation, however,

we need to check if the density ρ(r, θ) = 1/r3 dr dθ is preserved by pull-back by Φ, or equivalently
due to the group structure, by pushforward. We first compute the Jacobian matrix, recalling that
λ =

√
∂xϕ,

DΦ(x, r) =

(
∂xϕ 0
∂xxϕ

2
√

∂xϕ

√
∂xϕ

)
,

whose determinant is (∂xϕ)3/2. We now compute the pushforward

Jac(Φ)ρ ◦ Φ(x, r) = 1/(r
√

∂xϕ)3 Jac(Φ)

= 1/(r
√

∂xϕ)3(∂xϕ)3/2 =
1

r3
= ρ(x, r) .

This proves the result in Lagrangian coordinates. To get the formulation in the theorem, one
differentiates the map Φ at identity which gives (u, r

2∂xu) for the vector field in polar coordinates. �

Remark 3 (About the blow-up). At this point, a natural question is about the difference between
global well-posedness of incompressible Euler in 2D, whereas the Camassa-Holm equation has a well
understood blow-up. Of course, there is no contradiction since the density for which the CH equation
is similar to Euler has a singularity at zero, which allows for unbounded vorticity although we did
not check this possibility. In a similar direction, we can cite [21], since the authors mention that the
singularity comes ”from the vorticity amplification due to the presence of a density gradient”. Note
also that the typical situation of blow-up of the CH equation in the case of colliding peakons can be
understood in this situation as the quantity

√
∂xϕ goes to zero in finite time.

The second application consists in showing that smooth solutions of the Camassa-Holm equation
are length minimizing for short times.

Theorem 23 (Smooth solutions to the Camassa-Holm equation (5.1) are length minimizing for
short times.). Let (ϕ(t), λ(t)) be a smooth solution to the geodesic equations (5.1) (in the formulation
(5.4)) on the time interval [t0, t1]. If (t1 − t0)

2|〈w, ∇2Ψp(x, r)w〉| < π2‖w‖2 holds for all t ∈ [t0, t1]
and (x, r) ∈ C(S1) and w ∈ T(x,r)C(S1), then for every smooth curve (ϕ0(t), λ0(t)) ∈ Autvol(C(S1))
satisfying (ϕ0(ti), λ0(ti)) = (ϕ(ti), λ(ti)) for i = 0, 1 one has

(5.9)

∫ t1

t0

‖(ϕ̇, λ̇)‖2 dt ≤
∫ t1

t0

‖(ϕ̇0, λ̇0)‖2 dt ,

with equality if and only if the two paths coincide on [t0, t1].

Remark 4. This result only applies to this choice of coefficients and for other choices of coefficients
the result still holds in an L∞ neighborhood of the geodesic. This is done in the more general case
of Hdiv in the next section. Since the proof is a direct adaptation of Brenier’s [7] and it is simple in
this particular case, we include it hereafter. It also helps to understand the proof in the general case
of a Riemannian manifold.
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Proof. To alleviate notations, we denote gt = (ϕ(t), λ(t)) and ht = (ϕ0(t), λ0(t)). Since p can be

chosen with zero mean, Ψp(x, r) = 1
2r2p(x) and gt = (ϕ(t),

√
Jac(ϕ(t))), by direct integration, for

every t ∈ [t0, t1]

(5.10)

∫

S1

Ψp(gt(x)) dx = 0 .

The same equality holds for ht. Let s ∈ [0, 1] 7→ c(t, s, x) be a two parameters (t ∈ [t0, t1] and
x ∈ S1) smooth family of geodesics on R2 such that c(t, 0, x) = gt(x) and c(t, 1, x) = ht(x) for every
t ∈ [t0, t1] and x ∈ S1. Let us define J(t, s, x) = ∂tc(t, s, x), we have

(5.11) J(t, 0, x) = ∂tgt(x) and J(t, 1, x) = ∂tht(x) .

Now, the result we want to prove can be reformulated as,

(5.12)

∫ t1

t0

∫

S1

‖J(t, 0, x)‖2 dt dx ≤
∫ t1

t0

∫

S1

‖J(t, 1, x)‖2 dt dx

with equality if and only if for almost every x, it holds gt(x) = ht(x) for all t ∈ [t0, t1]. Using a

second-order Taylor expansion of Ψp(c(t, s, x)) with respect to s at s = 0 and denoting by C
def.
=

supt∈[t0,t1] supx∈S1
‖∇2Ψp(x)‖, we have,

Ψp(ht(x)) − Ψp(gt(x)) − 〈∇Ψp(c(t, 0, x)), ∂sc(t, 0, x)〉 ≤ C

2

∫ 1

0

‖∂sc(t, s, x)‖2 ds .

We will integrate in time t and apply the one dimensional Poincaré inequality in the t variable

(5.13)

∫ t1

t0

‖∂sc(t, s, x)‖2 dt ≤ C(t1 − t0)
2

2π2

∫ t1

t0

|∂t‖∂sc(t, s, x)‖|2 dt ,

for every s, x. Since c(t, 0, x) is a solution of the Camassa-Holm equation, one has ∂ttc = −∇Ψp(t).
Thus, we have, integrating in time
∫ t1

t0

Ψp(ht(x)) − Ψp(gt(x)) + 〈∂ttc(t, 0, x), ∂sc(t, 0, x)〉dt ≤ C(t1 − t0)
2

2π2

∫ t1

t0

∫ 1

0

|∂t‖∂sc(t, s, x)‖|2 ds dt .

We also have |∂t‖∂sc(t, s, x)‖|2 ≤ ‖∂tsc(t, s, x)‖2. Then, integrating over S1, the two first terms on
the l.h.s. vanish and integrating by part in time, we get

(5.14)

∫ t2

t1

∫

S1

−〈∂tc(t, 0, x), ∂stc(t, 0, x)〉dt ≤ C(t1 − t0)
2

2π2

∫ t1

t0

∫

S1

∫ 1

0

‖∂tsc(t, s, x)‖2 ds dxdt ,

where we used the fact that ∂sc(t, s, x) is constant in s since the geodesics on the plane are straight

lines. Writing f(s) = 1
2

∫ t1
t0

∫
S1

‖J(t, s, x)‖2 dt, we want to prove f(1) ≥ f(0) and we have

−f ′(0) ≤ C(t1 − t0)
2

2π2

∫ t1

t0

∫

S1

∫ 1

0

‖∂sJ(t, s, x)‖2 ds dxdt .

Therefore, the result is proven if we can show that for some ε > 0

(5.15) f(1) − f(0) − f ′(0) ≥ ε

∫ t1

t0

∫

S1

∫ 1

0

‖∂sJ(t, s, x)‖2 ds dxdt .

We have f(1) − f(0) − f ′(0) =
∫ 1

0
(1 − s)f ′′(s) ds and here f ′′(s) =

∫ t1
t0

∫
S1

‖∂sJ(t, s, x)‖2 dt dx since

∂ssJ = 0 because R2 has vanishing curvature, and also ∂sJ = cste(t, x), a constant w.r.t. s. Hence,
we get

(5.16) f(1) − f(0) − f ′(0) =
1

2

∫ t1

t0

∫

S1

∫ 1

0

‖∂sJ(t, s, x)‖2 ds dxdt .

Therefore,

f(1) − f(0) ≥
(

1

2
− C(t1 − t0)

2

2π2

)∫ t1

t0

∫

S1

∫ 1

0

‖∂sJ(t, s, x)‖2 ds dxdt ,
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which is nonnegative if t1 − t0 ≤ π√
C

. �

Remark 5. The condition on the Hessian is satisfied for smooth paths, see Remark 6. Moreover,
similarly to Brenier’s proof, the constant is sharp since the rotation at unit speed is a particular
solution of the Camassa-Holm equation for which the Hessian is equal to 1 and it stops being a
minimizer at the angle π.

5.2. The Hdiv case in higher dimensions. In the general case, we are left with the geometry of
the cone, and therefore, the map M maps solutions of the geodesic equation on the diffeomorphisms
group for the right-invariant Hdiv metric to solutions of the incompressible Euler equation on the
C(M) for a density which has a singularity at the cone point. In the general case, the geodesic
equation is written as

(5.17)

{
D
Dt ϕ̇ + 2 λ̇

λ ϕ̇ = − 1
2∇gp ◦ ϕ

λ̈r − λrg(ϕ̇, ϕ̇) = −λrp ◦ ϕ .

Viewing the automorphisms (ϕ, λ) of the cone as diffeomorphisms of the cone, the geodesic equation
is close to incompressible Euler equations, with the difference that the automorphisms do not preserve
the Riemannian volume measure on C(M) but another density which has a singularity at the cone
point.

Theorem 24. On the group of diffeomorphisms of the cone, the geodesic equation can be written

(5.18)
D

Dt
(ϕ̇, λ̇r) = −∇Ψp ◦ (ϕ, λr) ,

where Ψp(x, r)
def.
= 1

2r2p(x). Moreover, the diffeomorphisms of C(M) (ϕ, λ) preserve the measure

ν̃
def.
= r−3 dr dvol.

In other words, a solution (ϕ, λ) of (5.18) is a solution of the incompressible Euler equation for the
density r−3−d dvolC(M) where dvolC(M) is the volume form on the cone C(M) and d is the dimension
of M .

Proof. The geodesic equations (5.17) can be rewritten in the form (5.18) since a direct computation
gives ∇Ψp = (1

2∇gp, rp).

The only remaining point is that (ϕ, λ) preserves the measure r−3 dν dr on C(M), if the relation

λ =
√

Jac(ϕ) holds. Indeed, the volume form rθ dν dr is preserved by (ϕ, λ) if and only if the

following equality is satisfied (λr)θλ Jac(ϕ) = rθ, equivalently λθ+3 = 1. It is the case if and only if
θ = −3. �

In particular, this theorem underlines that Autvol(C(M)) = Aut(C(M)) ∩ SDiff ν̃(C(M)). In
remark 5, we mentioned that Aut(C(M)) is a totally geodesic subspace of Diff(C(M)), which explains
the fact that the geodesic equation on Autvol(C(M)) is actually a geodesic equation on SDiff ν̃(C(M)).
We illustrate this situation in Figure 1.

The same result holds on more general Riemannian manifolds. We propose a straightforward
generalization of Brenier’s proof [7] in the case of Euler equation to a Riemannian setting. Note
that, to our knowledge, no previous result was available on minimizing Hdiv geodesics. In the worst
case of our theorem, we require only an L∞ bound on the Jacobian and on the diffeomorphism.

Theorem 25. Let (ϕ(t), λ(t)) be a smooth solution to the geodesic equations (5.18) on the time
interval [t0, t1]. If (t1 − t0)

2|〈w, ∇2Ψp(x, r)w〉| < π2‖w‖2 holds for all t ∈ [t0, t1] and (x, r) ∈
C(M) and w ∈ T(x,r)C(M), then for every smooth curve (ϕ0(t), λ0(t)) ∈ Autvol(C(M)) satisfying
(ϕ0(ti), λ0(ti)) = (ϕ(ti), λ(ti)) for i = 0, 1 and the condition (∗), one has

(5.19)

∫ t1

t0

‖(ϕ̇, λ̇)‖2 dt ≤
∫ t1

t0

‖(ϕ̇0, λ̇0)‖2 dt ,

with equality if and only if the two paths coincide on [t0, t1].

Define δ0
def.
= min{r(x, t) : injectivity radius at (ϕ(t, x), λ(t, x))}, then the condition (∗) is:
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Autvol(C(M))

(Dens(M),WFR) vol

Aut(C(M))

L2(M, C(M))

π(ϕ, λ) = ϕ∗(λ2 vol)

Aut(C(M))

Diff(C(M))

L2(C(M))

(Dens(C(M)),W2) ν̃ = r−3 dvol dr

Diff ν̃(C(M))

Autvol(C(M))

π̃(ψ) = ψ∗(ν̃)

Figure 1. On the left, the picture represents the Riemannian submersion between
Aut(C(M)) and the space of positive densities on M and the fiber above the vol-
ume form is Autvol(C(M)). On the right, the picture represents the automorphism
group Aut(C(M)) isometrically embedded in Diff(C(M)) and the intersection of
Diff ν̃(C(M)) and Aut(C(M)) is equal to Autvol(C(M)).

(1) If the sectional curvature of C(M) can assume both signs or if diam(M) ≥ π, there exists δ
satisfying 0 < δ < δ0 such that the curve (ϕ0(t), λ0(t)) has to belong to a δ-neighborhood of
(ϕ(t), λ(t)), namely

dC(M) ((ϕ0(t, x), λ0(t, x)), (ϕ(t, x), λ(t, x)))) ≤ δ

for all (x, t) ∈ M × [t0, t1] where dC(M) is the distance on the cone.
(2) If C(M) has non positive sectional curvature, then, for every δ < δ0, there exists a short

enough time interval on which the geodesic will be length minimizing.
(3) If M = Sd(1), the result is valid for every path (ϕ̇0, λ̇0).

Remark 6. Importantly, the condition on the Hessian is not empty, i.e. it is fulfilled in our case
of interest: Indeed, when p is a C2 function on M , the Hessian of Ψp(x, r) = 1

2r2p(x) is, in the

orthonormal basis ∂r,
1
r e1, . . . ,

1
r ed where e1, . . . , ed is an orthornormal basis of TxM

(5.20) ∇2Ψp(x, r) =

(
1
2∇2p(x) ∇p(x)
∇pT (x) p(x)

)
,

where ∇p is the gradient of p in the orthornormal basis e1, . . . , ed. Since p is smooth and M is
compact, the Hessian of p is bounded uniformly on C(M).

The proof is postponed in Appendix. The generalization of Brenier’s proof that we propose
is not completely satisfactory in positive curvature or, in the case of negative curvature, because
of the injectivity radius bound. In the former case, the constructed interpolating paths have to
pass through the cone point and therefore these paths c(t, s, x) are not smooth any longer w.r.t. s
and thus Jacobi fields are not smooth a priori. These two limitations could probably be overcome
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using a different strategy than a geodesic homotopy between the two diffeomorphisms. We actually
conjecture that the result holds true without the boundedness assumption.

6. Future directions

In this article, we have presented the geometric link between the Camassa-Holm equation and the
new L2 Wasserstein optimal transport metric between positive Radon measures. We presented an
isometric embedding of the group of diffeomorphism group endowed with the right-invariant Hdiv

metric in the space L2(M, C(M)). This isometric embedding enables to rewrite the Camassa-Holm
equation, via a Madelung transform, as an incompressible Euler equation on the cone. In other
words, the Camassa-Holm equation is a geodesic flow on Autvol(C(M)) for the L2 metric. As an
application, this has also led to a result on the minimizing property of geodesics. The point of view
developed in this paper can be taken to address the variational problem of shortest path for the Hdiv

metric in the sense of Brenier [6, 8], which appears to be a non-trivial problem. Following Brenier,
we will investigate elsewhere the uniqueness of the pressure as in [4]. This isometric embedding and
the polar factorization theorem opens the way to design new numerical simulations of variational
solutions of the Camassa-Holm equation, in the direction of [27, 45].

Following the point of view developed in this article, we plan to rewrite other fluid dynamic
equations as geodesic equations on a submanifold of a space of maps endowed with an L2 norm.
The result may have, as shown for the Camassa-Holm equation, interesting analytical consequences.

Appendix A. Proof of Theorem 25

Proof. To alleviate notations, we denote gt = (ϕ(t), λ(t)) and ht = (ϕ0(t), λ0(t)). Since p can be

choose with zero mean, Ψp(x, r) = 1
2r2p(x) and gt = (ϕ(t),

√
Jac(ϕ(t))), by direct integration, for

every t ∈ [t0, t1],

(A.1)

∫

M

Ψp(gt(x)) dx = 0 .

The same equality holds for ht.
Let s ∈ [0, 1] 7→ c(t, s, x) be a two parameters (t ∈ [t0, t1] and x ∈ M) family of geodesics on C(M)

such that c(t, 0, x) = gt(x) and c(t, 1, x) = ht(x) for every t ∈ [t0, t1] and x ∈ M . This family of
geodesics is uniquely defined if one considers balls which do not intersect the cut locus. Uniformity of
the radius of the balls can be obtained since [t0, t1]×M is compact, which defines δ0. Consequently,
the family of curves c(t, s, x) is a smooth family of geodesics, at least as smooth as gt(x) and ht(x)
are with respect to the parameters t, x. Since ∂tc(t, s, x) is a variation of geodesics, it is a Jacobi
field as a function of s. Thus, we will use the notation J(t, s, x) = ∂tc(t, s, x). Consequently, we
have

(A.2) J(t, 0, x) = ∂tgt(x) and J(t, 1, x) = ∂tht(x) .

Now, the result we want to prove can be reformulated as,

(A.3)

∫ t1

t0

∫

M

‖J(t, 0, x)‖2 dt dx ≤
∫ t1

t0

∫

M

‖J(t, 1, x)‖2 dt dx

with equality if and only if for almost every x, it holds gt(x) = ht(x) for all t ∈ [t1, t2]. We now
use a second-order Taylor expansion of Ψp(c(t, s, x)) with respect to s at s = 0. Denoting by

C
def.
= supt∈[t0,t1] supx∈M ‖∇2Ψpt(x)‖, we have,

Ψp(ht(x)) − Ψp(gt(x)) − 〈∇Ψp(c(t, 0, x), ∂sc(t, 0, x)〉 ≤ C

2

∫ 1

0

‖∂sc(t, s, x)‖2 ds .

Now, one has that ∂sc(t, s, x) vanishes at t = t0 and t = t1. We can therefore apply Poincaré
inequality to ‖∂sc(t, s, x)‖ to obtain

(A.4)

∫ t1

t0

‖∂sc(t, s, x)‖2 dt ≤ C(t1 − t0)
2

2π2

∫ t1

t0

|∂t‖∂sc(t, s, x)‖|2 dt .
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Since ∂t‖∂s‖ = 1
‖∂sc‖ 〈∇t∂sc, ∂sc〉, we have the inequality |∂t‖∂s‖| ≤ ‖∇t∂sc‖ and we get, exchanging

derivatives,

(A.5)

∫ t1

t0

‖∂sc(t, s, x)‖2 dt ≤ C(t1 − t0)
2

2π2

∫ t1

t0

‖J̇(t, s, x)‖2 dt , (t, 0, x)

where J̇ is the covariant derivative of J with respect to s. We thus have

∫ t1

t0

Ψp(c(t, 1, x)) − Ψp(c(t, 0, x)) − 〈∇Ψp(c(t, 0, x)), ∂sc(t, 0, x)〉 ≤ C(t1 − t0)
2

2π2

∫ t1

t0

∫ 1

0

‖J̇(t, s, x)‖2 ds dt .

However, gt(x) = c(t, 0, x) is a solution of ∇t∂tc(t, 0, x) = −∇Ψp(t, 0, x), therefore, an integration
by part w.r.t. t leads to

∫ t1

t0

Ψp(c(t, 1, x)) − Ψp(c(t, 0, x)) − 〈∂tc(t, 0, x), ∇t∂sc(t, 0, x)〉dt ≤ C(t1 − t0)
2

2π2

∫ t1

t0

∫ 1

0

‖J̇(t, s, x)‖2 ds dt .

Last, integrating over M and exchanging once again covariant derivatives gives

∫ t1

t0

∫

M

−〈J(t, 0, x), J̇(t, 0, x)〉dxdt ≤ C(t1 − t0)
2

2π2

∫ t1

t0

∫

M

∫ 1

0

‖J̇(t, s, x)‖2 ds dxdt .

Writing f(s) = 1
2

∫ t1
t0

∫
M ‖J(t, s, x)‖2 dt, we want to prove f(1) ≥ f(0) and we have

−f ′(0) ≤ C(t1 − t0)
2

2π2

∫ t1

t0

∫

M

∫ 1

0

‖J̇(t, s, x)‖2 ds dxdt .

Therefore, the result is proven if we can show

(A.6) f(1) − f(0) − f ′(0) ≥ ε

∫ t1

t0

∫

M

∫ 1

0

‖J̇(t, s, x)‖2 ds dxdt .

