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In this paper, we design numerical methods for a PDE system arising in corrosion modeling.
This system describes the evolution of a dense oxide layer. It is based on a drift–diffusion
system and includes moving boundary equations. The choice of the numerical methods is
justified by a stability analysis and by the study of their numerical performance. Finally,
numerical experiments with real-life data shows the efficiency of the developed methods.
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1. Introduction

1.1. General framework of the study

The concept for long term storage of high-level radioactive waste in France under study is based on an underground
repository. The waste shall be confined in a glass matrix and then placed into cylindrical steel canisters. These containers
shall be placed into micro-tunnels in the highly impermeable Callovo-Oxfordian claystone layer at a depth of several hun-
dred meters. At the request of the French nuclear waste management agency ANDRA, investigations are conducted to opti-
mize and finalize this repository concept with the aim to ensure its long-term safety and its reversibility. In particular, the
repository concept requires a minimum containment time of 1000 years.

The long-term safety assessment of the geological repository has to take into account the degradation of the carbon steel
used for the waste overpacks and the cell disposal liners, which are in contact with the claystone formation. This degradation
is mainly caused by generalized corrosion processes which form a passive layer on the metal surface consisting of a dense
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oxide inner layer and a porous hydroxide outer layer in contact with the groundwater in the pore space of the claystones. The
processes take place under anaerobic conditions, since the groundwater is anoxic.

The neighboring geochemical environment (pH, concentrations) and groundwater flow trends induce changes of the cor-
rosion conditions, which, in turn, influence the geochemical and thermo-hydro-mechanics of the claystones. The tempera-
ture also affects the corrosion conditions. Indeed, the waste canisters are a source of heat. At the beginning of the repository
development, the temperature is estimated to be about 90 �C. Later, it is supposed to reach its steady-state value near 40 �C.

As a tool to investigate the corrosion processes at the surface of the carbon steel canisters, the Diffusion Poisson Coupled
Model (DPCM) for corrosion has been developed by Bataillon et al. [1].

The model focuses on the development of the dense oxide layer in the region of contact between the claystones and the
metal. In order to reduce complexity, in the present paper, the porous hydroxide layer is not taken into account. The system
claystones – oxide layer – metal is described by a coupled system of electromigration – diffusion equations for the transport
of the charge carriers in the oxide layer, and a Poisson equation for the electric potential. The interaction between the oxide
layer and the adjacent structures are described in terms of Robin boundary conditions for the electrochemical reactions and
the potential drops. The system includes moving boundary equations based on the Pilling–Bedworth ratio. The system evo-
lution can be investigated in both potentiostatic and galvanostatic situations. As the oxide layer is very thin compared to the
waste overpack size, it is sufficient to consider the model in one space dimension.

The model allows to assess the evolution of the carbon steel corrosion rate, the chemical species release and the charac-
teristic time of these processes. These data shall be used to estimate the lifetime of the carbon steel overpack and the pres-
sure rise resulting from hydrogen release.

Carbon steel is expected to exhibit a corrosion rate between 1 and 10 lm year�1. Due to the formation of the oxide layer,
we expect a reduction of the corrosion rate.

1.2. Presentation of the corrosion model

We recall here the DPCM model introduced by Bataillon et al. [1]. The domain under study is the oxide layer whose inter-
faces are moving. The moving domain is denoted by (X0(t),X1(t)). In the oxide layer, three charge carriers are taken into ac-
count: electrons, cations (Fe3+) and oxygen vacancies ðV €OÞ. The densities of these charge carriers are respectively denoted by
N, P and C. The corresponding current densities are denoted by JN, JP and JC. These current densities contain a drift part and a
diffusion part, so that the equations for N, P and C are linear convection–diffusion equations. They are coupled with a Poisson
equation for the electrical potential W.

Charge carriers are created and consumed at both interfaces: x = X0(t) is the outer interface (oxide/solution) and x = X1(t)
is the inner interface (oxide/metal). The kinetics of the electrochemical reactions at interfaces leads to Robin boundary con-
ditions on N, P and C.