The left hand side can be reformulated using f(1) − f(0) − f ′(0) =
∫ 1

0 (1 − s)f ′′(s) ds as

(A.7)

∫ t1

t0

∫

M

∫ 1

0

(1 − s)(‖J̇‖2 − 〈R(∂sc, J)J, ∂sc〉) ds dxdt ≥ ε

∫ t1

t0

∫

M

∫ 1

0

‖J̇‖2 ds dxdt ,

with ε = C(t1−t0)
2

2π2 .

We now need to distinguish between two cases, the first one being when
∫ t1

t0

∫
M

∫ 1

0
‖J̇‖2 ds dxdt ≥

1. In this case, we use the inequality

(A.8) ‖J(t, 1, x)‖2 ≤ 2‖J(t, 0, x)‖2 + 2

∫ 1

0

‖J̇(t, s, x)‖2 ds ,

in order to get
(A.9)

−
∫ t1

t0

∫

M

∫ 1

0

(1 − s)〈R(∂sc, J)J, ∂sc〉ds dxdt ≤ δ2

∫ t1

t0

∫

M

∫ 1

0

Ksup(2‖J(0)‖2 + 2‖J̇(s)‖2) ds dxdt ,

where δ = sup(x,t)∈M×[t0,t1] ‖∂sc(t, 0, x)‖ and Ksup is a bound on max(K(y), 0) with K(y) is the

maximum of the sectional curvatures at y ∈ C(M) for y in a bounded neighborhood of
⋃

t∈[t0,t1]

gt(M)

which is compact. Then, there exists δ sufficiently small such that for every (x, t) ∈ M × [t0, t1],

(A.10)

∫ t1

t0

∫

M

∫ 1

0

(1 − s)〈R(∂sc, J)J, ∂sc〉ds dxdt ≤ 1 ≤
∫ t1

t0

∫

M

∫ 1

0

‖J̇‖2 ds dxdt .
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Now we study the second case, that is when
∫ t1

t0

∫
M

∫ 1

0 ‖J̇‖2 ds dxdt ≤ 1. Applying once again

inequality (A.5), we obtain, using the Cauchy-Schwarz inequality,

(A.11)

∫ t1

t0

∫

M

∫ 1

0

(1 − s)〈R(∂sc, J)J, ∂sc〉ds dxdt ≤ εKsup

∫ t1

t0

∫

M

∫ 1

0

‖J̇‖2‖J‖2 ds dxdt

≤ εKsup

(∫ t1

t0

∫

M

∫ 1

0

‖J̇‖4 ds dxdt

)1/2(∫ t1

t0

∫

M

∫ 1

0

‖J‖4 ds dxdt

)1/2

.

We now remark that for each t, x, the space of Jacobi fields is finite dimensional and consequently,
norms are equivalent so that there exists a positive constant m that depends on t, x such that

(A.12)

(∫ 1

0

‖J̇‖4 ds

)1/2

≤ m

∫ 1

0

‖J̇‖2 ds

and

(A.13)

(∫ 1

0

‖J‖4 ds

)1/2

≤ m

∫ 1

0

‖J‖2 ds .

By compactness of M × [t0, t1], the constant m can be chosen independently of t, x and therefore,
there exists a constant m′ such that

(A.14)

∫ t1

t0

∫

M

∫ 1

0

(1 − s)〈R(∂sc, J)J, ∂sc〉ds dxdt ≤

εKsupm
′
(∫ t1

t0

∫

M

∫ 1

0

‖J̇‖2 ds dxdt

)(∫ t1

t0

∫

M

∫ 1

0

‖J‖2 ds dxdt

)
.

Then, inequality (A.8) leads to

(A.15)

∫ t1

t0

∫

M

∫ 1

0

(1 − s)〈R(∂sc, J)J, ∂sc〉ds dxdt ≤ εKsupCm′
(∫ t1

t0

∫

M

∫ 1

0

‖J̇‖2 ds dxdt

)
,

with M =
(∫ t1

t0

∫
M

2‖J(0)‖2 + 2
∫ 1

0
‖J̇(s)‖2 ds dxdt

)
.

Let us recall that our goal is to prove the existence of ε > 0 such that

(A.16)

∫ t1

t0

∫

M

∫ 1

0

(1 − s)‖J̇‖2 ds dxdt ≥ ε

∫ t1

t0

∫

M

∫ 1

0

‖J̇‖2 + (1 − s)〈R(∂sc, J)J, ∂sc〉ds dxdt ,

which, in the first case, reads

(A.17)

∫ t1

t0

∫

M

∫ 1

0

(1 − s)‖J̇‖2 ds dxdt ≥ 2ε

∫ t1

t0

∫

M

∫ 1

0

‖J̇‖2 ds dxdt ,

and in the second case

(A.18)

∫ t1

t0

∫

M

∫ 1

0

(1 − s)‖J̇‖2 ds dxdt ≥ ε(1 + KsupCm′)
∫ t1

t0

∫

M

∫ 1

0

‖J̇‖2 ds dxdt .

The existence of ε follows from the fact that the space of Jacobi fields is finite dimensional and the
fact M × [t0, t1] is compact. It thus proves the result in the general case.

When the cone C(M) has non-positive sectional curvature, Ksup = 0 therefore, we only have to
prove the existence of ε such that

(A.19)

∫ t1

t0

∫

M

∫ 1

0

(1 − s)‖J̇‖2 ds dxdt ≥ ε

∫ t1

t0

∫

M

∫ 1

0

‖J̇‖2 ds dxdt ,

which does not require an a priori bound on the neighborhood.
When M = Sd(1), C(M) is flat and δ0 = ∞ and Jacobi fields are constant and the constant ε

does not depend on the neighborhood and is equal to 1/2 as in Brenier’s proof. �
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l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble), 16(fasc. 1):319–361, 1966.

[3] J-D. Benamou and Y. Brenier. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer
problem. Numerische Mathematik, 84(3):375–393, 2000.

[4] Y. Brenier. The dual least action problem for an ideal, incompressible fluid. Archive for Rational Mechanics and
Analysis, 122(4):323–351, 1993.

[5] Yann Brenier. Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl.
Math., 44(4):375–417, 1991.

[6] Yann Brenier. Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler
equations. Comm. Pure Appl. Math., 52(4):411–452, 1999.

[7] Yann Brenier. Topics on hydrodynamics and volume preserving maps. Handbook of Mathematical Fluid Dynamics,
2:55 – 86, 2003.

[8] Yann Brenier. Remarks on the minimizing geodesic problem in inviscid incompressible fluid mechanics. Calc.
Var. Partial Differential Equations, 47(1-2):55–64, 2013.

[9] Alberto Bressan and Adrian Constantin. Global conservative solutions of the Camassa-Holm equation. Arch.
Ration. Mech. Anal., 183(2):215–239, 2007.

[10] Alberto Bressan and Massimo Fonte. An optimal transportation metric for solutions of the Camassa-Holm equa-
tion. Methods Appl. Anal., 12(2):191–219, 2005.

[11] D. Burago, Y. Burago, and S. Ivanov. A course in metric geometry. American Mathematical Soc., 2001.
[12] Roberto Camassa and Darryl D. Holm. An integrable shallow water equation with peaked solitons. Phys. Rev.

Lett., 71(11):1661–1664, 1993.
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GENERALIZED COMPRESSIBLE FLOWS AND SOLUTIONS OF THE

H(div) GEODESIC PROBLEM

THOMAS GALLOUËT, ANDREA NATALE AND FRANÇOIS-XAVIER VIALARD

Abstract. We study the geodesic problem on the group of diffeomorphism of a domain M ⊂
Rd, equipped with the H(div) metric. The geodesic equations coincide with the Camassa-

Holm equation when d = 1, and represent one of its possible multi-dimensional generalizations
when d > 1. We propose a relaxation à la Brenier of this problem, in which solutions are

represented as probability measures on the space of continuous paths on the cone over M . We

use this relaxation to prove that smooth H(div) geodesics are globally length minimizing for
short times. We also prove that there exists a unique pressure field associated to solutions of

our relaxation. Finally, we propose a numerical scheme to construct generalized solutions on

the cone and present some numerical results illustrating the relation between the generalized
Camassa-Holm and incompressible Euler solutions.

1. Introduction

The H(div) minimizing geodesic problem on the group of diffeomorphisms of a compact
domain in Rd can be stated as follows:

Problem 1.1 (H(div) geodesic problem). Let M be a compact domain in Rd and let Diff(M)
be the group of smooth diffeomorphisms of M . Denote by ρ0 the Lebesgue measure on M . Given
h ∈ Diff(M), find a smooth curve t ∈ [0, T ] 7→ ϕt ∈ Diff(M) satisfying

(1.1) ϕ0 = Id , ϕT = h ,

and minimizing the action
∫ T

0
l(u) dt, with Lagrangian given by

(1.2) l(u) =

∫

M

|u|2 dρ0 +
1

4

∫

M

|div u|2 dρ0 ,

where u : [0, T ] × M → Rd is the Eulerian velocity field defined by the equation ∂tϕt(·) =
u(t, ϕt(·)).

Michor and Mumford proved in [31] that the H(div) Lagrangian (1.2) defines a non-vanishing
distance on the diffeomorphism group, in contrast to the L2 case for which the metric is degen-
erate (i.e., there exist non trivial maps h for which the infimum of the action vanishes). Note
also that in dimension d ≥ 2 the distance induced by the Hs metric vanishes if and only if s < 1,
as recently proved by Jerrard and Maor [23]. Local well-posedness and existence of H(div)
geodesics is guaranteed if h is close to the identity Id in a sufficiently strong topology, due to
Ebin and Marsden [15].

In one dimension, the Lagrangian in (1.2) is equivalent to the square of the H1 norm, and if
we replace M by the real line, the Euler-Lagrange equations coincide with the Camassa-Holm
(CH) equation. For the choice of coefficients in (1.2) the CH equation reads as follows:

(1.3) ∂tu−
1

4
∂txxu+ 3u∂xu−

1

2
∂xxu∂xu−

1

4
u∂xxxu = 0 .

This equation was shown to model shallow water waves [10], and in this context, the Lagrangian
in (1.2) yields the appropriate generalization to a higher dimensional domain in Rd [25]. The
CH equation has been intensively studied in literature, mostly because it represents an example
of bi-Hamiltonian and integrable equation [16], and its smooth solution blow up in finite time in
a process known as wave breaking. Furthermore, even weak solutions cannot be defined globally
[32], their blow up being related to the emergence of non-injective Lagrangian maps.
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Problem 1.1 was recentently reinterpreted as an L2 geodesic problem on the cone over M
[17], establishing therefore a link with the incompressible Euler equations which share a similar
structure, as shown in the pioneering work of Arnold [4].

1.1. Contributions. In this paper we construct a relaxation of problem 1.1 inspired by Brenier’s
relaxation of the incompressible Euler equation. We call the minimizers of such a relaxation
generalized solutions. This approach allows us to obtain several results on the H(div) geodesic
problem. In particular, we show that:

• if M is convex, smooth H(div) geodesics are globally length-minimizing for short times
and in any dimension (theorem 6.4). This result generalizes the one in [17], which was
only valid on the circle of unit radius S1

1 and it was local otherwise;
• on the torus S1×S1, there exists h ∈ Diff(S1×S1) such that the infimum of the action

in problem 1.1 cannot be attained by any smooth flow (theorem 7.11); on the contrary,
for the same h there exists a generalized solution that arises as the limit of a minimizing
sequence of smooth flows (theorem 7.12);

• there exists a unique pressure field in the sense of distribution associated with generalized
solutions (theorem 5.3). To the best of the authors’ knowledge, the pressure field we
consider is a variable that has not been studied before in the literature of the CH equation
or theH(div) geodesic problem (see remark 3.1). It appears however as a natural variable
in the generalized setting.

1.2. The a-b-c metric. The Lagrangian in (1.2) is a particular instance of a class of right-
invariant Lagrangians on the diffeomorphism group of M considered in [24], which for d = 3 can
be written as

(1.4) l(u) = a

∫

M

|u|2 dρ0 + b

∫

M

|div u|2 dρ0 + c

∫

M

|curlu|2 dρ0 ,

where a, b, c are positive constants. Such Lagrangians give rise to several important nonlinear
evolution equations, including the EPDiff equation for the H1 Sobolev norm of vector fields and
the Euler-α model [19, 20], both of which have also been regarded as possible multi-dimensional
versions of the CH equation.

1.3. The Ḣ1 metric and the Hunter-Saxton equation. The Hunter-Saxton equation [22,

24] corresponds to choosing a = c = 0 in (1.4), in which case the metric is denoted by Ḣ1,
and in one dimension. Lenells provided a simple description of the solutions to this equation as
geodesic flows on the infinite-dimensional sphere of L2 functions with constant norm [27]. This
was established by constructing an explicit isometry between the group of orientation-preserving
diffeomorphism of the circle S1 (modulo rotations) and a subset of the sphere, given by the map

(1.5) ϕ 7→
√
∂xϕ .

This geometric point of view was particularly fruitful and led to a number of important results,
namely a bound on the diameter of the diffeomeorphism group endowed with the Ḣ1 metric;
that its curvature is positive and constant; that geodesics are gobally length-minimizing. Lenell’s
interpretation still holds when the domain is a higher dimensional manifold, as showed in [24],
which allowed the authors to prove complete integrability of the geodesic equations and that all
solutions blow up in finite time. The simplifications that arise for the Hunter-Saxton equation
are related to the fact that the Ḣ1 descends to a non-degenerate metric on the space of densities
via the isometry (1.5). This however does not apply to the full H1 metric or the H(div) metric
because of the presence of the transport term, given by the L2 norm of the velocity.

1.4. The L2 metric and the incompressible Euler equations. The L2 metric was used by
Arnold [4] to interpret the solutions to the incompressible Euler equations as geodesic curves
on the group of volume-perserving diffeomorphisms Diffρ0(M). As for the H(div) problem,
the existence of length-minimizing geodesics is guaranteed a priori only in a sufficiently strong
topology [15]. In fact, Shnirelman proved that the infimum is generally not attained when d ≥ 3
and that even when d = 2 there exist final configurations h which cannot be connected to the
identity map with finite action [35]. This motivated Brenier to adopt an extrinsic approach,
viewing

(1.6) Diffρ0(M) ⊂ {ϕ ∈ L2(M ;M) ; ϕ#ρ0 = ρ0}
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and reinterpreting incompressible flows as probability measures µ on Ω(M), the space of con-
tinuous curves on the domain x : t ∈ [0, T ]→ xt ∈M , satisfying

(1.7) (et)#µ = ρ0 ,

where et : Ω(M)→M is the evaluation map at time t defined by et(x) = xt, and ρ0 is normalized
so that ρ0(M) = 1. In this interpretation, the marginals (e0, et)#µ are probability measures on
M ×M and describe how particles move and spread their mass across the domain. Classical
deterministic solutions, i.e. curves of volume preserving diffeomorphisms t 7→ ϕt, correspond to
the case where the marginals (e0, et)#µ are concentrated on the graph of ϕt. Then, equation
(1.7) is equivalent to the incompressibility constraint ϕ#ρ0 = ρ0. Note also that formulating the
incompressibility via the push-forward of ϕ, we allow changes in orientation. The minimization
problem in terms of generalized flows consists in minimizing the action

(1.8)

∫

Ω(M)

∫ T

0

1

2
|ẋt|2 dtdµ(x)

among generalized incompressible flows, with the constraint (e0, eT )#µ = (Id, h)#ρ0. Brenier
proved that smooth solutions correspond to the unique minimizers of the generalized problem
for sufficiently small times, and are therefore globally length-minimizing [7]. On the other hand,
for any coupling there exists a unique pressure, defined as a distribution (but that can actually
be defined as a function [1]), associated with generalized solutions.

1.5. The H(div) metric as an L2 cone metric. The link between the incompressible Euler
equation and the H(div) geodesic problem was established in [17], where it was proven that
problem 1.1 can be reformulated as a geodesic problem for the L2 cone metric (see equation (3.3);
see also section 2.2 for the cone metric structure) on a subgroup of the diffeomorphism group of
M × R>0. More precisely, Lagrangian flows are represented by time dependent automorphisms
on M × R>0, i.e. maps in the form

(1.9) (x, r) ∈M × R>0 7→ (ϕ(x), λ(x)r) ∈M × R>0 ,

where ϕ : M →M and λ : M → R>0, satisfying

(1.10) ϕ#(λ2ρ0) = ρ0 .

This condition relates ϕ and λ by requiring λ =
√
|Jac(ϕ)|. Importantly, in this picture we

cannot capture the blow up of solutions as induced by peakon collisions, as in this case the
Jacobian would locally vanish. In addition, the metric space M × R>0 equipped with the cone
metric is not complete. We are then led to work with the cone C = (M×R≥0)/(M×{0}), which
allows us to represent solutions with vanishing Jacobian by paths on the cone reaching the apex.

Interestingly, the decoupling between the Lagrangian flow map and its Jacobian has also been
used in [26] to construct global weak solutions of the CH equation. However, in their case,
one continues solutions after the blowup by allowing the square root of the Jacobian to become
negative, which does not occur in the formulation described above.

1.6. Generalized compressible flows and unbalanced optimal transport. By analogy
with the incompressible Euler case, we reformulate theH(div) geodesic problem using generalized
flows interpreted as probability measures µ on the space Ω(C) of continuous paths on the cone
z : t ∈ [0, T ]→ zt = [xt, rt] ∈ C. Our relaxed formulation consists in minimizing the action

(1.11)

∫

Ω(C)

∫ T

0

|żt|2gC dtdµ(z)

among generalized flows satisfying appropriate constraints enforcing a generalized version of
(1.10) and the coupling between initial and final times. Choosing the correct form for such
constraints is not trivial. It is the first contribution of the paper to define a formulation that
allows to prove existence of minimizers while retaining uniqueness for short time in the smooth
setting.

It should be noted that the cone construction has been developed and used extensively in
[28, 12] in order to characterize the metric side of the Wasserstein-Fisher-Rao (WFR) distance
(which is also called Hellinger-Kantorovich distance) on the space of positive Radon measures.
In fact, as noted in [17] this has the same relation to the CH equation as the Wasserstein L2

distance does to the incompressible Euler equations. In the geodesic problem associated the
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WFR distance a relation similar to (1.10) is used to prescribe the initial and final density. The
resulting problem coincides with the so-called optimal entropy-transport problem, a widespread
form of unbalanced optimal transport based on the Kullback-Leibler divergence [12, 11, 28].

Taking advantage of the optimal transport point of view, we propose a numerical scheme
based on multi-marginal optimal transport and entropic regularization [13, 5, 6] to simulate the
solutions of problem 1.1.

1.7. Structure of the paper. In section 2, we introduce the notations and the needed back-
ground. In section 3, we recall the L2 variational formulation of the H(div) geodesic problem.

In section 4 we introduce our relaxation, for which we prove existence of solutions as gener-
alized compressible flows. We also show that our generalized solutions can be decomposed into
two parts, one of which involves directly the cone singularity. When this latter is not trivial, it
implies the appearance and disappearance of mass in the domain; we refer to such minimizers
as singular solutions.

In section 5 we prove that for any boundary conditions, there always exists a unique pressure
field defined as a distribution on (0, T )×M associated with any given generalized solution.

In section 6 we prove that smooth solutions of the H(div) geodesic equations are the unique
minimizers of our generalized model for sufficiently short times. This proves that such solutions
are also globally length-minimizing on Diff(M).

In section 7 we show that for d ≥ 2, singular solutions emerge naturally from the continuous
formulation for appropriate (smooth) boundary conditions. This proves that the infimum of the
action in problem 1.1 may not be attained. We construct approximations for such minimizers
using a particular form of peakon collision which arises from the Hunter-Saxton equation.

Finally, in section 8 we construct a numerical scheme based on entropic regularization and
Sinkhorn algorithm to compute generalized H(div) geodesics.

2. Notation and preliminaries

In this section, we describe the notation and some basic results used throughout the paper.
Because of the similarities between our setting and the one of [28], we will adopt a similar
notation for the cone construction and the measure theory objects we will employ.

2.1. Function spaces. Given two metric spaces X and Y , we denote by C0(X;Y ) the space
of continuous functions f : X → Y , by C0(X) the space of real-valued continuous functions
f : X → R, and by C0

b (X) the subset of bounded functions f ∈ C0(X). If X is compact C0(X)
is a Banach space with respect to the sup norm ‖ · ‖C0 . The set of Lipschitz continuous function
on X is denoted by C0,1(X) and the associated seminorm and norm are given respectively by

(2.1) |f |C0,1 := sup
x,y∈X,x 6=y

|f(x)− f(y)|
dX(x, y)

, ‖f‖C0,1 := ‖f‖C0 + |f |C0,1 ,

where dX denotes the distance function on X.
If X is a subset of Rd, we use standard notation for Sobolev spaces on X. In particular,

H(div;X) or simply H(div) denotes the space of L2 vector fields f : X → Rd whose divergence
div(f) is in L2, with squared norm given by ‖f‖2L2 + ‖div f‖2L2 (which is equivalent to (1.2)).
Moreover, we denote by Diff(X) the group of smooth diffeomorphisms of X.

2.2. The cone and metric structures. Throughout the paper, M will denote the closure of
an open bounded set in Rd with Lipschitz boundary. Occasionally, we will also consider the case
M = S1

R := R/2πRZ the circle of radius R, or M = T 2
R1,R2

:= S1
R1
× S1

R2
the torus with radii

R1, R2 > 0. We will denote by g the Euclidean metric tensor on M and with | · | the Euclidean
norm. We denote by C := (M × R≥0)/(M × {0}) the cone over M . A point on the cone is an
equivalence class p = [x, r], where the equivalence relation is given by

(2.2) (x1, r1) ∼ (x2, r2)⇔ (x1, r1) = (x2, r2) or r1 = r2 = 0 .

The distinguished point of the cone [x, 0] is the apex of C and it is denoted by o. Every point on
the cone different from the apex can be identified with a couple (x, r) where x ∈M and r ∈ R>0.
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Moreover, we fix a point x̄ ∈M and we introduce the projections πx : C →M and πr : C → R≥0

defined by

(2.3) πx([x, r]) =

{
x if r > 0 ,
x̄ if r = 0 ,

πr([x, r]) = r .

We endow the cone with the metric tensor gC = r2g+ dr2, defined on M ×R>0. We denote the
associated norm by | · |gC . All differential operators, e.g., ∇, div and so on, are computed with
respect to the Euclidean metric on M ; we will use the superscript gC to indicate when they are
computed with respect to the cone metric. The distance on the cone dC : C × C → R≥0 is given
by

(2.4) dC([x1, r1], [x2, r2])2 = r2
1 + r2

2 − 2r1r2 cos(min(|x1 − x2|, π))

(see, for example, definition 3.6.16 in [9]). The closed subset of the cone composed of points
below a given radius R > 0 is denoted by CR, or more precisely

(2.5) CR := {[x, r] ∈ C ; r ≤ R} .
Given an interval I ⊂ R, we denote by C0(I; C) and AC(I; C) the spaces of, respectively,

continuous and absolutely continuous curves z : t ∈ I → zt ∈ C. We will generally use the
notation

(2.6) x : t ∈ I → xt = πx(zt) ∈M , r : t ∈ I → rt = πr(zt) ∈ [0,+∞) ,

so that z = [x, r] and zt = [xt, rt]. Note that if z is continuous (resp. absolutely continuous),
then so is the path r but not x. However, x is continuous (resp. locally absolutely continuous)
when restricted to the open set {t ∈ I; rt > 0}. Then, if we define ż : t ∈ I → żt ∈ Rd+1 by

(2.7) żt =

{
(ẋt, ṙt) if rt > 0 and the derivatives exist,
(0, 0) otherwise,

we have that |żt|gC coincides for a.e. t ∈ I with the metric derivative of z with respect to the
distance dC [28]. We denote by ACp(I; C) the space of absolutely continuous curves such that
|ż|gC ∈ Lp(I). Then, the following variational formula for the distance function holds

(2.8) dC(p, q)
2 = inf

{∫ 1

0

|żt|2gC dt ; z ∈ AC2([0, 1]; C) , z0 = p , z1 = q

}
.

We will extensively use the class of homogeneous functions on the cone defined as follows. A
function f : Cn → R is p-homogeneous (in the radial direction) if for any constant λ > 0 and for
all n-tuples ([x1, r1], . . . , [xn, rn]) ∈ Cn,

(2.9) f([x1, λr1], . . . , [xn, λrn]) = λpf([x1, r1], . . . , [xn, rn]) .

In particular, a p-homogeneous function f : C → R satisfies f([x, λr]) = λpf([x, r]). Similarly,
a functional σ : C0(I; C) → R is p-homogeneous if for any constant λ > 0 and for any path
z ∈ C0(I; C),
(2.10) σ(t 7→ [xt, λrt]) = λpσ(z) ,

where z : t ∈ I → [xt, rt] ∈ C.

2.3. Measure theoretic background. Let X be a Polish space, i.e. a complete and separable
metric space. We denote by M(X) the set of non-negative and finite Borel measures on X.
The set of probability measures on X is denoted by P(X). Let Y be another Polish space and
F : X → Y a Borel map. Given a measure µ ∈ M(X) we denote by F#µ ∈ M(Y ) the push-
forward measure defined by (F#µ)(A) := µ(F−1(A)) for any Borel set A ⊂ Y . Given a Borel
set B ⊂ X we let µ B the restriction of µ to B defined by µ B(C) := µ(B ∩C) for any Borel
set C ⊆ X. Note that we will generally use bold symbols to denote measures on product spaces,
e.g., µ ∈M(X × . . .×X).

We endow P(X) with the topology induced by narrow convergence, which is the convergence
in duality with the space of real-valued continuous bounded functions C0

b (X). In other words, a
sequence µn ∈ P(X), n ∈ N, is said to converge narrowly to µ ∈ P(X) if for any f ∈ C0

b (X)

(2.11) lim
n→+∞

∫

X

f dµn =

∫

X

f dµ .
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In practice, however, to check for narrow convergence it is sufficient to verify equation (2.11)
for all bounded Lipschitz continuous functions. With such a topology, P(X) can be identified
with a subset of [C0

b (X)]∗ with the weak-* topology (see Remark 5.1.2 in [3]). In addition,
given a lower semi-continuous function f : X → R∪{+∞}, bounded from below, the functional
F : P(X)→ R ∪ {+∞} defined by

(2.12) F(µ) :=

∫

X

f dµ

is also lower-semicontinuous (see Lemma 1.6 in [34]) .
As usual in this setting, we will use Prokhorov’s theorem for a characterization of compact

subsets of P(X) endowed with the narrow topology.

Theorem 2.1 (Prokhorov’s theorem). A set K ⊂ P(X) is relatively sequentially compact in
P(X) if and only if it is tight, i.e. for any ε > 0 there exists a compact set Kε ⊂ X such that
µ(X \Kε) < ε for any µ ∈ K.

We also need a criterion to pass to the limit when computing integrals of unbounded functions:
for this will use the concept of uniform integrability. Given a set K ⊂ P(X), we say that a Borel
function f : X → R≥0 ∪ {+∞} is uniformly integrable with respect to K if for any ε > 0 there
exists a k > 0 such that, for any µ ∈ K,

(2.13)

∫

f(x)>k

f(x) dµ(x) < ε .

Lemma 2.2 (Lemma 5.1.7 in [3]). Let {µn}n∈N be a sequence in P(X) narrowly convergent to
µ ∈ P(X) and let f ∈ C0(X). If |f | is uniformly integrable with respect to the set {µn}n∈N then

(2.14) lim
n→+∞

∫

X

f dµn =

∫

X

f dµ .

For a fixed T > 0, we will denote by Ω(X) := C0([0, T ];X) the space of continuous paths
on X. This is a Polish space so that we can use the tools introduced in this section also for
probability measures µ ∈ P(Ω(X)). We call such probability measures generalized flows or also
dynamic plans. When X = C, where C is the cone over M ⊂ Rd, we will often use Ω to denote
Ω(C).

Since we will work with homogeneous functions on the cone, we also introduce the space of
probability measures Pp(X), for p > 0, defined by

(2.15) Pp(X) :=

{
µ ∈ P(X) ;

∫

X

dX(x, x̄)p dµ(x) < +∞ for some x̄ ∈ X
}
.

Then, if µ ∈ Pp(Cn) it is easy to verify that any locally-bounded p-homogeneous function on Cn
is µ-integrable.

Finally, we will denote by ρ0 the Lebesgue measure on M normalized so that ρ0(M) = 1.

3. The variational formulation on the cone

In this section we describe the geometric structure underlying problem 1.1 using the group
of automorphisms of the cone. Such a formulation was introduced in [17] and it was used to
interpret the CH equation as an incompressible Euler equations on the cone. In this section we
will only focus on smooth solutions, but we will later use the variational interpretation presented
here to guide the construction of generalizedH(div) geodesics. We will keep the discussion formal
at this stage and we will use some standard geometric tools and notation commonly adopted in
similar contexts.

For any ϕ ∈ Diff(M) and λ ∈ C∞(M ;R>0), we let (ϕ, λ) : C → C be the map defined by
(ϕ, λ)([x, r]) = [ϕ(x), λ(x)r]. The automorphism group Aut(C) is the collection of such maps,
i.e.

(3.1) Aut(C) = {(ϕ, λ) : C → C; ϕ ∈ Diff(M), λ ∈ C∞(M ;R>0)} .
The group composition law is given by

(3.2) (ϕ, λ) · (ψ, µ) = (ϕ ◦ ψ, (λ ◦ ψ)µ) ,
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the identity element is (Id, 1), where Id is the identity map on M , and the inverse is given by
(ϕ, λ)−1 = (ϕ−1, λ−1 ◦ ϕ−1). The tangent space of Aut(C) at (ϕ, λ) is denoted by T(ϕ,λ)Aut(C)
and it can be identified with the space of vector fields C∞(M ;Rd+1). The collection all the
tangent spaces is the tangent bundle TAut(C). We endow TAut(C) with the L2(M ;TC) metric

inherited from gC . This is defined as follows: given (ϕ̇, λ̇) ∈ T(ϕ,λ)Aut(C),

(3.3) ‖(ϕ̇, λ̇)‖2L2(M ;TC) :=

∫

M

(λ2|ϕ̇|2 + λ̇2) dρ0 ,

where | · | is the Euclidean norm and ρ0 is the Lebesgue measure on M normalized so that
ρ0(M) = 1.

In [17] the authors found that the H(div) geodesic equations on M coincide with the geodesic
equation on the subgroup Autρ0(C) ⊂ Aut(C) defined as follows:

(3.4) Autρ0(C) := {(ϕ, λ) ∈ Aut(C) ;ϕ#(λ2ρ0) = ρ0} .
In other words, the group Autρ0(C) can be regarded as the configuration space for the H(div) ge-
odesic problem in the same way as the Diffρ0(M) is the configuration space for the incompressible
Euler equations, with

(3.5) Diffρ0(M) := {ϕ ∈ Diff(M) ;ϕ#ρ0 = ρ0} .
In order to see this, we first observe that the L2(M ;TC) metric is right invariant when

restricted to Autρ0(C).In particular, for any (ψ, ϑ) ∈ Autρ0(C), consider the right translation
map R(ψ,ϑ) : Autρ0(C)→ Autρ0(C) defined by R(ψ,ϑ)(ϕ, λ) = (ϕ, λ) · (ψ, ϑ). Its tangent map at
(ϕ, λ) is given by

(3.6) TR(ψ,µ)(ϕ̇, λ̇) = (ϕ̇ ◦ ψ, (λ̇ ◦ ψ)ϑ).

Then, it is easy to check that ‖TR(ψ,ϑ)(ϕ̇, λ̇)‖2L2(M ;TC) = ‖(ϕ̇, λ̇)‖2L2(M ;TC). Geodesics on

Autρ0(C) correspond to stationary paths on TAutρ0(C) for the action functional

(3.7)

∫ T

0

L((ϕ, λ), (ϕ̇, λ̇)) dt

for a given T > 0, where the Lagrangian L((ϕ, λ), (ϕ̇, λ̇)) = ‖(ϕ̇, λ̇)‖2L2(M ;TC). Define the Eulerian

velocities (u, α) ∈ T(Id,1)Aut(C) by

(3.8) (u, α) = TR(ϕ,λ)−1(ϕ̇, λ̇) = (ϕ̇ ◦ ϕ−1, (λ̇λ−1) ◦ ϕ−1) .

In terms of these variables the constraint ϕ#(λ2ρ0) = ρ0 becomes 2α = div u, since for any
f ∈ C∞(M),

(3.9) 0 =
d

dt

∫

M

f dϕ#(λ2ρ0) =

∫

M

(−div u+ 2α)f dρ0 .

Moreover, by right invariance,

(3.10) L((ϕ, λ), (ϕ̇, λ̇)) = L((Id, 1), (u, α)) =

∫

M

|u|2 +
1

4
|div u|2 dρ0 ,

which is the H(div) norm. Note that the coefficient 1/4 is directly related to the choice of gC as
cone metric. Using different coefficients in gC we can obtain the general form of the Lagrangian
in equation (1.4) with c = 0. Introducing P as the Lagrange multiplier for the constraint
ϕ#(λ2ρ0) = ρ0, the Euler-Lagrange equations associated with L read as follows

(3.11)

{
λϕ̈+ 2λ̇ϕ̇+ 1

2λ∇P ◦ ϕ = 0 ,

λ̈− λ|ϕ̇|2 + λP ◦ ϕ = 0 ,

which can be expressed in terms of (u, α) by composing both equation with ϕ−1, yielding

(3.12)

{
u̇+∇uu+ 2uα = − 1

2∇P ,
α̇+ u · ∇α+ α2 − |u|2 = −P .

In one dimension, using the relation α = div u/2, this finally gives the CH equation for u, i.e.
equation (1.3).
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Remark 3.1. Note that in the literature for the CH equation the “pressure field” is sometimes
defined in a different way so that, when M is one-dimensional, the first equation in (3.12) can
be written as

(3.13) ∂tu+ u∂xu = −∂xp ,
for an appropriate function p = (Id − 1

4∂xx)−1(u2 + 1
8 (∂xu)2) (see, e.g., [21]). Throughout the

paper we will instead intend by pressure the Lagrange multiplier P considered above, which is
related to p by

(3.14) P = 2p− u2 .

In section 5 we will prove that the pressure P is uniquely defined for minimizers of the H(div)
geodesic problem. On the other hand, we cannot prove the same result for p, since the flow ϕ
and as a consequence the velocity field u may not be well-defined for generalized solutions (see
the explicit examples of generalized solutions in section 7).

4. The generalized H(div) geodesic formulation

In section 3 we recalled the interpretation of the H(div) metric as an L2 metric on Autρ0(C),
which is defined in (3.4). Then, we can reformulate problem 1.1 as follows:

Problem 4.1 (H(div) geodesic problem on the cone). Given a diffemorphism h ∈ Diff(M), find
a smooth curve t ∈ [0, T ] 7→ (ϕt, λt) ∈ Autρ0(C) satisfying

(4.1) (ϕ0, λ0) = (Id, 1) , (ϕT , λT ) = (h,
√
|Jac(h)|) ,

and minimizing the action in equation (3.7).

As already pointed out in [17], there is a remarkable analogy between this problem and
Arnold’s geometric interpretation of the incompressible Euler equations [4]. This suggests that
adapting to this problem Brenier’s concept of generalized flow could be a successful strategy to
characterize its minimizers. In this section we follow this path and in particular we formulate
the generalized H(div) geodesic problem and prove existence of solutions.

By generalized flow or dynamic plan we mean a probability measure on the space of continuous
paths of the cone µ ∈ P(Ω). This is a generalization for curves on the automorphism group since
for any smooth curve (ϕ, λ) : t ∈ [0, T ] → (ϕt, λt) ∈ Autρ0(C), we can associate the generalized
flow µ defined by

(4.2) µ = (ϕ, λ)#ρ0 ,

where we recall that the Lebesgue measure ρ0 is normalized in such a way that ρ0(M) = 1. More
explicitly, for any Borel functional F : Ω→ R,

(4.3)

∫

Ω

F(z) dµ(z) =

∫

M

F([ϕ(x), λ(x)])dρ0(x) ,

where [ϕ(x), λ(x)] : t ∈ [0, T ]→ [ϕt(x), λt(x)] ∈ C.
The condition (ϕt)#λ

2
tρ0 = ρ0 is equivalent to requiring λt =

√
|Jac(ϕt)|. We want to

generalize this condition for arbitrary µ ∈ P(Ω). Let et : Ω→ C be the evaluation map at time
t ∈ [0, T ]. Then, if µ is defined as in (4.2), we have

(4.4) h2
t (µ) := (πx)#[r2(et)#µ] = ρ0 .

In fact, for any f ∈ C0(M),

(4.5)

∫

M

f dh2
t (µ) =

∫

Ω

f(xt)r
2
t dµ(z)

=

∫

Ω

f(xt)r
2
t d(ϕ, λ)#ρ0

=

∫

M

f ◦ ϕtλ2
t dρ0

=

∫

M

f d(ϕt)#λ
2
tρ0

=

∫

M

f dρ0 ,
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where for any path z and any time t, xt := πx(zt) and rt := πr(zt). By similar calculations, we
also obtain

(4.6) (e0, eT )#µ = γ := [(ϕ0, λ0), (ϕT , λT )]#ρ0 .

In other words, enforcing the boundary conditions in the generalized setting boils down to
constraining a certain marginal of µ to coincide with a given coupling plan γ on the cone, i.e. a
probability measure in P(C × C).

Consider now the energy functional A : Ω→ R≥0 ∪ {+∞} defined by

(4.7) A(z) :=

{ ∫ T
0
|żt|2gC dt if z ∈ AC2([0, T ]; C) ,

+∞ otherwise .

Setting F(z) = A(z) in (4.3) we obtain the H(div) action expressed in Lagrangian coordinates.
This motivates the following definition for the generalized H(div) geodesic problem.

Problem 4.2 (Generalized H(div) geodesic problem). Given a coupling plan on the cone γ ∈
P2(C2), find the dynamic plan µ ∈ P(Ω) satisfying: the homogeneous coupling constraint

(4.8)

∫

Ω

f(z0, zT ) dµ(z) =

∫

C2
f dγ ,

for all 2-homogeneous continuous functions f : C2 → R; the homogeneous marginal constraint

(4.9)

∫

Ω

∫ T

0

f(t, xt)r
2
t dtdµ(z) =

∫

M

∫ T

0

f(t, x) dtdρ0(x) ∀ f ∈ C0([0, T ]×M) ;

and minimizing the action

(4.10) A(µ) :=

∫

Ω

A(z) dµ(z) .

We remark three basic facts on this formulation:

• we substituted the constraint in (4.4) by its time-integrated version in equation (4.9) as
this form will be easier to manipulate in the following. However, the two formulations
are equivalent when restricting to generalized flows with finite action (see lemma 4.3);

• we replaced the strong coupling constraint (4.6) by a weaker version, which is always
implied by the former as long as γ ∈ P2(C2) and in particular when γ is deterministic,
i.e. when it is induced by a diffeomorphism as in equation (4.6);

• we allow for general coupling plans in P2(C2) so that the integral on the right-hand side
of equation (4.8) is finite. However, we will mostly be interested in the case where the
coupling is deterministic.

The first of the points above is made explicit in the following lemma, whose proof is postponed
to the appendix.

Lemma 4.3. For any generalized flow µ with A(µ) < +∞ and satisfying the homogeneous
coupling constraint in equation (4.8), the homogeneous marginal constraint in equation (4.9) is
equivalent to the constraint

(4.11) h2
t (µ) = ρ0

for all t ∈ [0, T ].

The main result of this section is contained in the following proposition, which states that
generalized H(div) geodesics are well-defined as solutions of problem (4.2).

Proposition 4.4 (Existence of minimizers). Provided that there exists a dynamic plan µ∗ such
that A(µ∗) < +∞, the minimum of the action in problem 4.2 is attained.