The boundary conditions for the Poisson equation take into account that the metal and the solution can be charged be-
cause they are respectively electronic and ionic conductors. Such an accumulation of charges induces a field given by the
Gauss law. These accumulations of charges depend on the voltage drop at the interface by the usual Helmholtz law which
links the charge to the voltage drop through a capacitance. The parameters DWpzc

1 and DWpzc
0 are the voltage drop correspond-

ing to no accumulation of charges respectively in the metal and in the solution.
The DPCM model takes into account the growth of the oxide host lattice at x = X1(t) and its dissolution at x = X0(t) leading

to moving boundary equations. In order to properly reflect the mass balance an the moving interfaces, in the boundary con-
ditions, we need to take into account the interface velocities. This is a consequence, e.g., of the pillbox lemma [2,3]. The
dimensionless model writes for t P 0:

� Equation and boundary conditions for the density of cations P:
Please
Comp
@tP þ @xJP ¼ 0; JP ¼ �@xP � 3P@xW; x 2 ðX0ðtÞ;X1ðtÞÞ; ð1:1aÞ

JP þ PX00ðtÞ ¼ m0
PðP

m � PÞe�3b0
PW � k0

PPe3a0
PW; x ¼ X0ðtÞ; ð1:1bÞ

JP þ PX01ðtÞ ¼ m1
PPe�3b1

P ðV�WÞ � k1
PðP

m � PÞe3a1
P ðV�WÞ; x ¼ X1ðtÞ: ð1:1cÞ
� Equation and boundary conditions for the density of electrons N:
D1

D2
@tN þ @xJN ¼ 0; JN ¼ �@xN þ N@xW; x 2 ðX0ðtÞ;X1ðtÞÞ; ð1:2aÞ

JN þ NX00ðtÞ ¼ m0
Neb0

NW � k0
NNe�a0

NW þ n0
Nea0

r W � p0
NNe�b0

r W; x ¼ X0ðtÞ; ð1:2bÞ
JN þ NX01ðtÞ ¼ m1

NN � k1
NNmetal logð1þ e�ðV�WÞÞ; x ¼ X1ðtÞ: ð1:2cÞ
� Equation and boundary conditions for the density of oxygen vacancies C:
D1

D3
@tC þ @xJC ¼ 0; JC ¼ �@xC � 2C@xW; x 2 ðX0ðtÞ;X1ðtÞÞ; ð1:3aÞ
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Please
Comp
JC þ CX00ðtÞ ¼ m0
C 1� C

4

� �
e�2b0

CW � k0
C

C
4

e2a0
CW; x ¼ X0ðtÞ; ð1:3bÞ

JC þ CX01ðtÞ ¼ m1
C

C
4

e�3b1
C ðV�WÞ � k1

C 1� C
4

� �
e3a1

C ðV�WÞ x ¼ X1ðtÞ: ð1:3cÞ
� Equation on the electrical potential W:
� k2@2
xxW ¼ 3P � N þ 2C þ qhl; x 2 ðX0ðtÞ;X1ðtÞÞ; ð1:4aÞ

W� a0@xW ¼ DWpzc
0 ; x ¼ X0ðtÞ; ð1:4bÞ

Wþ a1@xW ¼ V � DWpzc
1 ; x ¼ X1ðtÞ: ð1:4cÞ
� Moving boundary equations
dX0

dt
¼ v0

dðtÞ þ
dX1

dt
1� Xox

mXFe

� �
; ð1:5aÞ

dX1

dt
¼ � D3

4D1

XFe

Xox
JCðX1Þ þ CX 01ðtÞ
� �

; ð1:5bÞ

with v0
dðtÞ ¼ k0

de�5a0
d
WðX0ðtÞÞ: ð1:5cÞ
The system is supplemented with initial conditions:
Nðx;0Þ ¼ N0ðxÞ; Pðx;0Þ ¼ P0ðxÞ; Cðx;0Þ ¼ C0ðxÞ; x 2 ð0;1Þ; ð1:6aÞ
X0ð0Þ ¼ 0; X1ð0Þ ¼ 1: ð1:6bÞ
We shortly explain the parameters of the model:

� D1, D2 and D3 are respectively the mobility or diffusion coefficients of cations, electrons and oxygen vacancies. D1 and D3

have the same order of magnitude, but D1� D2 due to the difference of size between cations and electrons and the result-
ing difference of mobilities.

� mi
P; k

i
P

� �
i¼0;1

, mi
N; k

i
N

� �
i¼0;1

, mi
C ; k

i
C

� �
i¼0;1

, n0
N; p

0
N

� �
, k0

d are interface kinetic functions. We assume that these functions are

constant and strictly positive.

� a0
u; b

0
u

� �
for u = P,N,C,r,d and a1

u; b
1
u

� �
for u = P,C are positive transfer coefficients.

� Pm is the maximum occupancy for octahedral cations in the host lattice.
� Nmetal is the electron density of state in the metal (Friedel model).
� qhl is the net charge density of the ionic species in the host lattice. We assume that qhl is homogeneous.
� Xox is the molar volume of the oxide.
� XFe is the molar volume of the metal.
� m is the number of moles of iron per mole of oxide (m = 3 for magnetite).
� DWpzc

0 , DWpzc
1 are respectively the outer and the inner voltages of zero charge.

� k2, a0, a1 are positive dimensionless parameters.

In the system (1.1)–(1.5), V can either be considered as an applied potential (‘‘potentiostatic case’’) or be given by another
equation ensuring the electron charge balance at the inner interface (‘‘galvanostatic case’’):
�3 JP þ PX01ðtÞ þ
D3

4D1
ðJC þ CX 01ðtÞÞ

� �
þ D2

D1
JN þ NX01ðtÞ
� �

¼ eJ; x ¼ X1ðtÞ ð1:7Þ
If eJ ¼ 0, we speak of free corrosion, in this case, V is called ‘‘free corrosion potential’’.

Remark 1.1. The equations for the carrier densities with their boundary conditions (1.1)–(1.3) have the same form. They can
all be written:
eu@tuþ @xJu ¼ 0; Ju ¼ �@xu� zuu@xW in ðX0ðtÞ;X1ðtÞÞ; 8t P 0; ð1:8aÞ

� Ju � uX00ðtÞ ¼ r0
uðuðX0ðtÞÞ;WðX0ðtÞÞÞ on x ¼ X0ðtÞ; 8t P 0; ð1:8bÞ

Ju þ uX 01ðtÞ ¼ r1
uðuðX1ðtÞÞ;WðX1ðtÞÞ;VÞ on x ¼ X1ðtÞ; 8t P 0: ð1:8cÞ
For u = P,N,C, the charge numbers of the carriers are respectively zu = 3,�1,2 and we respectively have eu ¼ 1; D1
D2
; D1

D3
. We also

note that both functions r0
u and r1

u are linear and monotonically increasing with respect to their first argument. More pre-
cisely, the functions r0

u and r1
u have the following form:
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Please
Comp
r0
uðs; xÞ ¼ b0

uðxÞs� c0
uðxÞ; ð1:9aÞ

r1
uðs; x;VÞ ¼ b1

uðV � xÞs� c1
uðV � xÞ; ð1:9bÞ
where b0
u; b

1
u; c0

u; c1
u are smooth positive functions.
1.3. Main results

The system of equations (1.1a)–(1.4a) is close to the van Roosbroeck’s drift–diffusion system arising in semiconductor
modeling (with three charge carriers instead of two). In the semiconductor framework, the drift–diffusion system is defined
on a fixed domain and is usually supplemented with Dirichlet, Neumann or Robin boundary conditions. Furthermore, an
additional coupling is given by reaction terms in the interior of the domain which describe the generation and recombination
of the charge carriers. It has been shown that the van Roosbroek system exhibits global existence and uniqueness results
under natural assumptions (see [4–8]). Existence results for the case of more than two species motivated by dopant diffusion
in semiconductors can be found in [9].