Before providing the proof of proposition 4.4, we introduce a useful rescaling operation which
will allow us to preserve the homogenous constraint when passing to the limit using sequences
of narrowly convergent dynamic plans. Such an operation was introduced in [28] in order to
deal with the analogous problem arising from the formulation of optimal entropy-transport (i.e.
unbalanced transport) on the cone. Adapting the notation in [28] to our setting, we define for a
functional θ : Ω→ R,

(4.12) prodθ(z) := (t ∈ [0, T ] 7→ [xt, rt/θ(z)]) .
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Then, given a dynamic plan µ, if θ(z) > 0 for µ-almost any path z, we can define the dilation
map

(4.13) dilθ,2(µ) := prodθ#(θ2µ) .

Since the constraints in equations (4.8) and (4.9) are 2-homogeneous in the radial coordinate
r, they are invariant under the dilation map, meaning that if µ satisfies (4.8) and (4.9), also
dilθ,2(µ) does. For the same reason, we also have

(4.14) A(dilθ,2(µ)) = A(µ) .

The map dilθ,2 performs a rescaling on the measure µ in the sense specified by the following
lemma.

Lemma 4.5. Given a measure µ ∈M(Ω) and a 1-homogeneous functional σ : Ω→ R such that
σ(z) > 0 for µ-almost every path z, suppose that

(4.15) C :=

(∫

Ω

(σ(z))2 dµ(z)

)1/2

< +∞ ;

if µ̃ = dilσ/C,2(µ) then µ̃(Ω) = 1 and

(4.16) µ̃({z ∈ Ω ; σ(z) = C}) = 1 .

Proof. We prove this by direct calculation. Let θ := σ/C. By 1-homogeneity of σ, for µ-almost
every path z

(4.17) σ(prodθ(z)) =
σ(z)

|θ(z)| = C .

Then,

(4.18)

∫

{z∈Ω ;σ(z)=C}
dµ̃(z) =

∫

{z∈Ω ;σ(z)=C}
dprodθ#(θ2µ)(z)

=

∫

{z∈Ω ;σ(prodθ(z))=C}
θ2dµ(z)

=
1

C2

∫

Ω

(σ(z))2dµ(z) = 1 .

By similar calculations we also have µ̃(Ω) = 1. �

Besides the rescaling operator and lemma 4.5, we will also need the following result which
will allow us to construct suitable minimizers of the action in problem 4.2.

Lemma 4.6. The set of measures with uniformly bounded action A(µ) ≤ C and satisfying
the homogeneous constraint in equation (4.9) is relatively sequentially compact for the narrow
topology.

Proof. Due to Therorem 2.1, it is sufficient to prove that sequences of admissible measures are
tight. For a given path z with A(z) ≤ Q, for all 0 ≤ s ≤ t ≤ T ,

(4.19) dC(zs, zt) ≤
∫ t

s

|żt∗ |gC dt∗ ≤ Q1/2|t− s|1/2 ,

which implies that level sets of A(z) are equicontinuous. Consider now the set

(4.20) ΩR := Ω(CR) = {z ∈ Ω ; ∀ t ∈ [0, T ] , rt ≤ R} ;

For any Q > 0, the set {z ∈ ΩR ; A(z) ≤ Q} is also equicontinuous; moreover, since paths in
this set are bounded at any time, it is contained in a compact subset of Ω, by the Ascoli-Arzelà
theorem.

In order to use such sets to prove tightness we need to be able to control the measure of
Ω \ ΩR. In particular, we now show that there exists a constant C ′ > 0 such that

(4.21) µ(Ω \ ΩR) ≤ C ′

R2
.

In order to show this, consider first the following set of paths

(4.22) {z ∈ Ω ; ∀ t ∈ [0, T ] , rt > R} .
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Integrating the constraint in equation (4.9) over such a set with f = 1, we obtain

(4.23) µ({z ∈ Ω ; ∀ t ∈ [0, T ] , rt > R}) ≤ 1

R2
.

Now, consider the set

(4.24) {z ∈ Ω \ ΩR ;A(z) < Q} .
For any z in this set, there exists t∗ ∈ [0, T ] such that rt∗ > R. Moreover, since A(z) < Q, by
equation (4.19),

(4.25) |rt − rt∗ | ≤ dC(zt, zt∗) ≤ Q1/2|t− t∗|1/2 ,
for all t ∈ [0, T ], which implies

(4.26) rt ≥ rt∗ −Q1/2T 1/2 > R−Q1/2T 1/2.

In particular, if Q ≤ R2/(4T ), then rt > R/2, or also

(4.27) {z ∈ Ω \ ΩR ;A(z) < Q} ⊆ {z ∈ Ω ;∀ t ∈ [0, T ] , rt > R/2} .
Therefore, if Q ≤ R2/(4T ),

(4.28)

µ(Ω \ ΩR) ≤ µ((Ω \ ΩR) ∩ {z ; A(z) < Q}) + µ({z ; A(z) ≥ Q})

≤ µ({z ∈ Ω ;∀ t ∈ [0, T ] , rt > R/2}) +
C

Q

≤ 4

R2
+
C

Q
.

Taking Q = R2/(4T ), we deduce that

(4.29) µ(Ω \ ΩR) ≤ 4(CT + 1)

R2
,

which proves equation (4.21).
Recall that {z ∈ ΩR ; A(z) ≤ Q} is contained in a compact set for any Q > 0 and R > 0. For

any ε > 0, set R = (8(CT + 1)/ε)1/2. For any admissible µ, we have

(4.30)

µ(Ω\{z ∈ ΩR ; A(z) ≤ 2Cε−1}) ≤ µ(Ω\{z ;A(z) ≤ 2Cε−1}) + µ(Ω\ΩR)

≤ ε

2C

∫

Ω

A(z) dµ(z) +
ε

2
≤ ε ,

which proves tightness. �

We are now ready to prove existence of optimal solutions for the generalized H(div) geodesic
problem. Note that due to lemma 4.6, we can always extract a converging subsequence from
any minimizing sequence of problem 4.2. However, this approach fails to produce a minimizer,
since convergence in the narrow topology is not sufficient to pass the constraints to the limit.
Note in particular that this is also true if we enforce the strong coupling constraint (4.6) instead
of its homogeneous version in (4.8). On the other hand, by choosing this latter as coupling
constraint, we can use lemma 4.5 to construct an appropriate minimizing sequence for which all
constraints pass to the limit. We follow this strategy in the proof of proposition 4.4 below.

Proof of proposition 4.4. The functional A(z) is lower semi-continuous; hence so is A(µ). Con-
sider a minimizing sequence µn with n ∈ N. By assumption we can take A(µn) ≤ C for all
n ∈ N. Let o : t ∈ [0, T ] → o ∈ C the path on the cone assigning to every time the apex of the
cone o. Let µo

n := µn Ωo ∈ M(Ω) the restriction of µn to Ωo := Ω \ {o}. Such an operation
preserves both the action and the constraints.

Let σ : Ω→ R be the 1-homogeneous functional defined by

(4.31) σ(z) :=

(
r2
0 + r2

T +

∫ T

0

r2
t dt

)1/2

.

For any µo
n in the sequence, we obviously have that σ(z) > 0 for µo

n-almost every path. Moreover,
since µo

n satisfies both the homogeneous marginal and coupling constraint, for all n ∈ N,

(4.32)

∫

Ω

σ(z)2 dµn(z) = T + 2 .
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Hence we can apply lemma 4.5 and define a sequence µ̃n ∈ P(Ω) by µ̃n := dilσ/
√
T+2,2µ

o
n. In

particular, for all n ∈ N, µ̃n is concentrated on the set of paths such that σ(z) =
√
T + 2, i.e.

(4.33) µ̃n

({
z ∈ Ω ; r2

0 + r2
T +

∫ T

0

r2
t dt = T + 2

})
= 1 .

Moreover, µ̃n satisfies the homogeneous constraint and the coupling constraint, since these are
both 2-homogeneous in the radial direction, and for the same reason A(µ̃n) = A(µn) ≤ C. This
is enough to apply lemma 4.6; thus, we can extract a subsequence (µ̃n)n ⇀ µ̃∞ ∈ P(Ω).

We now show that for any f ∈ C0([0, T ]×M) the functional

(4.34) F(z) :=

∫ T

0

|f(t, xt)|r2
t dt

is uniformly integrable with respect to the sequence (µ̃n)n, that is, for any ε > 0 there exists a
constant K > 0 such that for all n ∈ N

(4.35)

∫

Ω,F(z)>K

F(z) d(µ̃n)n(z) < ε .

It is sufficient to consider the case ‖f‖C0 = 1, because the case ‖f‖C0 = 0 is trivial and
otherwise we can always rescale the functional by dividing it by ‖f‖C0 . Recall the definition of
the functional σ in equation (4.31); we have

(4.36)

∫

Ω,F(z)>K

F(z) d(µ̃n)n(z) ≤
∫

Ω,σ(z)2>K

σ(z)2d(µ̃n)n(z) .

However, by equation (4.33) the right-hand side is zero if K > T + 2, which proves uniform
integrability. Hence, using lemma 2.2, we deduce that µ̃∞ satisfies the homogeneous marginal
constraint. Similarly, we can deduce that µ̃∞ also satisfies the homogeneous coupling constraint
since (e0, eT )#(µ̃n)n is concentrated on C2

R with R =
√
T + 2; hence it is an optimal solution of

problem 4.2. �

Remark 4.7. Given h ∈ Diff(M), set γ = [(Id, 1), (h,
√
|Jac(h)|)]#ρ0. For such a coupling,

there always exists a dynamic plan µ∗ such that A(µ∗) < +∞. This is constructed explicitly in
lemma 7.1. Therefore, the minimum of the action in problem 4.2 is attained.

In general, we cannot ensure that there exists a minimizer µ of problem 4.2 satisfying the
strong coupling constraint :

(4.37) (e0, eT )#µ = γ .

However, we can easily obtain a characterization for the existence of such minimizers when γ is
deterministic. This relies on the following crucial result which allows us to isolate the part of
the solution involving the cone singularity.

Proposition 4.8. Suppose that γ = [(Id, 1), (h,
√
|Jac(h)|)]#ρ0. Any measure µ ∈ M(Ω)

satisfying the homogeneous coupling constraint admits the decomposition

(4.38) µ = µ̃ + µ̃0 ,

where µ̃ = µ {z ∈ Ω ; r0 6= 0 , rT 6= 0} and µ̃0 = µ {z ∈ Ω ; r0 = rT = 0}. Moreover
µ̃1 := dilr0,2µ̃ satisfies the strong coupling constraint, i.e. (e0, eT )#µ̃1 = γ.

Proof. Let µ ∈M(Ω) be any dynamic plan satisfying the homogeneous coupling constraint. We
decompose µ = µ̃ + µ̃0 where

(4.39) µ̃ := µ {z ∈ Ω ; r0 6= 0} , µ̃0 := µ {z ∈ Ω ; r0 = 0} .
Consider the 1-homogeneous functional σ̃(z) : Ω→ R defined by σ̃(z) = r0. Clearly σ̃(z) > 0 for
µ̃-almost every path z. Moreover, we have

(4.40)

∫

Ω

(σ̃(z))2 dµ̃(z) =

∫

Ω

r2
0 dµ̃(z) = 1 .
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Hence, by lemma 4.5, the measure µ̃1 := dilr0,2µ̃ ∈ P(Ω) is concentrated on paths such that

r0 = 1. Moreover, µ̃0 + µ̃1 still satisfies the homogeneous coupling constraint and in particular,
for any α ∈ [0, 2),

(4.41)

∫

Ω

rαT dµ̃1(z) =

∫

Ω

r2−α
0 rαT dµ̃1(z)

=

∫

Ω

r2−α
0 rαT d(µ̃0 + µ̃1)(z)

=

∫

M

ζα dρ0 .

Taking the limit for α→ 2, by the dominated convergence theorem,

(4.42)

∫

Ω

r2
T dµ̃1(z) =

∫

M

ζ2 dρ0 = 1 .

In turn, this implies that

(4.43)

∫

Ω

r2
T dµ̃0(z) = 0 ,

which means that µ̃0-almost every path z has rT = 0. This proves that µ̃0 = µ {z ∈ Ω ; r0 =
rT = 0} and that µ̃ satisfies the homogeneous coupling constraint.

Next, we prove that (e0, eT )#µ̃1 = γ. For any g ∈ C0(M2) we can take f = gr2
0 in equation

(4.8) yielding

(4.44)

∫

Ω

g(x0, xT ) dµ̃1(z) =

∫

M

g(x, h(x)) dρ0(x) .

Similarly, letting ζ :=
√
|Jac(h)|,

(4.45)

∫

Ω

(rT − ζ(x0))2 dµ̃1(z) =

∫

Ω

(r2
T + ζ(x0)2 − 2ζ(x0)rT ) dµ̃1(z)

=

∫

Ω

(r2
T + r2

0ζ(x0)2 − 2ζ(x0)r0rT ) dµ̃1(z)

= 2

∫

M

ζ(x)2dρ0(x)− 2

∫

M

ζ(x)2dρ0(x) = 0 ,

which means that for µ̃1-almost every path rT = ζ(x0). Then, for any continuous bounded
function f : C2 → R, we have

(4.46)

∫

Ω

f(z0, zT ) dµ̃1(z) =

∫

Ω

f([x0, 1], [xT , ζ(x0)]) dµ̃1(z)

=

∫

M

f([x, 1], [ϕ(x), ζ(x)]) dρ0(x) ,

which proves the second part of the proposition. Finally, we must also have µ̃ = µ {z ∈ Ω ; r0 6=
0 , rT 6= 0}, since by definition of the dilation map

(4.47)

∫

{z∈Ω ; rT=0}
r2
0 dµ̃ =

∫

{z∈Ω ; rT=0}
r2
0 dµ̃1 = µ̃1({z ∈ Ω ; rT = 0}) = 0 .

�

Remark 4.9. It should be noted that proposition 4.8 can be proved also if the coupling constraint
in equation (4.8) is enforced only for homogeneous functions f ∈ C0(C2) in the form f(z0, z1) =
g(x0, x1)r2−α

0 rα1 and α ∈ [0, 2], for example. Nonetheless, if we defined the constraint in this way,

given the fact that µ̃1 satisfies the strong coupling constraint, we would still retrieve that (when
the coupling is deterministic) µ satisfies the coupling constraint with respect to any homogeneous
function.

Corollary 4.10 (Existence of minimizers satisfying the strong coupling constraint). Suppose

that γ = [(Id, 1), (h,
√
|Jac(h)|)]#ρ0 and let µ ∈ M(Ω) (not necessarily a probability measure)

be a minimizer of problem 4.2. Then, if

(4.48) µ({z ∈ Ω ; r0 = rT = 0}) = 0 ,
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the measure µ can be rescaled (in the sense of lemma 4.5) to a minimizer satsifying the strong
coupling constraint.

The proofs of proposition 4.4 and 4.8 give us several insights on the nature of the generalized
solutions of the H(div) geodesic problem. First of all, it is evident that such solutions can
only be unique up to rescaling. In fact, since all constraints are homogeneous and preserved by
rescaling, given one minimizer one can generate others using the dilation map as in lemma 4.5.
In addition, if the coupling is deterministic, even using rescaling, in principle one might not be
able to find a minimizer satisfying the coupling constraint in the classical sense. By proposition
4.8, this happens if all minimizers charge paths which start and end at the apex of the cone and
are not trivial. In this case the optimal solutions use the the apex to enforce the homogeneous
marginal constraint on some time interval contained in (0, T ). We will refer to such minimizers
as singular solutions since they involve the cone singularity. More precisely:

Definition 4.11 (Singular generalized H(div) geodesics). A singular solution of the generalized
H(div) geodesic problem is a minimizer µ ∈ P(Ω) such that

(4.49) µ({z ∈ Ω \ {o} ; r0 = rT = 0}) > 0 ,

where o : t ∈ [0, T ]→ o ∈ C.
Proposition 4.8 can also help us visualize such solutions. In fact, for deterministic boundary

conditions, to any singular minimizer µ we can still associate a measure µ̃1 = dilr0,2µ̃ which
satisfies the strong coupling constraint but not necessarily the homogeneous marginal constraint.
In section 7 we will construct some specific examples of singular minimizers, which will provide
some intuition on their meaning.

5. Existence and uniqueness of the pressure

In the previous section, we proved existence of minimizers of the generalized H(div) geodesic
problem. In general, given that all constraints are homogeneous, such minimizers are only
defined up to rescaling. However, even using rescaling, it might not always be possible to find
a minimizer that satisfies the strong coupling constraint. Here, we show that independently of
this, the pressure field P in (3.12) is uniquely defined as a distribution for any given deterministic
coupling constraint. This reproduces a similar result proved by Brenier for the incompressible
Euler case [8].

The idea is to extend the set of admissible generalized flows in order to define appropriate
variations of the action. By analogy to the Euler case, we consider dynamic plans whose ho-
mogeneous marginals are not the Lebesgue measure ρ0, but are sufficiently close to it. Given a
dynamic plan ν ∈ P(Ω) we denote by ρν : [0, T ]×M → R the function defined by

(5.1) ρν(t, ·) :=
dh2

tν

dρ0
,

for any t ∈ [0, T ]. For an admissible generalized flow ν, ρν = 1. Dynamic plans ν with ρν 6= 1
correspond to generalized automorphisms of the cone with a mismatch between the radial variable
and the Jacobian of the flow map on the base space.

Definition 5.1 (Almost diffeomorphisms). A generalized almost diffeomorphism is a probability
measure ν ∈ P(Ω) such that ρν ∈ C0,1([0, T ]×M) and

(5.2) ‖ρν − 1‖C0,1([0,T ]×M) ≤
1

2
.

For any ρ ∈ C0,1([0, T ]×M) with ρ > 0, let Φρ : Ω→ Ω be the map defined by

(5.3) Φρ(z) := (t ∈ [0, T ] 7→ [xt, rt
√
ρ(t, xt)] ∈ C) .

We use this map in the following proposition, which is the equivalent of proposition 2.1 in [8]
and justifies our choice for the space of densities in definition 5.1.

Proposition 5.2. Fix a ρ ∈ C0,1([0, T ]×M) such that

(5.4) ‖ρ− 1‖C0,1 ≤ 1

2
, ρ(0, ·) = ρ(1, ·) = 1 .
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Then, given any dynamic plan µ ∈ P(Ω) with finite action A(µ) < +∞, satisfying the homoge-
neous constraint in equation (4.9), i.e. ρµ = ρ0, and the coupling constraint (4.8), the dynamic
plan ν := Φρ#µ ∈ P(Ω) still satisfies the coupling constraint and we have ρν = ρ; moreover,

(5.5) A(ν) ≤ A(µ) + ‖ρ− 1‖C0,1

(
T

2
+A(µ)

)
+ |ρ− 1|2C0,1(T +A(µ)) .

Proof. The fact that ρν = ρ and that ν satisfies the coupling constraint follows from direct
computation. As for equation (5.5), observe that µ-almost every path is absolutely continuous

and that the map ([x, r], t) ∈ C × [0, T ] 7→ r
√
ρ(t, x) ∈ R≥0 is Lipschitz. Then, for µ-almost

every path z the curve t ∈ [0, T ] 7→ rt
√
ρ(t, xt) ∈ R≥0 is also absolutely continuous and we have

(5.6)

A(ν) =

∫

Ω

∫ T

0

A(Φρ(z)) dtdµ(z)

=

∫

Ω

∫ T

0

ρ(t, xt)|żt|2gC + rtṙt∂t(ρ(t, xt)) + r2
t (∂t

√
ρ(t, xt))

2 dtdµ(z)

≤ ‖ρ‖C0A(µ) +

∫

Ω

∫ T

0

rtṙt∂t(ρ(t, xt)) + r2
t (∂t

√
ρ(t, xt))

2 dtdµ(z) .