In the present paper, no reactions take place in the interior of the domain, and the boundary conditions supplementing
the drift–diffusion equations are given by Butler–Volmer-like laws at the interfaces. They lead to nonlinear Robin boundary
conditions which induce an additional coupling in the system. Moreover, the system includes equations for the position of
the moving boundary. Theoretical results (existence, uniqueness, long-time behavior) for (1.1)–(1.7) have not been proven
yet. These questions can possibly be studied by combining the techniques developed in the semiconductor framework cited
above and ideas by Aiki, Böhm and Muntean [10,3,11,12] for somewhat simpler systems with one moving interface.

While these questions are worth to be studied, due to the significant interest in the ability to use this model in simula-
tions within the framework described in the introduction, the aim of the present paper is rather the numerical approxima-
tion of the corrosion model. We want to propose an efficient numerical method in order to solve the full DPCM model (1.1)–
(1.7).

In Section 2 we focus on the discretization of the system of convection–diffusion equations coupled with the Poisson
equation (1.1)–(1.4). Therefore, we study a simplified two-species model on a fixed domain discretized by the finite volume
method and study two different choices for the time discretization. The stability analysis of both schemes will show that a
fully implicit time discretization must be chosen.

Then, in Section 3, we consider the full system in the potentiostatic case with the moving boundary equations. We intro-
duce a change of variables in order to rewrite the system on a fixed domain and adapt the scheme designed in Section 2. We
will study two different possibilities for the time discretization of the interface equations. We will also consider the galva-
nostatic case by taking into account Eq. (1.7).

In Section 4, we will give some details on the practical implementation of the numerical methods proposed in Section 3.
Some improvements, like adaptive time stepping, will also be proposed. The performance of the designed numerical meth-
ods will be studied in Section 5. Finally, Section 6 is devoted to the presentation of some numerical experiments in a real-life
context.
2. Study of a simplified model, choice for the time discretization

In this Section, we focus on a two-species model in order to fix the choice of the time discretization for our scheme. We
just consider the case with electrons and cations Fe3+. Without oxygen vacancies, there will be no evolution of the oxide
layer: the domain will be considered as fixed. Furthermore, we consider here the potentiostatic case: V is an applied
potential.

2.1. Presentation of the simplified model and discretization

The simplified system is obtained from (1.1), (1.2), (1.4) by setting C = 0 and X0(t) = 0, X1(t) = 1 for all t. It consists of two
drift–diffusion equations for the charge densities, coupled with a Poisson equation for the electrostatic potential. The bound-
ary conditions are Robin boundary conditions.

For the sake of simplicity, we also assume that the boundary conditions on P and N have exactly the same form. It means
that the functions b0

u, c0
u, b1

u and c1
u defined in (1.9a) and (1.9b) have the following form for both u = P or u = N:
b0
uðxÞ ¼ m0

ue�zub0
ux þ k0

uezua0
ux; c0

uðxÞ ¼ m0
uume�zub0

ux; ð2:1aÞ

b1
uðxÞ ¼ m1

ue�zub1
ux þ k1

uezua1
ux; c1

uðxÞ ¼ k1
uumezua1

ux; ð2:1bÞ
with the following hypotheses on the transfer coefficients:
a0
u; b

0
u; a

1
u; b

1
u 2 ½0;1� for u ¼ N; P; ð2:2Þ
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and on the interface kinetic constants:
Please
Comp
m0
u; k

0
u;m

1
u; k

1
u > 0: ð2:3Þ
Moreover, we assume that
3Pm � Nm þ qhl ¼ 0: ð2:4Þ
Remark 2.1. In the applications, we have qhl = �5, Pm = 2 and Nm = 1, so that hypothesis (2.4) is satisfied. Then it is expected
that the solution to the corrosion model verifies 0 6 P 6 Pm and 0 6 N 6 Nm. Therefore, it is crucial to design schemes that
satisfy these stability properties.