Moreover,

(5.7)

∫

Ω

∫ T

0

rtṙt∂t(ρ(t, xt)) dtdµ(z) ≤ |ρ− 1|C0,1

∫

Ω

∫ T

0

rt|ṙt|(1 + |ẋt|) dtdµ(z)

≤ |ρ− 1|C0,1

(
T

2
+A(µ)

)
,

and similarly, since ρ ≥ 1/2,

(5.8)

∫

Ω

∫ T

0

r2
t (∂t

√
ρ(t, xt))

2 dtdµ(z) ≤ 1

2

∫

Ω

∫ T

0

r2
t (∂t(ρ(t, xt)))

2 dtdµ(z)

≤ 1

2
|ρ− 1|2C0,1

∫

Ω

∫ T

0

r2
t (1 + |ẋt|)2 dtdµ(z)

≤ |ρ− 1|2C0,1(T +A(µ)) .

Reinserting these estimates into equation (5.6) we obtain (5.5). �
Consider now the following space

(5.9) B0 := {ρ ∈ C0,1([0, T ]×M) ; ρ(0, ·) = ρ(1, ·) = 0} ,
which we regard as a Banach space with the C0,1 norm. The following theorem shows that we
can define the pressure as an element P ∈ B∗0 and it is the analogue of Theorem 6.2 in [2].

Theorem 5.3. Let µ∗ be a minimizer for the generalized H(div) geodesic problem such that
A(µ∗) < +∞. Then, there exists P ∈ B∗0 such that

(5.10) 〈P, ρν − 1〉 ≤ A(ν)−A(µ∗) ,

for all generalized almost diffeomorphisms ν satisfying the coupling constraint (4.8).

Proof. First of all, observe that for any generalized almost diffeomorphism ν satisfying the
coupling constraint,

(5.11) ρν(0, ·) = ρν(1, ·) = 1 ;

hence ρν − 1 ∈ B0 and the pairing in equation (5.10) is well defined. Now, consider the convex
set C := {ρ̃ ∈ B0; ‖ρ̃‖C0,1 ≤ 1

2} and the functional φ : B0 → R+ ∪ {+∞} defined by

(5.12) φ(ρ̃) :=

{
inf{A(ν) ; ρν = ρ̃+ 1 and (4.8) holds} if ρ̃ ∈ C ,
+∞ otherwise .

We observe that φ(0) = A(µ∗) < +∞ and so φ is a proper convex function. We prove that it is
bounded in a neighborhood of ρ̃ = 0. By proposition 5.2, for any ρ̃ ∈ C there exists a ν ∈ P(Ω)
satisfying ρν = ρ̃+ 1 and the coupling constraint, such that

(5.13) A(ν) ≤ A(µ∗) + ‖ρ̃‖C0,1

(
T

2
+A(µ∗)

)
+ |ρ̃|2C0,1(T +A(µ∗)) ,
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which implies

(5.14) φ(ρ) ≤ φ(0) + ‖ρ̃‖C0,1

(
T

2
+A(µ∗)

)
+ |ρ̃|2C0,1(T +A(µ∗)) .

Therefore, φ is bounded in a neighborhood of ρ̃ = 0. As a consequence, by standard convex
analysis arguments, φ is also locally Lipschitz on the same neighborhood and the subdifferential
of φ at 0 is not empty, i.e. there exists P ∈ B∗0 such that

(5.15) 〈P, ρ̃〉 ≤ φ(ρ̃)− φ(0) .

By the definition of φ, this implies

(5.16) 〈P, ρ̃〉 ≤ A(ν)−A(µ∗) ,

for all generalized almost diffeomorphisms ν satisfying ρν = ρ̃ + 1 and the coupling constraint
in (4.8). �

Theorem 5.3 tells us that µ∗ is also a minimizer for the augmented action

(5.17) Ap(ν) := A(ν)− 〈P, ρν − 1〉 ,
defined on generalized almost diffeomorphisms. Then, for any ρ̃ ∈ B0, µ∗ε := Φ1+ερ̃

# µ∗ is a
generalized almost diffeomorphism if ε is sufficiently small. Moreover, we must have

(5.18)
d

dε
A(µ∗ε )

∣∣∣∣
ε=0

= 0 .

By the same calculation as in the proof of proposition 5.2, this implies

(5.19) 〈P, ρ̃〉 =

∫

Ω

∫ T

0

ρ̃(t, xt)|żt|2gC + ∂t(ρ̃(t, xt))rtṙt dtdµ∗(z) ,

for any ρ̃ ∈ B0, which defines P uniquely as a distribution. This also implies that the functional
φ is actually differentiable at 0 since its subdifferential reduces to a single element.

6. Correspondence with deterministic solutions

In this section we study the correspondence between generalized and classical solutions of
the H(div) geodesic equations. In particular, we show that for sufficiently short times classical
solutions generate dynamic plans which are the unique minimizers of problem 4.2.

We start by proving a modified version of a result presented in [17] stating that smooth
solutions of the H(div) geodesic equations are length-minimizing for short times in an L∞

neighborhood on Autρ0(C). Let (ϕ, λ) be a smooth solution of the system (3.11) on the interval
[0, T ] . Let P be the associated pressure and Ψp(t, x, r) := P (t, x)r2. Following [7] we introduce
the following functional on Ω,

(6.1) B(z) :=

{ ∫ T
0
|żt|2gC −Ψp(t, xt, rt) dt if z ∈ AC2([0, T ]; C) ,

+∞ otherwise .

Moreover, we consider the function b : C2 → R defined by

(6.2) b(p, q) := inf{B(z) ; z0 = p , zT = q} .
Lemma 6.1. Suppose that M ⊂ Rd is convex and let (ϕ, λ) be a smooth solution of (3.11)
on [0, T ] ×M , with P being the associated pressure and Ψp(t, x, r) := P (t, x)r2. For any fixed
x ∈M , let z∗ = [x∗, r∗] ∈ Ω be the curve defined by x∗ : t→ x∗t := ϕt(x) and r∗ : t→ r∗t := λt(x).
Let rmin := min(t,x)∈[0,T ]×M λt(x), rmax := max(t,x)∈[0,T ]×M λt(x) and % := 2rmax/rmin. There
exists a constant C0 > 0 such that, if

• for all t ∈ [0, T ] and for all w ∈ Tz∗t C,

(6.3) |HessgC Ψp(w,w)| ≤ C0π
2

T 2
|w|2gC ;

• for all t0, t1 ∈ [0, T ],

(6.4) dC(zt0 , zt1) ≤ rmin
4

;
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• the following inequality holds:

(6.5)
[
%2 + (%+ 1)

2
]
‖P‖C0 ≤ 3

2T 2
;

then, B(z∗) = b(z∗0 , z
∗
T ); moreover, for any other z ∈ AC2([0, T ]; C) such that z0 = z∗0 and zT =

z∗T , B(z) = B(z∗) if and only if z = z∗. When M is the circle of unit radius S1
1 := R/2πZ the

same holds with C0 = 2 but without the conditions in equations (6.4) and (6.5).

Remark 6.2. The assumption in (6.3) amounts to requiring that the spectral norm of the matrix

(6.6) g
−1/2
C (HessgC Ψp)g

−1/2
C =

(
2P + (∇)2P ∇P

(∇P )T 2P

)

be bounded by C0π
2/T 2. This is verified for sufficiently small T if, e.g., P ∈ L∞([0, T ];C2(M)).

Similarly, the assumption in (6.5) is verified for sufficiently small T if P ∈ C0([0, T ]×M), since
for a given smooth solution ϕ with ϕ0 = Id, % = 2rmax/rmin → 2 as T → 0. In addition, note
that when M = S1

1 the cone C can be identified with R2 and we do not have to deal with the
singularity introduced by the apex. This is the reason why the assumptions in (6.4) and (6.5)
are not necessary in this case.

The proof of lemma 6.1 is postponed to the appendix. Lemma 6.1 is the equivalent of lemma
5.2 in [7] on the cone. As in [7], we can use it to prove the optimality of the plan concentrated
on the continuous solution. For this, however, we also need the following additional result on
the function b, which characterizes the mininimizing paths starting and ending at the apex.

Lemma 6.3. Suppose P ∈ C0([0, T ] × M) and Pmax := max(t,x)∈[0,T ]×M P (t, x) ≤ (π/T )2.
Then b(o, o) = B(o) = 0 where o : t ∈ [0, T ] → o ∈ C. If the inequality is strict then for any
other z ∈ AC2([0, T ]; C) such that z0 = o and zT = o, B(z) = B(o) if and only if z = o.

Proof. For the first part, observe that for any z ∈ AC2([0, T ]; C) such that r0 = rT = 0, using
Poincaré inequality on r : t ∈ [0, T ]→ rt ∈ R≥0

(6.7)

B(z) ≥
∫ T

0

|żt|2gC − r2
tPmax dt

≥
∫ T

0

r2
t |ẋt|2 +

π2

T 2
r2
t − r2

tPmax dt

≥
(
π2

T 2
− Pmax

)∫ T

0

r2
t dt .

This implies that b(o, o) ≥ 0. Clearly, b(o, o) ≤ B(o) = 0 and therefore b(o, o) = 0. For the second

part, if the inequality is strict, C := π2

T 2 −Pmax > 0. Then, for any other z ∈ AC2([0, T ]; C) such
that z0 = o and zT = o, and satisfying B(z) = B(o), we have

(6.8) 0 = B(z) ≥ C
∫ T

0

r2
t dt ,

which implies z = o. �

Theorem 6.4. Under the assumptions of lemma 6.1, the dynamic plan µ∗ = (ϕ, λ)#ρ0 is an
optimal solution of problem 4.2 with γ = [(ϕ0, λ0), (ϕT , λT )]#ρ0. If the inequalities (6.3) and
(6.5) are strict, the solution µ∗ is unique in the following sense: for any minimizer µ, the
measure µo := µ Ωo, with Ωo := Ω \ {o}, is equal to µ∗ up to rescaling (defined in lemma 4.5).

Proof. Let µ be any dynamic plan with finite action, i.e. A(µ) < +∞, and satisfying the
constraints in (4.8) and (4.9). Consider the functional

(6.9) P(z) =

∫ T

0

Ψp(t, xt, rt)dt .
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Then,

(6.10)

∫

Ω

P(z) dµ(z) =

∫

Ω

∫ T

0

Ψp(t, xt, rt) dtdµ(z)

=

∫

Ω

∫ T

0

P (t, xt)r
2
t dtdµ(z)

=

∫ T

0

∫

M

P dρ0dt .

Hence,

(6.11) B(µ) :=

∫

Ω

B(z) dµ(z) = A(µ)−
∫ T

0

∫

M

P dρ0dt ,

and since equation (6.11) also holds replacing µ with µ∗,

(6.12) B(µ)− B(µ∗) = A(µ)−A(µ∗) .

Now, by proposition 4.8 we have the decomposition µ = µ̃+µ̃0 where µ̃ = µ {z ∈ Ω ; r0 6= 0}
and µ̃0 = µ {z ∈ Ω ; r0 = rT = 0}. Therefore, integrating the function b defined in (6.2) with
respect to µ we obtain

(6.13)

∫

Ω

b(z0, zT ) dµ(z) =

∫

Ω

b(z0, zT ) dµ̃(z) +

∫

Ω

b(o, o) dµ̃0(z)

=

∫

Ω

b(z0, zT ) dµ̃(z) ,

where we used the fact that b(o, o) = 0 by lemma 6.3. By proposition 4.8, µ̃1 := dilr0,2µ̃ satisfies

the strong coupling constraint (e0, eT )#µ̃1 = γ. Moreover, b is 2-homogeneous (because B is)
and therefore

(6.14)

∫

Ω

b(z0, zT ) dµ̃(z) =

∫

Ω

b(z0, zT ) dµ̃1(z) =

∫

C2
b(p, q) dγ(p, q) .

We get the same result integrating b with respect to µ∗. In particular, by lemma 6.1,

(6.15)

∫

Ω

b(z0, zT ) dµ(z) = B(µ∗) .

By definition of b in (6.2), for any path z ∈ Ω, B(z) ≥ b(z0, zT ) and therefore

(6.16) B(µ) ≥
∫

Ω

b(z0, zT ) dµ(z) = B(µ∗) ,

which implies the same inequality for A due to equation (6.12). This proves that µ∗ is an optimal
solution.

In order to prove uniqueness, let µ be a solution of problem 4.2. Without loss of generality
we can assume that µ = µo. Then, equations (6.12) and (6.14) imply

(6.17)

∫

Ω

B(z)− b(z0, zT ) dµ(z) = B(µ)− B(µ∗) = A(µ)−A(µ∗) = 0 .

Since for any z ∈ Ω we have B(z) ≥ b(z0, zT ), then for µ-almost every path z, B(z) = b(z0, zT ).
Clearly, also for µ∗-almost every path z, B(z) = b(z0, zT ). Now, if µ satisfies the strong coupling
constraint, for µ-almost every path z and for µ∗-almost every path z∗ such that z0 = z∗0 and
zT = z∗T , we have B(z) = B(z∗) = b(z∗0 , z

∗
T ). This implies z = z∗ by lemma 6.1. In other words,

µ and µ∗ are concentrated on the same paths and due to the strong coupling constraint they
must coincide.

On the other hand, suppose that µ does not satisfy the strong coupling constraint. Recall that
for µ-almost every path z we have B(z) = b(z0, zT ). Then, defining Ω̃ := {z ∈ Ω ; r0 = rT = 0},
we have

(6.18)

∫

Ω̃

B(z) dµ(z) =

∫

Ω̃

b(z0, zT ) dµ(z) = b(o, o)µ(Ω̃) = 0 .
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For any z ∈ Ω̃ we also have B(z) ≥ b(o, o) = 0. Hence, we find that for µ-almost every path
z such that z0 = zT = o, we have B(z) = 0 which by lemma 6.3 is equivalent to z = o. This
implies

(6.19) µ({z ∈ Ω ; r0 = rT = 0}) = 0 .

Then, corollary 4.10 implies that µ can be rescaled to a measure satisfying the strong coupling.
�

The assumptions on the pressure in lemma 6.1 are less strict for the case of the circle. This
leads to the following result.

Corollary 6.5. Let M = S1
1 and let (ϕ, λ) be a smooth solution of (3.11) on [0, T ] ×M , with

P being the associated pressure and Ψp(t, x, r) := P (t, x)r2. If for all t ∈ [0, T ] and for all
w ∈ Tz∗t C,

(6.20) |HessgC Ψp(w,w)| ≤ 2π2

T 2
|w|2gC ,

then the dynamic plan µ∗ = (ϕ, λ)#ρ0 is an optimal solution of problem 4.2 for the coupling
γ = [(ϕ0, λ0), (ϕT , λT )]#ρ0. If the inequality in equation (6.20) is strict, it is unique up to
rescaling (in the sense of lemma 4.5).

7. Some examples of generalized H(div) geodesics

In this section we construct some instructive examples of generalized H(div) geodesics which
shed some light on the need of the relaxation and its tightness. In particular, we will focus on
deterministic boundary conditions and construct singular solutions, i.e. minimizers that charge
(non-trivial) paths starting and ending at the apex of the cone. This will allow us to prove two
main results. First, that our relaxation is not tight on S1

R, the circle of radius R, when R is
sufficiently large; and second, that on the torus, for specific boundary conditions, problem 1.1
may admit no smooth minimizer, whereas we can construct a singular solution as the limit of
a minimizing sequence of smooth flows. This suggests that problem 4.2 is a tight relaxation of
problem 1.1 in dimension d ≥ 2.

We start by considering an important generalized flow which provides an upper bound on the
action on any domain and for any deterministic coupling.

Lemma 7.1. Consider the generalized H(div) geodesic problem with coupling given by γ =

(h,
√
|Jac(h)|)#ρ0 where h ∈ Diff(M). Denote by ρ0 the Lebesgue measure on M , normalized so

that ρ0(M) = 1. Then the measure

(7.1) µ∗ =
1

2
(Id, ζ0)#ρ0 +

1

2
(ψ1, ζ1)#ρ0 ,

with

ζ0
t (x) =

√
2 sin(

√
P ∗t) , ζ1

t (x) =

{ √
2 cos(

√
P ∗t) t ≤ T/2 ,

−
√

2 |Jac(h(x))| cos(
√
P ∗t) t > T/2 ,

(7.2)

ψ1
t (x) =

{
x t ≤ T/2 ,
h(x) t > T/2 ,

(7.3)

where P ∗ = π2/T 2, is an admissible generalized flow and the action of the minimizer is bounded
from above by A(µ∗) = π2/T .

Proof. We need to check that µ∗ is a probability measure and that it satisfies the homogeneous
marginal and coupling constraints. The fact that µ∗(Ω) = 1 is immediate from the definition.
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As for the marginal constraint, observe that for any f ∈ C0([0, T ]×M),

(7.4)

∫

Ω

∫ T

0

f(t, xt)r
2
t dtdµ(z) =

1

2

∫

M

∫ T

0

f(t, x)2 sin2(
√
P ∗t) dtdρ0(x)

+
1

2

∫

M

∫ T/2

0

f(t, x)2 cos2(
√
P ∗t) dtdρ0(x)

+
1

2

∫

M

∫ T

T/2

f(t, h(x))2|Jac(h(x))| cos2(
√
P ∗t) dtdρ0(x)

=

∫

M

∫ T

0

f(t, x) dtdρ0(x) .

By similar calculations also the homogeneous coupling constraint holds and therefore µ∗ is
admissible. Moreover, the action associated with µ∗ is given by

(7.5)

A(µ∗) =
1

2

∫

M

∫ T

0

|ζ̇0
t (x)|2 + |ζ̇1

t (x)|2dtdρ0(x)

=

∫

M

∫ T

0

P ∗dtdρ0(x) =
π2

T
.

�

The dynamic plan in lemma 7.1 shows that in our generalized formulation we can reach any
final configuration only by changes in the Jacobian, although in a non-deterministic sense. In
the following we will consider several instances of this flow for different domains and couplings
and we will prove that in some cases it also minimizes the generalized H(div) action. In fact, the
idea behind the construction of the generalized flow µ∗ is that as for geodesics on the cone, we
expect that for a sufficiently large displacement optimal solutions would concentrate on straight
lines in the radial direction passing by the apex of the cone. If there is no motion on the base
space M , the geodesic equation (3.11) in the radial direction reduces to

(7.6) λ̈+ λP = 0

The dynamic plan µ∗ concentrates precisely on solutions to this equation with constant pressure
P = P ∗.

It should also be noted that µ∗ is exactly in the form discussed in proposition 4.8, i.e. it is
decomposed in the sum of two measures, µ∗ = µ̃ + µ̃0, where

(7.7) µ̃0 =
1

2
(Id, ζ0)#ρ0 , µ̃ =

1

2
(ψ1, ζ1)#ρ0 .

In particular, µ̃ does not charge paths starting and ending at the apex, so it can be rescaled to a
probability measure satisfying the strong coupling constraint but not the homogeneous marginal
constraint. This is given by

(7.8) µ̃1 = dilr0,2µ̃ = (ψ1, ζ1/
√

2)#ρ0 .

The dynamic plan µ̃1 describes a peculiar solution in which particles gradually disappear up
to time T/2, when the whole domain vanishes, and then gradually reappear in the final con-
figuration. This phenomenon is related to the collision of a peakon and an anti-peakon in one
dimension, which is a well-known solution of the CH equation [10]. Such a solution implies that
arbitrarily small portions of the domain can be stretched to occupy finite area at finite bounded
cost. The generalized solution in (7.1) replicates this behavior in an averaged sense across the
domain. This will be made precise by the approximation results in proposition 7.8 and theorem
7.12.

7.1. Construction of a generalized solution on the circle. We now consider the generalized
H(div) geodesic problem on S1

R, the circle of radius R. For specific boundary conditions given
by uniform rotation and when R = 1, we show that the generalized flow in lemma 7.1 is a
minimizer although not unique, having the same cost as the deterministic solution. When
R > 1, the constant speed rotation is not a minimizer since its action is strictly larger than
π2/T . Moreover, if R is sufficiently large, there is no minimizing sequence of deterministic
smooth flows whose action tend to π2/T . This implies that in this case, the relaxed problem 4.2
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is not tight. In order to make this precise, we start by proving the following lower bound on the
action of problem 1.1 on S1

R and for boundary conditions given by uniform rotation.

Lemma 7.2. Let ϕ∗ : [0, T ]×S1
R → S1

R be a smooth flow satisfying ϕ∗0 = Id and ϕ∗T = h, where h
prescribes uniform rotation by half of the circle length, i.e. h : x ∈ R/2πRZ→ x+πR ∈ R/2πZ.
Then,

(7.9)
1

2πR

∫ 2πR

0

A([ϕ∗(x),
√

Jac(ϕ∗(x))]) dx ≥ tanh(2πR)

2T
πR .

Proof. Consider the following problem

(7.10) inf

{
1

2πR

∫ 2πR

0

A([ϕ(x),
√

Jac(ϕ(x))]) dx ; ϕ0(0) = 0 , ϕT (0) = πR

}
.

where the infimum is taken over smooth curves t ∈ [0, T ] 7→ ϕt ∈ Diff(S1
R). The quantity in

equation (7.10) provides a lower bound for the action associated with ϕ∗. Fix a smooth flow ϕ.
For any t ∈ (0, 1), let ut ∈ H1(S1

R) be the velocity field minimizing

(7.11)
1

2πR

∫ 2πR

0

|u|2 +
1

4
|∂xu|2dx ,

over all u ∈ H1(S1
R) such that u(ϕt(0)) = ∂tϕt(0). In particular, we have ut = G ∗mt where m

is in the form

(7.12) mt(x) = pt δ(x− ϕt(0)) ,

with pt ∈ R depends on the boundary conditions, and G is the Green’s function for the operator
Id− 1

4∂xx, which is given by

(7.13) G(x, y) =
cosh(2|x− y| − 2πR)

sinh(2πR)

(note that ut has the same form of a peakon on S1
R, see section 7.2). Then, by direct calculation,

(7.14)

1

2πR

∫ 2πR

0

A([ϕ(x),
√

Jac(ϕ(x))]) dx ≥
∫ T

0

∫ 2πR

0

|ut|2 +
1

4
|∂xut|2dxdt

=
tanh(2πR)

2πR

∫ T

0

|∂tϕt(0)|2dt .

Using the boundary conditions on ϕ from equation (7.10) gives the result. �

In view of lemma 7.1, lemma 7.2 implies that our relaxation (problem 4.2) is not tight on S1
R

for sufficiently large R. This is made precise in the following theorem.

Theorem 7.3. Consider the generalized H(div) geodesic problem on S1
R with coupling constraint

given by uniform rotation by half of the circle length, i.e. in polar coordinates h : θ ∈ R/2πZ→
θ + π ∈ R/2πZ. Denote by ρ0 = (2π)−1dθ the normalized Lebesgue measure on the circle. The
following holds:

(1) when R = 1 the dynamic plan µ∗ in lemma 7.1, i.e. equation (7.1) with

(7.15) ζ0
t (θ) =

√
2 sin(

√
P ∗t) , ζ1

t (θ) =
√

2| cos(
√
P ∗t)| , ψ1

t (θ) =

{
θ t ≤ T/2 ,
θ + π t > T/2 ,

as well as the dynamic plan induced by constant speed rotation are minimizers corre-
sponding to the constant pressure P ∗ = (π/T )2;

(2) when R > 1 the constant speed rotation is not a minimizer; moreover, if R is sufficiently
large, the infimum of the deterministic H(div) geodesic problem 1.1 is strictly larger than
that of the generalized geodesic problem 4.2.

Proof. For the first point, observe that from the Euler-Lagrange equations (3.12) the pressure
relative to constant speed rotation on S1

1 is given by

(7.16) P rot = |u|2 =
π2

T 2
.
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This satisfies the hypotheses of corollary 6.5 (see remark 6.2) and therefore the constant rotation
is a minimizer. Since the Jacobian stays constant during the rotation, the associated action is
given by

(7.17) Arot =
1

2π

∫ 2π

0

∫ T

0

|u|2 dtdθ =
π2

T
.

On the other hand, by lemma 7.1, µ∗ ∈ P(Ω) is admissible and its action is equal to A(µ∗) =
π2/T , independently of R. Hence µ∗ is also a minimizer and it must share the same pressure
with the constant speed rotation, P rot = P ∗. For the second point, observe that the action for
constant speed rotation on S1

R is ArotR = R2Arot > A(µ∗) whenever R > 1. Similarly, for R
sufficiently large we have

(7.18)
tanh(2πR)

2T
πR > A(µ∗) .

We conclude applying lemma 7.2. �
Remark 7.4. For d = 1 one can produce a tight relaxation of problem 1.1 using different
techniques than those used in the present paper. This approach is developed in [14] and is specific
to dimension one. However note that one still needs to rely on theorem 6.4 in order to conclude
that smooth geodesics are the unique global length-minimizers for this tight one-dimensional
relaxation.

7.2. Collision of peakons and an approximation result. Before going further with the
construction of a generalized solutions on a two-dimensional domain, we need to clarify the
connection between the solution presented in theorem 7.3 and diffeomorphisms of the circle. In
particular, here we show that if no rotation occurs, the generalized flow in theorem 7.3 can be
approximated using linear peakon/anti-peakon collisions. This will serve as a basis to construct
a sequence of deterministic flows converging to a non-deterministic minimizer in two dimensions.

Consider the CH equation on the circle S1
1 with Lagrangian

∫ 2π

0
|u|2 + 1

4 |∂θu|2 dθ, where

u : [0, T ]× S1
1 → R is the Eulerian velocity field. Peakon solutions can be described in terms of

momentum m = u− 1
4∂

2
θu as a linear combination of Dirac delta functions, i.e.

(7.19) m(t, θ) =
N∑

i=1

pi(t)δ(θ − θi(t)) ,

where pi : [0, T ] → R and θi : [0, T ] → S1
1 are appropriate functions specifying the momentum

carried by the ith peakon and its location, respectively. The associated velocity field is given by
u = G ∗m where G is the Green’s function for the operator Id− 1

4∂
2
θ (see equation (7.13)).

The collision of a peakon and an anti-peakon corresponds to the case N = 2, p2 = −p1,
θ2 = 2π− θ1, in which case there exists a finite time T ∗ such that as t→ T ∗ collision occurs, i.e.

θ1 = θ2. A similar behavior occurs for the Lagrangian
∫ 2π

0
1
4 |∂θu|2 dθ, which corresponds to the

Hunter-Saxton equation. In this case, the velocity field is simply given by the linear interpolation
of the velocity at θ1 and θ2 (see figure 1) and the Jacobian of the flow map is piecewise constant.
Hence specifying the trajectory θ1(t) uniquely defines the flow. We refer to such a solution
as linear peakon/anti-peakon collision. The associated flow on a circle of arbitrary radius R is
described in the following lemma.

Lemma 7.5. For a given ε > 0, let ϕε : [0, T ] × S1
R → S1

R be the flow map defined in polar
coordinates by

(7.20) ϕεt(0) = 0 , ∂θϕ
ε
t(θ) =





1− sin
(

πt
2(T+ε)

)
if π

2 < θ < 3π
2 ,

1 + sin
(

πt
2(T+ε)

)
otherwise ,

Then the associated action is uniformly bounded and

(7.21) lim
R→0

lim
ε→0

1

2π

∫ 2π

0

A([Rϕε(θ), λε(θ)]) dθ =
π2

16T
,

where λε =
√

Jac(ϕε) and

(7.22)
1

2π

∫ 2π

0

A([Rϕε(θ), λε(θ)]) dθ =
1

2π

∫ 2π

0

∫ T

0

R2(λεt(θ))
2|ϕ̇εt(θ)|2 + |λ̇εt(θ)|2 dtdθ
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is the action expressed in polar coordinates.

Proof. The result follows by direct computation and by definition of the functional A in equation
(4.7). Note that the expression for the action in equation (7.22) can be justified by an appropriate
change of variables. Specifically, denoting by ϕεR the flow map in arc length coordinates x ∈
R/2πRZ, we have θ = x/R and

(7.23) ϕεR(x) = Rϕε
( x
R

)
, ∂xϕ

ε
R(x) = ∂θϕ

ε
( x
R

)
.

Denoting λεR =
√
∂xϕεR, since ρ0 = (2πR)−1dx we obtain that the action is given by

(7.24)∫

S1
R

A([ϕεR(x), λεR(x)]) dρ0(x) =
1

2πR

∫ 2πR

0

∫ T

0

((λεR)t(x))2|(ϕ̇εR)t(x)|2 + |(λ̇εR)t(x)|2 dtdx

=
1

2π

∫ 2π

0

∫ T

0

R2(λεt(θ))
2|ϕ̇εt(θ)|2 + |λ̇εt(θ)|2 dtdθ.

�
Remark 7.6. The flow described in lemma 7.5 coincides with a linear peakon/anti-peakon so-
lution of the Hunter-Saxton equation where the momentum is in the form of equation (7.19) and
the two peak trajectories are given by

(7.25) θε1(t) =
π

2

(
1 + sin

(
πt

2(T + ε)

))
, θε2(t) =

π

2

(
3− sin

(
πt

2(T + ε)

))
.

The reason why we consider solutions Hunter-Saxton rather than CH peakons is due to the fact
that as R→ 0 the action in (7.22) tends to the Ḣ1 action.

In figure 2, we give an illustration of the flow defined in equation (7.20) for fixed ε both in
terms of particle trajectories and as a measure on the cone for R = 1 (in which case the cone
can be identified with R2). Note that at collision time the trajectories of particles between the
peaks reach the apex of the cone.

In the next lemma we construct a flow using n linear peakon/anti-peakon collisions that
converges as n→ +∞ to a measure in the same form as the one in lemma 7.1.

Lemma 7.7. Let ϕε : [0, T ] × S1
R → S1

R the flow in lemma 7.5 and for each n ∈ N let ϕ̂n :
[0, T ]× S1

R → S1
R be defined by

(7.26) ϕ̂n(θ) :=
2π

n

⌊
θn

2π

⌋
+

1

n
ϕεn

(
nθ − 2π

⌊
θn

2π

⌋)

with εn being any positive sequence such that εn → 0. Then µ̂n := (ϕ̂n,
√

Jac(ϕ̂n))#ρ0 ⇀ µ̂∗,
where µ̂∗ is defined by

(7.27) µ̂∗ =
1

2
(Id, ζ0)#ρ0 +

1

2
(Id, ζ1)#ρ0 ,

with

(7.28) ζ0
t (θ) =

√
2 sin

(
πt

4T
+
π

4

)
, ζ1

t (θ) =
√

2 cos

(
πt

4T
+
π

4

)
.

Moreover, A(µ̂n)→ A(µ̂∗) = π2/(16T ).

Proof. For simplicity, we prove the result for R = 1 but the argument presented here applies for
any R > 0. Let F be any bounded Lipschitz functional on Ω with Lipschitz constant L. We
need to check that

(7.29) lim
n→+∞

∫

Ω

F(z) dµ̂n(z) =

∫

Ω

F(z) dµ̂∗(z) .

Denoting by λ̂n =
√

Jac(ϕ̂n) and by λ̂εn =
√

Jac(ϕ̂εn), we observe that

(7.30)

∫

Ω

F(z) dµ̂n(z) =
1

2π

∫ 2π

0

F([ϕ̂n(θ), λ̂n(θ)]) dθ

=
1

2π

n−1∑

i=0

∫ 2π/n

0

F
([

2πi

n
+

1

n
ϕεn(nθ), λεn(nθ)

])
dθ ,
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and similarly,

(7.31)

∫

Ω

F(z) dµ̂∗(z) =
1

4π

n−1∑

i=0

∫ 2π/n

0

F
([

2πi

n
+ θ, ζ0(θ)

])
+ F

([
2πi

n
+ θ, ζ1(θ)

])
dθ .

We consider separately each integral in the sums in equation (7.30) and (7.31). Rescaling the
integrals in θ and using Lipschitz continuity of F , we observe that the result is proven if

(7.32) lim
n→+∞

1

n

n−1∑

i=0

∣∣∣∣
1

2π

∫ 2π

0

F
([

2πi

n
+

1

n
ϕεn(θ), λεn(θ)

])
dθ − Ini

∣∣∣∣ = 0 ,

where

(7.33) Ini =
1

2
F
([

2πi

n
, ζ0

(
2πi

n

)])
+

1

2
F
([

2πi

n
, ζ1

(
2πi

n

)])
.

For any fixed sufficiently large n, we need to provide an appropriate bound for each term in the
sum in equation (7.32). For any integer i with 0 ≤ i ≤ n− 1, we have

(7.34)

Ei,n :=

∣∣∣∣
1

2π

∫ 2π

0

F
([

2πi

n
+

1

n
ϕεn(θ), λεn(θ)

])
dθ − Ini

∣∣∣∣

≤ 1

2π

∣∣∣∣
∫ 2π

0

F
([

2πi

n
+

1

n
ϕεn(θ), λεn(θ)

])
dθ −

∫ 2π

0

F
([

2πi

n
, λεn(θ)

])
dθ

∣∣∣∣

+

∣∣∣∣
1

2π

∫ 2π

0

F
([

2πi

n
, λεn(θ)

])
dθ − In0

∣∣∣∣ := En0 + En1 .

Observe that for α ∈ [0, π/2],
√

1− sin(α) =
√

2 cos(α/2+π/4) and
√

1 + sin(α) =
√

2 sin(α/2+
π/4) therefore

(7.35) λεn(θ) =
√
∂θϕ

εn
t (θ) =





√
2 cos

(
πt

4(T+εn) + π
4

)
if π

2 < θ < 3π
2 ,

√
2 sin

(
πt

4(T+εn) + π
4

)
otherwise .

Since λεn is piecewise constant in θ we can write

(7.36)
1

2π

∫ 2π

0

F
([

2πi

n
, λεn(θ)

])
dθ =

1

2
F
([

2πi

n
, λεn(0)

])
+

1

2
F
([

2πi

n
, λεn (π)

])
.

Comparing the expression for ζ0 and ζ1 with that of λεn and using the fact that F is Lipschitz we
obtain En1 ≤ C(εn), where C(εn) > 0 is a constant depending on εn and L such that C(εn)→ 0 as
n→ +∞. A similar argument holds for En0 and therefore we can find a constant Cn independent
of i such that Ei,n ≤ Cn and Cn → 0 as n→ +∞. This implies equation (7.32).

Finally, convergence of the action is a consequence of lemma 7.5. In particular, it is immediate
to verify that A(µ̂∗) = π2/(16T ). Moreover, by the same reasoning as in the proof of lemma 7.5
and the change of variables in equation (7.30) we obtain that the action A(µ̂n) is given by

(7.37)

1

2π

∫ 2π

0

A([ϕ̂n(θ), λ̂n(θ)]) dθ =
1

2π

n−1∑

i=0

∫ 2π/n

0

A
([

1

n
ϕεn(nθ), λεn(nθ)

])
dθ

=
1

2π

∫ 2π

0

A
([

1

n
ϕεn(nθ), λεn(nθ)

])
dθ .

Therefore, the limit of A(µ̂n) for n→ +∞ is the same to that in equation (7.21). �

In figure 3, we give an illustration of the flow defined in equation (7.26) for fixed n both
in terms of particle trajectories and as a measure on the cone for R = 1. It can be seen that
convergence towards the measure µ∗ defined in lemma 7.7 is due to the appearance of fast
oscillations in the Jacobian together with the fact that particles tend to stay still as n→ +∞.

We can use the flows defined in lemma 7.7 to construct a sequence that converges to the
generalized flow µ∗ in theorem 7.3 but where no rotation occurs. The construction consists in
concatenating in time the flows in lemma 7.7 so that a small portion of the domain stretches
and then return to its original size. This is shown in figure 4. The convergence result is stated
explicitly in the following proposition.
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θ̇2(0)

0

θ̇1(0)

0 π/2 π 3π/2 2π

θ̇

θ

Figure 1. Velocity field evolution for the linear peakon/anti-peakon solution
of the Hunter-Saxton equation.

Proposition 7.8. Let ϕ̂n : [0, T ]×S1
R → S1

R be the sequence defined in lemma 7.7 and for each
n ∈ N let ϕn : [0, T ]× S1

R → S1
R be defined by ϕnt = ϕnT−t and

(7.38) ϕnt (θ) =

{
ϕ̂nT−4t((ϕ̂

n
T )−1(θ)) if t ≤ T

4 ,
ϕ̂n4t−T

(
(ϕ̂nT )−1(θ) + π

n

)
− π

n if T
4 < t ≤ T

2 .

Then µn := (ϕn,
√

Jac(ϕn))#ρ0 can be rescaled to a sequence µ̃n ⇀ µ∗, where µ∗ is defined as
in equation (7.27) with

(7.39) ζ0
t (θ) =

√
2 sin

(
πt

T

)
, ζ1

t (θ) =
√

2

∣∣∣∣cos

(
πt

T

)∣∣∣∣ .

Moreover, A(µn)→ A(µ∗) = π2/T .

Proof. The rescaling to be performed in order to obtain the sequence µ̃n is given by

(7.40) µ̃n = dilrT/4,2µn .

In fact, by lemma 4.5, µ̃n is concentrated on paths such that rT/4 = 1. Then, the result can be
deduced from lemmas 7.7 and 7.5. �

Remark 7.9. The maps defined by equation (7.38) are piecewise smooth in space since their
Jacobian is piecewise constant with a finite number of discontinuities. However, using a regular-
ization argument, it is not difficult to construct a sequence of smooth diffeomorphisms satisfying
proposition 7.8. For this it is sufficient to repeat the construction above using a regularized ver-
sion of the linear peakon/anti-peakon collision, which can be defined by convolution of the flow
map with a sequence of positive symmetric mollifiers.

7.3. Construction of a generalized solution on the torus. We now consider the generalized
H(div) geodesic problem on the torus T 2

1,R := S1
1 ×S1

R, with one of the two radii set to one. We
consider as boundary condition a uniform rotation on the torus in which each particle rotates
of half of the length on both circles. For this specific boundary condition we can construct a
generalized minimizer using the construction of the previous section which realizes smaller action
than any deterministic smooth flow.

In the following lemma we provide a lower bound on the action associated with a deterministic
minimizer.

Lemma 7.10. Suppose that the smooth curve t ∈ [0, T ] 7→ ϕ∗t ∈ Diff(T 2
1,R) is a minimizer for the

deterministic H(div) geodesic problem 1.1, with ϕ0 = Id, ϕT = h and where h is given in polar
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0
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0 π/2 π 3π/2 2π
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r

θ

Figure 2. Particle trajectories t 7→ ϕεt(θ) for the linear peakon/anti-
peakon solution (left) and support of fixed time marginals for the measure

(ϕε,
√

Jac(ϕε))#ρ0 (right).

0

T

0 π/2 π 3π/2 2π

t

θ

Figure 3. Particle trajectories t 7→ ϕ̂nt (θ) relative to the map constructed
in proposition 7.7 (left) and support of fixed time marginals for the measure

(ϕ̂n,
√

Jac(ϕ̂n))#ρ0 (right), for n = 5.

coordinates by h : (θ, φ) ∈ R2/(2πZ)2 → (θ+π, φ+π) ∈ R2/(2πZ)2. Denote by ρ0 = (2π)−2dθdφ
the normalized Lebesgue measure on the torus. Then,

(7.41)

∫

T 2
1,R

A([ϕ∗,
√

Jac(ϕ∗)]) dρ0 ≥
tanh(2π

√
1 +R2)

2T
π2
√

1 +R2 .

Proof. By an appropriate change of coordinates, it is sufficient to show the result on T 2
R1,R2

with

(7.42) R1 =
R√

1 +R2
, R2 =

√
1 +R2 ,

and h : (θ, φ) ∈ R2/(2πZ)2 → (θ, φ + π) ∈ R2/(2πZ)2. Let t ∈ [0, T ] 7→ ϕ∗t = (ϕθt , ϕ
φ
t ) ∈

Diff(T 2
R1,R2

) be a smooth minimizer for these boundary conditions. Define the flow t ∈ [0, T ] 7→
ϕ̃t ∈ Diff(T 2

R1,R2
) by

(7.43) ϕ̃t(θ, φ) =

{
(ϕθt (2θ, φ)/2, ϕφt (2θ, φ)) if 0 < θ ≤ π ,
(ϕθt (2θ, φ)/2 + π, ϕφt (2θ, φ)) if π < θ ≤ 2π .
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Figure 4. Particle trajectories t 7→ ϕnt (θ) relative to the map constructed in
proposition 7.8 for n = 5.

Then, by direct computation,

(7.44)

∫

T 2
1,R

A([ϕ̃,
√

Jac(ϕ̃)]) dρ0 ≤
∫

T 2
1,R

A([ϕ∗,
√

Jac(ϕ∗)]) dρ0 ;

moreover, the inequality is strict unless ϕ̇θt = 0 for all t ∈ (0, T ). Since ϕ∗ is a minimizer, we
conclude that we must have ϕθt = θ for all t ∈ [0, T ]. Then, we obtain the result applying lemma
7.2. �

Theorem 7.11. Consider the generalized H(div) geodesic problem on T 2
1,R with coupling con-

straint given by uniform rotation on both circles by half of the circles length, i.e. in polar co-
ordinates h : (θ, φ) ∈ R2/(2πZ)2 → (θ + π, φ + π) ∈ R2/(2πZ)2. Denote by ρ0 = (2π)−2dθdφ
the normalized Lebesgue measure on the torus. Then, the dynamic plan µ∗ in lemma 7.1, i.e.
equation (7.1) with
(7.45)

ζ0
t (θ, φ) =

√
2 sin(

√
P ∗t) , ζ1

t (θ, φ) =
√

2| cos(
√
P ∗t)| , ψ1

t (θ, φ) =

{
(θ, φ) t ≤ T/2 ,
(θ + π, φ+ π) t > T/2 ,

where P ∗ = (π/T )2, is a minimizer, whereas the constant speed rotation is not a minimizer.
Moreover, if R is sufficiently large no smooth flow can be a minimizer.

Proof. Consider the functional πθ : Ω(T 2
1,R)→ Ω(S1

1) defined by

(7.46) πθ(z) := (t ∈ [0, T ] 7→ [θt, rt] ∈ C) ,
for any z = (t ∈ [0, T ] 7→ [(θt, φt), rt] ∈ C). In other words, πθ applies at each time the
canonical projection on the circle of unit radius. We observe that for any admissible dynamic
plan µ ∈ P(Ω(T 2

1,R)) for the generalized H(div) geodesic problem on the torus,

(7.47) µθ := πθ#µ ∈ P(Ω(S1
1))

is admissible for the generalized H(div) geodesic problem on S1
1 with boundary conditions asso-

ciated with the map hθ : θ ∈ R/2πZ→ θ+π. In fact, if for example µ satisfies the homogeneous
marginal constraint with respect to the normalized measure (2π)−2dθdφ, then also µθ satisfies
the same constraint since for any t ∈ [0, T ] and f ∈ C0(S1

1),

(7.48)

∫

Ω(S1
1)

f(θt)r
2
t dµθ(z) =

∫

Ω(T 2
1,R)

f(θt)r
2
t dµ(z) =

1

2π

∫

S1
1

f(θ) dθ ,

and similarly for the coupling constraint. The problem on S1
1 admits a non-deterministic mini-

mizer, which was given in theorem 7.3 and we denote it by µ∗θ. Then, we have for any admissible
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µ ∈ P(Ω(T 2
1,R)),

(7.49) A(µ) ≥ A(µθ) ≥ A(µ∗θ) =
π2

T
.

However, by lemma 7.1, the dynamic plan µ∗ defined by equation (7.45) satisfies A(µ∗) = A(µ∗θ)
and so it must be a minimizer. On the other hand, the action for constant speed rotation is
given by Arot = π2(R2 + 1)/T and therefore such a solution cannot be a minimizer since R > 0.
Similarly, if R is sufficiently large, by lemma 7.10, no smooth minimizer can exist, since otherwise
its action would be strictly larger than π2/T . �
7.4. Approximation of a generalized minimizer on the torus. The generalized minimizer
in theorem 7.11 is very similar to its one-dimensional counterpart of theorem 7.3. Importantly,
however, the extra dimension gives us enough flexibility to produce deterministic approximations,
which is the main result of this section. Such approximations will be similar in spirit to those
presented in the one-dimensional case. In brief, using again peakon/anti-peakon collisions we
will be able to reach the final configuration by moving two complementary subsets of the domain
at different times, when they occupy a small volume.

Theorem 7.12. Let µ∗ and h be the minimizer and the coupling, respectively, defined in theorem
7.11 on the torus M = T 2

1,R. There exists a sequence of continuous flow maps ϕn : [0, T ]×M →
M , n ∈ N, such that for every t ∈ [0, T ], ϕnt : M →M is smooth almost everywhere, and

• for all n ∈ N, ϕn0 = Id and ϕnT = h;

• the sequence µn := (ϕn,
√

Jac(ϕn))#ρ0 can be rescaled to a sequence µ̃n ⇀ µ∗;
• A(µ̃n)→ A(µ∗).

Proof. For simplicity, we prove the result for R = 1 but the argument presented here applies
for any R > 0. In addition, performing an appropriate change of variables, one can easily verify
that it is sufficient to prove the theorem with h : (θ, φ) ∈ R2/(2πZ)2 → (θ, φ+π) and µ∗ defined
as in equation (7.45), but with ψ1 defined by

(7.50) ψ1
t (θ, φ) =

{
(θ, φ) t ≤ T/2 ,
(θ, φ+ π) t > T/2 .

For each n ∈ N, the map ϕn will be constructed using two basic flows. The first is defined as
follows. Fix a sequence εn = ε0/n

3, n ∈ N, where ε0 is a sufficiently small constant. Moreover,
for any ε > 0 consider the set Bε ⊂ S1

1 defined by

(7.51) Bε :=
n−1⋃

i=0

[π
n

(2i+ 1)− ε

2
,
π

n
(2i+ 1) +

ε

2

]
,

and let φnrot : S1
1 → S1

1 such that 0 ≤ φnrot ≤ π, φnrot(θ) = π for all θ ∈ Bεn and φnrot(θ) = 0 for

all θ ∈ S1
1 \B2εn . For k = 0, 1, we let ϕk,nrot : [0,

√
εn]× T 2

1,1 → T 2
1,1 be the flow defined by

(7.52) (ϕ0,n
rot)t(θ, φ) :=

(
θ, φ+

t√
εn
φnrot(θ)

)
, (ϕ1,n

rot)t(θ, φ) :=

(
θ, φ+

t√
εn

(π − φnrot(θ))
)
.

Consider now the flow ϕ̂n defined in equation (7.26), with εn defined as above. With a slight
abuse of notation, we will also denote by ϕ̂n its canonical extension to the torus which leaves
the φ coordinate fixed. Moreover, for any α ∈ R/2πZ denote by Rθα : T 2

1,1 → T 2
1,1 the map

Rθα(θ, φ) := (θ + α, φ). Then, we define the flow ϕ0,n
exp : [

√
εn, T/2]× T 2

1,1 → T 2
1,1 by

(7.53) (ϕ0,n
exp)t(θ, φ) :=

{
ϕ̂nan(t)((ϕ̂

n
T )−1(θ, φ)) if t ≤ T

4 ,

Rθ−π/n ◦ ϕ̂n4t−T
(
Rθπ/n ◦ (ϕ̂nT )−1(θ, φ)

)
if T

4 < t ≤ T
2 ,

where an(t) := T (T − 4t)(T − 4
√
εn)−1. Note that setting εn = 0 this flow coincides with the

canonical extension to the torus of the flow in equation (7.38). Similarly,

(7.54) ϕ1,n
exp := Rθ−π/n ◦ ϕ0,n

exp ◦Rθπ/n.
We construct the sequence ϕn by glueing together the maps ϕk,nrot and ϕk,nexp so that for each

n ∈ N the final flow consists of four stages: in the first, n stripes of the domain rotate while
the rest of the domain stays put as prescribed by ϕ0,n

rot ; in the second, the stripes expand up to
a symmetric configuration in which the rest of the domain occupies stripes of the same size, as
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prescribed by ϕ0,n
exp; in the third, the rest of the points rotate as prescribed by ϕ1,n

rot ; finally, we

use ϕ1,n
exp to compress the stripes to their original size. More precisely,

(7.55) ϕnt :=





(ϕ̂0,n
rot)t if t ≤ √εn ,

(ϕ̂0,n
exp)t ◦ (ϕ̂0,n

rot)
√
εn if

√
εn < t ≤ T

2 ,

(ϕ̂1,n
rot)t−T/2 ◦ (ϕ̂0,n

exp)T/2 ◦ (ϕ̂0,n
rot)
√
εn if T

2 < t ≤ T
2 +
√
εn ,

(ϕ̂1,n
exp)t−T/2 ◦ (ϕ̂1,n

rot)
√
εn ◦ (ϕ̂0,n

exp)T/2 ◦ (ϕ̂0,n
rot)
√
εn if T

2 +
√
εn < t ≤ T .

A graphical representation of this flow is given in figure 5 for n = 1 (so that we have only one
stripe) and in the original coordinates (so that the boundary conditions are those associated
with double rotation).

Note that the flow defined in equation (7.55) is very similar to the one defined in proposition
7.8, whose canonical extension to the torus will be denoted by ϕ0,n. As in proposition 7.8, we
define again the rescaled measure µ̃n using equation (7.40). This means that for any Lipschitz
continuous bounded functional F : Ω→ R,

(7.56)

∫

Ω

F(z) dµ̃n(z) =
1

4π2

∫

T 2
1,1

F
([
ϕn ◦ (ϕnT/4)−1(θ, φ), λ̄n(θ, φ)

])
dθ dφ ,

where

(7.57) λ̄nt :=

(
Jac(ϕnt )

Jac(ϕnT/4)

)1/2

◦ (ϕnT/4)−1 =
(

Jac(ϕnt ◦ (ϕnT/4)−1)
)1/2

.

Note that equation (7.56) is a direct consequence of the definition of the dilation map and the
change of variables formula. Due to proposition 7.8 and the way ϕn is constructed, to prove the
convergence µ̃n ⇀ µ∗, it is sufficient to focus on the interval [0, T/2] and check that In → 0,
where

(7.58) In :=

∫

T 2
1,1

sup
t∈[0,T/2]

dC([ϕ
n
t ◦ (ϕnT/4)−1, λ̄nt ], [ϕ0,n

t ◦ (ϕ0,n
T/4)−1, λ̄0,n

t ]) dθ dφ

and λ̄0,n
t :=

(
Jac(ϕnt ◦ (ϕ0,n

T/4)−1)
)1/2

. Because of the similar structure of the flows ϕn and ϕ0,n,

In reduces to

(7.59) In =

∫

T 2
1,1

sup
t∈[0,T/4]

dC([ϕ
n
t ◦ (ϕnT/4)−1, λ̄nt ], [ϕ0,n

t ◦ (ϕ0,n
T/4)−1, λ̄0,n

t ]) dθ dφ .

Let Aε := ϕ0,n
T/4(Bε×S1

1), for any ε > 0. We decompose In = I0,n + I1,n where I0,n and I1,n are

the integrals over A2εn and T 2
1,1 \A2εn , respectively. Define for 0 ≤ a < b ≤ T/4

(7.60) I0,n
a,b :=

∫

A2εn

sup
t∈[a,b]

dC([ϕ
n
t ◦ (ϕnT/4)−1, λ̄nt ], [ϕ0,n

t ◦ (ϕ0,n
T/4)−1, λ̄0,n

t ]) dθ dφ .

We have In ≤ I0,n
0,
√
εn

+ I0,n√
εn,T/4

+ I1,n. By continuity of the flow maps it is easy to verify that

I0,n√
εn,T/4

→ 0 and I1,n → 0 as n→ +∞. On the other hand, by construction 0 < λ̄n, λ̄0,n <
√

2.

Therefore, by the triangular inequality

(7.61)

I0,n
0,
√
εn
≤
∫

A2εn

sup
t∈[0,

√
εn]

(λ̄nt + λ̄0,n
t ) dθ dφ ,

≤ 4πnεn(2
√

2) +

∫

Bπ/n×S1
1

sup
t∈[0,

√
εn]

(λ̄nt + λ̄0,n
t ) dθ dφ ,

where on the second line, we decomposed the integral over the part of A2εn that gets stretched
and the part that gets compressed under ϕn ◦ (ϕnT/4)−1 for t ∈ [0,

√
εn]. In particular, the

integrand in the second line tends to 0 as n → +∞, which yields In → 0. A similar argument
can be applied on the interval [T/2, T ], which proves that µ̃n ⇀ µ∗.

In order to prove convergence of the action, in view of lemma 7.5, it is sufficient to show

(7.62)

∫

T 2
1,1

A([ϕk,nrot (θ, φ), 1]) dθ dφ→ 0 ,
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for k = 0, 1, as n → +∞, where the action is computed over the time interval [0,
√
εn]. For all

n ∈ N, under the flow ϕk,nrot only points with θ ∈ B2εn rotate with velocity bounded by π/
√
εn;

hence

(7.63)

∫

T 2
1,1

A([ϕk,nrot (θ, φ), 1]) dθ dφ ≤ 2π(n2εn)
π2

√
εn

=

√
ε0
n

4π3 ,

which concludes the proof. �

Remark 7.13. As for the one-dimensional case (see remark 7.9), the maps defined by equation
(7.55) are piecewise smooth in space since their Jacobian is piecewise constant with a finite
number of discontinuities. Also in this case, it is sufficient to repeat the construction above
using a regularized version of the linear peakon/anti-peakon collision, to obtain a sequence of
smooth diffeomorphisms satisfying theorem 7.12.

Remark 7.14. In theorem 7.3 we proved that our relaxation is not tight on S1
R (for R sufficiently

large), whereas theorem 7.11 suggests it is tight for d ≥ 2. It should be noted that the situation
is similar for the incompressible Euler equations. In fact, Shnirelman proved that Brenier’s
relaxation is not tight for d = 2 but it is tight when d = 3, as in this case any generalized
incompressible flows can be approximated using deterministic maps [35].

8. Discrete generalized solutions

There are two main obstacles in translating problem 4.2 to the discrete setting. On one hand,
we need to make computations on an unbounded domain; on the other, we need to be able
to single out a representative for the equivalence class of minimizers with respect to rescaling.
However, if one is interested in simulating solutions that are not singular (see definition 4.11),
it is appropriate to enforce the strong coupling constraint in (4.6) instead of (4.8). Hence,
if we substitute C by CR for a fixed R > 1 and use the strong coupling constraint in the
generalized H(div) geodesic problem, we obtain a modified formulation that is able to reproduce
a particular class of solutions, which includes all deterministic solutions with bounded Jacobian.
In this section we describe a numerical algorithm based on entropy regularization and Sinkhorn
algorithm that solves such a modified formulation. Our scheme is based on similar methods
for the incompressible Euler equations developed in [33, 6, 5]. We also provide some numerical
results illustrating the behavior of generalized H(div) geodesics.

8.1. Discrete formulation. We set M = [0, 1]d and consider a uniform discretization with

points {xi}Nxi=1, and a discretization of the interval (0, R] with points {ri}Nri=1 such that rj = 1
for a fixed j ∈ {1, . . . , Nr}. These induce a discretization of the cone with points {zi}Ni=1 where
N = NxNr. Similarly, we also consider a uniform discretization {ti}Ki=1 of [0, T ]. Generalized
flows are then replaced by a coupling arrays µ ∈ (RN≥0)K . Note that we can incorporate the
boundary condition λ0 = 1 by reducing the dimension of µ. In particular, we now denote by πx
and πr the canonical projections from M × (0, R] to M and (0, R] respectively. We use the same
notation to indicate the maps πx : {1, . . . , N} → {1, . . . , Nx} and πr : {1, . . . , N} → {1, . . . , Nr}
mapping directly the discretization indices. Then, we set for any {j1, . . . , jK} ∈ {1, . . . , N}K ,

(8.1) µj1,...,jK = 1{πr(zj1 )=1}µ̃πx(j1),j2,...,jK ,

where 1 is the indicator function and µ̃ ∈ RNx≥0×(RN≥0)K−1. We denote by Π0 the set of couplings

satisfying (8.1). The marginal at a given time tk is a discrete measure on M × (0, R]. We denote
this by Sk(µ) ∈ RN≥0, and it is defined as follows:

(8.2) [Sk(µ)]j =
∑

j1,...,jk−1,jk+1,...,jK

µj1,...,jk−1,j,jk+1,...,jK
.

We denote by Mn : RN≥0 → RNx≥0 the nth moment taken in the radial direction, i.e.

(8.3) Mn[A]i =
∑

j,πx(j)=i

πr(zj)
nAj .

Hence the constraint in (4.4) becomes

(8.4) M2[Sk(µ)]i = 1/Nx .
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Figure 5. Particle trajectories for the flow ϕn in (7.55) for n = 1 (in appro-
priate coordinates to determine double rotation on the torus). We use different
colors to label particles and follow their motion. The stripes indicate the parti-
cles in between the peakons’ peaks. In the limit, the trajectories of such particles
lifted to the cone will start and end at the apex.

Moreover, we denote by Π the set of admissible coupling arrays,

(8.5) Π = {µ ∈ Π0; ∀i, M2[Sk(µ)]i = 1/Nx} .
The constraint on the coupling between time 0 and T can be enforced weakly by including it
directly in the cost, which is given by the following array

(8.6) Cj1,...,jK =
K − 1

T

K−1∑

k=1

dC(zjk , zjk+1
)2 + αdC(zjK , (h(πx(zj1)),

√
|Jac(h)|))2 ,

where α > 0 is a parameter. The regularized discrete problem is then,

(8.7) min
µ∈Π
〈C,µ〉 − εE(µ) ,

where ε > 0 is another parameter and E(µ) is the entropy of the coupling defined by

(8.8) E(µ) = −〈µ, log(µ)− 1〉 .
Problem (8.7) can be solved by means of alternating projections which consist in enforcing

recursively the marginal constraints at the different time levels. In particular, we consider the
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following augmented functional

(8.9) min
µ
〈C,µ〉 − εE(µ)−

∑

i,k

pki (M2[Sk(µ)]i − 1/Nx) ,

where pk ∈ RNx for all k ∈ {1, . . . ,K}. From (8.9) we obtain

(8.10) µj1,...,jK = e−
Cj1,...,jK

ε e
∑
k p

k
πx(jk)r

2
πr(jk) .

Enforcing the constraint at time level n allows us to solve for pn given the set {pk}k 6=n. This
amounts to solving the following nonlinear equation for all i ∈ {1, . . . , Nx},
(8.11)

∑

j

Bi,je
pni r

2
j r2
j = 1/Nx ,

where

(8.12) B = Sn

[
e−

Cj1,...,jK
ε e

∑
k,k 6=n p

k
πx(jk)r

2
πr(jk)

]
.

Due to the structure of the cost, we only need to store two arrays D0, D1 ∈ RN ×RN , given by

(8.13) D0
i,j = dC(zi, zj)

2 , D1
i,j = dC(zi, (h(πx(zj)),

√
|Jac(h)|))2 .

8.2. Numerical results: from CH to Euler. We now present some numerical results illus-
trating the behavior of generalized solutions of the H(div) geodesic problem and their relation
to generalized incompressible Euler solutions. We consider two types of couplings to define the
boundary conditions: a classical deterministic coupling, which we use to illustrate the emergence
of discontinuities in the flow map, and a generalized coupling that obliges particles to cross each
other so that the solution is not deterministic. For both cases, the domain will be the one-
dimensional interval M = [0, 1] and T = 1.

A peakon-like solution. Consider the continuous map h : [0, 1]→ [0, 1], defined by

(8.14) h(x) =

{
1.4x if x ≤ 0.5 ,
0.6x+ 0.4 if x > 0.5 .

We use this map to define the coupling on the cone as in equation (4.6). We compute the solution
using the algorithm presented in the previous section with Nx = 40, Nr = 41, 0.55 ≤ r ≤ 1.45,
K = 35, α = 40, ε = 5 · 10−4. In figure 6 we show the evolution of the transport plan on
the domain M given by (eM0,tk)#µ ∈ P(M2), where eM0,tk(z) := (x0, xtk), for selected times. In
figure 7 we show the evolution of the marginals on the cone given by (etk)#µ ∈ P(C) for the
same times. We remark that the dynamic plan is approximately deterministic since there is
very little diffusion of the mass in the domain, which is at least partially due to the entropic
regularization. In addition the discontinuity in the Jacobian of the coupling map propagates to
the whole solution, which resembles a peakon with the discontinuity point corresponding to the
peak of the peakon.

A non-deterministic solution. The homogeneous marginal constraint allows us to consider very
general couplings even defined by non-injective maps or maps that do not preserve the local
orientation of the domain. Measure-preserving maps provide a special example since these were
used by Brenier to define boundary conditions for generalized incompressible Euler flows. In
fact if h is measure-preserving, i.e. h#ρ0 = ρ0, then we can use as coupling

(8.15) γ = [(Id, 1), (h, 1)]#ρ0 .

Here, we take h : [0, 1]→ [0, 1] to be the map

(8.16) h(x) = 1− x ,
which can only be realized by a non-deterministic plan. We compute the discrete solution
associated with such boundary conditions with Nx = 40, Nr = 41, 0.6 ≤ r ≤ 1.4, K = 35,
α = 40, ε = 5 · 10−4. As before, we show the evolution of the transport plan on the domain M
given by (eM0,tk)#µ ∈ P(M2) in figure 8. In figure 9 we show the evolution of the marginals on
the cone given by (etk)#µ ∈ P(C). The transport plan evolution is remarkably similar to that of
the incompressible Euler equation for the same coupling (see, e.g., [6]). However, the two do not



GENERALIZED SOLUTIONS OF THE H(div) GEODESIC PROBLEM 33

(a) k = 1 (b) k = 6 (c) k = 11 (d) k = 16

(e) k = 20 (f) k = 25 (g) k = 30 (h) k = 35

Figure 6. Transport couplings (eM0,tk)#µ on M×M for the peakon-like solution
associated with the boundary conditions specified by the map in equation (8.14).

(a) k = 1 (b) k = 6 (c) k = 11 (d) k = 16

(e) k = 20 (f) k = 25 (g) k = 30 (h) k = 35

Figure 7. Fixed time marginals (etk)#µ on the cone section M × [rmin, rmax]
(rmin = 0.55, rmax = 1.45) for the peakon-like solution associated with the
boundary conditions specified by the map in equation (8.14).

coincide as it is evident from the marginals on the cone in figure 9. In the case of incompressible
Euler, these marginals are concentrated on r = 1 for every time, i.e. the transport plan remains
measure-preserving during the evolution. This is clearly not the case for the generalized CH
solution, for which also the Jacobian appears to be non-deterministic.

9. Outlook

There are several natural questions that were not addressed in this paper and that we reserve
to future work:

• Tight relaxation. Brenier’s relaxation of incompressible Euler is not tight in two dimen-
sions but it is in three dimensions due to the work of Shnirelman [35]. It is an open
question whether a similar result holds for the generalized problem studied in this paper.
The approximation results in section 7 suggest that this is the case. In particular, we
conjecture that our formulation is a tight relaxation of the H(div) geodesic problem in
dimension d ≥ 2.
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(a) k = 1 (b) k = 6 (c) k = 11 (d) k = 16

(e) k = 20 (f) k = 25 (g) k = 30 (h) k = 35

Figure 8. Transport couplings (eM0,tk)#µ on M ×M for the non-deterministic
solution associated to the boundary conditions specified by the map in equation
(8.16).

(a) k = 1 (b) k = 6 (c) k = 11 (d) k = 16

(e) k = 20 (f) k = 25 (g) k = 30 (h) k = 35

Figure 9. Fixed time marginals (etk)#µ on the cone section M × [rmin, rmax]
(rmin = 0.6, rmax = 1.4) for the non-deterministic associated with the boundary
conditions specified by the map in equation (8.16).

As for the generalized Euler solutions, a better understanding of the structure of minimizing
generalized flows is of theoretical interest:

• Occurrence of singular solutions. In this paper we did not fully characterize the emer-
gence of singular solutions. Even for the case of rotation on the circle or on the torus,
for example, we did not prove that these are the unique minimizers for the problem. In
addition, such examples suggest that singular solutions appear whenever particles’ dis-
placement is sufficiently large. It would be interesting to give a full characterization in
this direction, specifying when solutions are singular in terms of the boundary conditions
and the dimension and geometry of the base space M ;

• Regularity of the pressure. Brenier’s result on the existence and uniqueness of the pres-
sure in incompressible Euler was subsequently improved by Ambrosio and Figalli [1] in
terms of regularity of the pressure field. It is natural to ask whether such a result can
be extended to the generalized H(div) geodesic problem. This question is related to the
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previous one, due to the fact that a sufficiently regular pressure field can prevent the
occurrence of singular solutions as it can be deduced from the proofs in section 6.

Addressing these theoretical questions will also guide the development of numerical schemes
which are better suited to the formulation considered in this paper than methods based on
entropic regularization. A viable alternative in this context is given by semi-discrete methods
[29] (see also the schemes developed for the incompressible Euler equations in [30, 18]), whose
use for the generalized H(div) geodesic problem will also be studied in future work.
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Appendix A. Proof of lemma 4.3

Proof. Here we prove that the homogeneous marginal constraint can be enforced at each time
rather than in integral form as in equation (4.9).

First, we prove that the constraint in equation (4.9) implies the one in equation (4.11). In
order to show this, for any fixed t∗ ∈ [0, T ] and f ∈ C0(M), consider the following functionals

(A.1) F(z) := r2
t∗f(xt∗) , Fn(z) :=

∫ T

0

r2
t f(xt)δn,t∗(t) dt ,

where δn,t∗ : [0, T ] → R, n ∈ N, is a Dirac sequence of continuous functions converging to δt∗ .
Then for any z ∈ Ω, Fn(z)→ F(z) as n→ +∞. Moreover, using Jensen’s inequality,

(A.2)

Fn(z) ≤ ‖f‖C0

∫ T

0

r2
t δn,t∗ dt

≤ 2‖f‖C0

(
r2
0 +

∫ T

0

(rt − r0)2δn,t∗ dt

)

≤ 2‖f‖C0

(
r2
0 +

∫ T

0

ṙ2
t dt

∫ T

0

t δn,t∗ dt

)

≤ 2‖f‖C0

(
r2
0 + TA(z)

)
.

The right-hand side is µ-integrable since A(µ) < +∞ and because of the coupling constraint.
Hence, we get the result by the dominated convergence theorem.

Similarly, if f ∈ C0([0, T ]×M), we take

(A.3) F(z) :=

∫ T

0

f(t, xt)r
2
t dt , Fn(z) :=

T

K

K∑

k=0

f(tk, xtk)r2
tk
,

where tk := kT/K. Then for any z ∈ Ω, Fn(z)→ F(z) as n→ +∞. Moreover,

(A.4)

Fn(z) ≤ 2‖f‖C0

(
r2
0 +

T

K

K∑

k=1

(rtk − r0)2

)

≤ 2‖f‖C0

(
r2
0 +

T

K

K∑

k=1

tk

∫ tk

0

ṙ2
t dt

)

≤ 2‖f‖C0

(
r2
0 + T 2A(z)

)
,

and we can apply again the dominated convergence theorem to conclude the proof. �
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Appendix B. Proof of lemma 6.1

Proof. Throughout this proof, most metric operations are performed with respect to the cone
metric gC , so to simplify the notation we will use | · | and 〈·, ·〉 to denote, respectively, the norm
and the inner product both on TC and Rd according to the context. Moreover, given a vector
field u on the cone and a curve t 7→ p(t) ∈ C, ∇tu(p(t)) := ∇ṗ(t)u(p(t)) is the covariant derivative
of u at p(t) with respect to the vector ṗ(t).

Given a smooth solution (ϕ, λ) and a fixed x ∈ M , let z∗ = [x∗, r∗] ∈ Ω be the curve defined
by x∗ : t → x∗t := ϕt(x) and r∗ : t → r∗t := λt(x). We want to show that for any curve
z ∈ AC2([0, T ]; C) such that z 6= z∗, z0 = z∗0 and zT = z∗T , we have B(z) > B(z∗). We proceed
in two steps: first we show that the inequality holds when z is smooth and when the geodesics
between z∗t and zt are smooth for all t ∈ [0, T ]; then we derive sufficient conditions for which the
inequality holds also for curves z which are farther away from z∗.

Let s ∈ [0, 1] 7→ c(t, s) ∈ C be a family of geodesics parameterized by t ∈ [0, T ] such that
c(t, 0) = z∗t and c(t, 1) = zt. In order for such geodesics to be smooth we need to assume

(B.1) |x∗t − xt| < π , ∀ t ∈ [0, T ] .

Let J(t, s) := ∂tc(t, s), which is a Jacobi field when restricted to any geodesic c(t, ·) for any fixed
t ∈ [0, T ]. Moreover, J(t, 0) = ż∗t and J(t, 1) = żt. Hence we want to show that

(B.2)

∫ T

0

|J(t, 0)|2 −Ψp(t, c(t, 0)) dt ≤
∫ T

0

|J(t, 1)|2 −Ψp(t, c(t, 1)) dt .

Let C := supt∈[0,T ] supx∈M |Hess Ψp|. The Taylor expansion of Ψp(t, c(s, t)) with respect to s at
s = 0 yields

(B.3) Ψp(t, c(t, 1))−Ψp(t, c(t, 0))− 〈∇Ψp(t, c(t, 0)), ∂sc(t, 0)〉 ≤ C

2

∫ 1

0

|∂sc(t, s)|2 ds .

Since ∂sc(t, s) = 0 at t = 0 and t = T , by the Poincaré inequality we also have

(B.4)

∫ T

0

|∂sc(t, s)|2 dt ≤ T 2

π2

∫ T

0

|∂t|∂sc(t, s)||2 dt ≤ T 2

π2

∫ T

0

|∇t∂sc(t, s)|2 dt .

Let J̇(t, s) := ∇s∂tc(t, s) and exchanging the order of derivatives in the equation above we obtain

(B.5)

∫ T

0

|∂sc(t, s)|2 dt ≤ T 2

π2

∫ T

0

|J̇(t, s)|2 dt .

Integrating over [0, T ] equation (B.3) and using equation (B.5) we get

(B.6)

∫ T

0

Ψp(t, c(t, 1))−Ψp(t, c(t, 0))− 〈∇Ψp(t, c(t, 0)), ∂sc(t, 0)〉dt ≤ CT 2

2π2

∫ 1

0

|J̇(t, s)|2 ds .

Consider the term involving the gradient of Ψp. Substituting ∇Ψp(t, c(t, 0)) = −2∇tż∗t =
−2∇tJ(t, 0), integrating by parts in t, and exchanging the order of derivatives for this term
yields

(B.7)

∫ T

0

Ψp(t, c(t, 1))−Ψp(t, c(t, 0))− 2〈J(t, 0), J̇(t, 0)〉dt ≤ CT 2

2π2

∫ 1

0

|J̇(t, s)|2gC ds .

Let f(s) :=
∫ T

0
|J(t, s)|2 dt, then

(B.8) f ′(0) =

∫ T

0

2〈J(t, 0), J̇(t, 0)〉dt ,

and

(B.9)

f(1)− f(0)− f ′(0) =

∫ 1

0

(1− s)f ′′(s) ds

=

∫ 1

0

∫ T

0

2(1− s)(|J̇(t, s)|2 + 〈J(t, s),∇sJ̇(t, s)〉) dtds

≥
∫ 1

0

∫ T

0

2(1− s)|J̇(t, s)|2 dtds ,
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where the last inequality is due to the fact that for a Jacobi field J(t, s),

(B.10) ∇sJ̇(t, s) = −R(J(t, s), ∂sc(t, s))∂sc(t, s) ,

where R is the Riemann tensor, which for any tangent vectors X and Y at the same point on
the cone over a flat manifold satisfies 〈X,R(X,Y )Y 〉 ≤ 0 . Moreover since the Jacobi fields are
finite dimensional and [0, T ]×M is compact, there exists a constant C0 > 0 such that

(B.11) f(1)− f(0)− f ′(0) ≥ C0

2

∫ 1

0

∫ T

0

|J̇(t, s)|2 dtds .

Combining this with (B.7) and rearranging terms we obtain

(B.12)

(
C0

2
− CT 2

2π2

)∫ 1

0

∫ T

0

|J̇(t, s)|2 dtds+

∫ T

0

|J(t, 0)|2 −Ψp(t, c(t, 0)) dt

≤
∫ T

0

|J(t, 1)|2 −Ψp(t, c(t, 1)) dt .

Because of the inequality (6.3), shows that z∗ is minimizing among all paths z ∈ Ω which satisfy
(B.1) and it is unique when the inequality is strict. Note that when M = S1

1 , the circle of
unit radius, we can identify C with R2 and condition (B.1) is not necessary. Furthermore, since
geodesics are straight lines with constant speed, from equation (B.9) we find C0 = 2. This
concludes the proof for the case M = S1

1 .
Now, assume that for all x ∈M , dC(zt0 , zt1) ≤ ε, for all t0, t1 ∈ [0, T ]. Let

(B.13) Bδ :=
⋂

t∈[0,T ]

{q ∈ C ; dC(q, z
∗
t ) ≤ δ} ,

and take ε < δ := rmin
2 , where rmin := min(t,x)∈[0,T ]×M λt(x). For any q ∈ Bδ and any t ∈

[0, T ] the geodesic path between q and z∗t cannot pass through the apex, since otherwise the
distance between the two points should be at least equal to rmin. In other words, we must have
dC(q, z∗t ) < π and the path z∗ is minimizing among all paths z ∈ Ω contained in Bδ. Moreover,
the geodesic path from z∗0 to z∗T is also included in Bδ. Consider the following quantity
(B.14)

E(δ, q, T ∗) := inf
p∈∂Bδ/C(∂M)

{
inf

z∈AC2([0,T∗];C)

{∫ T∗

0

|żt|2 −Ψp(t, zt) dt ; z0 = q ∈ Bδ , zT = p

}}
,

which is the infimum action over the interval [0, T ∗] among paths starting at a point q ∈ Bδ
and reaching its boundary ∂Bδ (but not points on ∂M) at time T ∗. Given any path z such that
z0 = z∗0 and zT = z∗T not contained in Bδ, we have

(B.15) B(z) ≥ inf
T1+T2≤T

(E(δ, z∗0 , T1) + E(δ, z∗T , T2)) ,

and we want to show that B(z) > B(z∗). We have

(B.16)

E(δ, z∗0 , T1) ≥ inf
p

inf
z

∫ T1

0

|żt|2 dt− (rmax + δ)2CT1

≥ (δ − ε)2

T1
− (rmax + δ)2CT1 ,

where C := sup(t,x)∈[0,T ]×M |P (t, x)| and rmax := max(t,x)∈[0,T ]×M λt(x). Hence, by equation

(B.15),

(B.17) B(z) ≥ 4(δ − ε)2

T
− (rmax + δ)2CT .

On the other hand, we can deduce an upper bound for B(z∗) using the geodesic path zg between
z∗0 and z∗T , yielding

(B.18) B(z) ≤
∫
|żgt |2 dt+ r2

maxCT ≤
ε2

T
+ r2

maxCT .

Therefore we find the following sufficient condition for optimality of the path z∗:

(B.19) [r2
max + (rmax + δ)2]CT ≤ 4(δ − ε)2

T
− ε2

T
.
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The right-hand side is positive if ε < 2δ/3. Hence taking ε = δ/2 and substituting δ = rmin
2 ,

(B.20)

[
r2
max +

(
rmax +

rmin
2

)2
]
CT ≤ 3r2

min

8T
.

This is the same as equation (6.5). For uniqueness we only need to substitute the inequality in
(B.20) by a strict one, which concludes the proof. �
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ABSTRACT 
 

This	document	is	about	Optimal	Transport	and	its	application	to	partial	differential	equations	such	as	gradient	flows	or	Euler	flows	in	the	
Wasserstein	spaces.	We	investigate	theoretical	as	well	as	numerical	questions.	On	the	theoretical	side	of	optimal	transport,	we	address	
questions	such	as	Wasserstein	splines,	Wasserstein	extrapolation	and	some	questions	related	to	the	smoothness	of	Unbalanced	Opti-	mal	
Transport	(Unbalanced	Brenier	polar	projection,	Unbalanced	Monge-Ampère	equations,	a	special	class	of	Cone	convex	functions).	We	then	
apply	the	Wasserstein	Gradient/Euler	flow	structure	to	the	study	of	some	PDEs.		

On	the	one	hand,	the	flow	structure	is	used	to	prove	theoretical	results,	notably	the	existence	of	solutions	to	the	system	of	incompressible	
immiscible	multiphase	flows	in	porous	media,	and	the	definition	of	the	notion	of	relaxed	solution	for	the	Camassa-Holm	equations,	which	
happens	to	be	the	counter	part	for	the	Unbalanced	Optimal	Transport	of	what	Incompressible	Euler	is	for	the	classical	Optimal	Trans-	port.	
One	the	other	hand,	the	geometrical	structure	is	also	used	to	design,	implement	and	prove	convergence	for	different	numerical	schemes.	
For	instance	we	introduce	the	notion	of	variational	Finite	Volume	schemes	for	Wasserstein	Gradient	flows.	These	schemes	are	finite	
volume	schemes	defined	as	the	Euler-Lagrange	equations	for	a	space	discretization	of	a	minimizing	movement	(JKO)	scheme,	a	"first	
discretize	then	optimize"	approach.	We	also	defined	Lagrangian	numerical	schemes	for	a	class	of	Gradient	and	Euler	flows.	These	schemes	
are	ODEs	preserving	the	underlying	geometrical	structure	with	an	approximated	energy	defined	through	semi	discrete	Optimal	Transport.	
Through	a	splitting	procedure	and	using	Unbalanced	Optimal	Transport,	all	the	effort	undertaken	for	Wasserstein	Gradient	Flows	can	by	
extended	to	encompass	more	general	and	non	conservative	reaction	diffusion	equations.	 

 

 

RÉSUMÉ 
 
Ce document traite du transport optimal et de son application aux équations aux dérivées partielles telles que des flows de gradient ou d'Euler dans 
les espaces de Wasserstein. Nous étudions des questions théoriques et numériques. Du côté théorique du transport optimal, nous abordons des 
questions telles que la construction de splines dans l’espace de Wasserstein, l'extrapolation de géodésiques pour la métrique Wasserstein et 
certaines questions liées à la régularité du transport optimal non équilibré (projection polaire de Brenier non équilibrée, équations de Monge-
Ampère non équilibrées, une classe spéciale de fonctions Cône-convexes). Nous utilisons ensuite la structure de flot de gradient/Euler dans l’espace 
de Wasserstein pour l'étude de certaines EDP. 
 
D'une part, cette structure spéciale est utilisée pour prouver des résultats théoriques, par exemple pour monter l'existence de solutions au système 
d'écoulements multiphasiques immiscibles et incompressible en milieu poreux, ou encore introduire la notion de solution généralisées pour les 
équations de Camassa-Holm, qui s'avère être la contrepartie pour le Transport Optimal Déséquilibré de ce que l'Euler Incompressible est au 
Transport Optimal classique. D'autre part, la structure géométrique est également utilisée pour concevoir, mettre en œuvre et prouver la 
convergence de différents schémas numériques. Par exemple, nous introduisons la notion de schémas variationnels volumes finis pour les flots de 
gradient Wasserstein. Ces schémas sont des schémas de volumes finis définis comme les équations d'Euler-Lagrange pour une discrétisation en 
espace d'un schéma de mouvement minimisant (JKO), dans les l’esprit des approches "d'abord discrétiser puis optimiser". Nous avons également 
défini des schémas numériques lagrangiens pour une classe de flots de Gradient/Euler. Ces schémas numériques sont des EDO préservant la 
structure géométrique sous-jacente avec une énergie approchée définie à l’aide d’un problème de transport optimal semi-discret. Par ailleurs  à 
l’aide d’une méthode d’optimisation alterné et à l'utilisation du transport optimal non équilibré, nous montrons que tous les efforts entrepris pour 
approcher les flots de gradient Wasserstein peuvent être étendus pour englober des équations de diffusion-réaction plus générales ne préservant 
pas la masse. 
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