In order to write a finite volume scheme for this system, we first introduce notations concerning the mesh and the time step.
We consider a mesh for the domain [0,1], which is not necessarily uniform, i.e., a family of given points (xi)06i6I+1 satisfying
x0 ¼ 0 < x1 < x2 < � � � < xI < xIþ1 ¼ 1:
Then, for 1 6 i 6 I � 1, we define xiþ1
2
¼ xiþxiþ1

2 and we set x1
2
¼ x0 ¼ 0, xIþ1

2
¼ xIþ1 ¼ 1. The cells of the mesh are the intervals

xi�1
2
; xiþ1

2

� �
for 1 6 i 6 I. Let us set
hi ¼ xiþ1
2
� xi�1

2
; for 1 6 i 6 I;

hiþ1
2
¼ xiþ1 � xi; for 0 6 i 6 I
and h = max{hi,1 6 i 6 I} is the size of the mesh. The time step is denoted by Dt.
The numerical scheme will be Euler implicit in time and finite volume in space. The choice of Euler implicit discretization

in time is sensible for convection–diffusion equations in order to avoid a restrictive condition linking time step and mesh
size. However, for the discretization of Eqs. (1.1a) and (1.2a), different choices can be made for the time approximation of
the electrical field @xW. In the sequel, we propose two possibilities leading to two different schemes.

2.1.1. A decoupled scheme
The scheme writes:
� k2 dWn
iþ1

2
� dWn

i�1
2

� �
¼ hi 3Pn

i � Nn
i þ qhl

� �
; 1 6 i 6 I; ð2:5aÞ

euhi
unþ1

i � un
i

Dt
þ F nþ1

u;iþ1
2
� F nþ1

u;i�1
2
¼ 0; 1 6 i 6 I; for u ¼ P;N; ð2:5bÞ
with the numerical fluxes
dWn
iþ1

2
¼

Wn
iþ1 �Wn

i

hiþ1
2

; 0 6 i 6 I; ð2:6aÞ

F nþ1
u;iþ1

2
¼

Bðzuhiþ1
2
dWn

iþ1
2
Þunþ1

i � B �zuhiþ1
2
dWn

iþ1
2

� �
unþ1

iþ1

hiþ1
2

; 0 6 i 6 I; for u ¼ P;N; ð2:6bÞ
where the function B is the Bernoulli function, leading to Scharfetter–Gummel fluxes:
BðxÞ ¼ x
ex � 1

for x – 0; Bð0Þ ¼ 1: ð2:7Þ
The scheme must be supplemented with the discretization of the boundary conditions and of the initial conditions. For
the discretization of the boundary conditions (1.4b), (1.4c), (1.8b), (1.8c), we write:
Wn
0 � a0dWn

1
2
¼ DWpzc

0 ; ð2:8aÞ
Wn

Iþ1 þ a1dWn
Iþ1

2
¼ V � DWpzc

1 ; ð2:8bÞ
� F nþ1

u;12
¼ r0

u unþ1
0 ;Wn

0

� �
¼ b0

u Wn
0

� �
unþ1

0 � c0
u Wn

0

� �
; for u ¼ P;N; ð2:8cÞ

F nþ1
u;Iþ1

2
¼ r1

u unþ1
Iþ1 ;W

n
Iþ1;V

� �
¼ b1

u V �Wn
Iþ1

� �
unþ1

Iþ1 � c1
u V �Wn

Iþ1

� �
; for u ¼ P;N ð2:8dÞ
and for the initial condition
u0
i ¼

1
hi

Z x
iþ1

2

x
i�1

2

u0ðxÞdx; for u ¼ P;N: ð2:9Þ
The scheme (2.5)–(2.9) will be denoted by ðSdecÞ in all the sequel. It is decoupled in the following sense:

� Starting from ðPn;NnÞ ¼ Pn
i ;N

n
i

� �
06i6Iþ1, Wn ¼ Wn

i

� �
06i6Iþ1 is defined as the solution of the linear system (2.5a), (2.6a), (2.8a),

(2.8b).
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� Then, knowing Wn, (Pn+1,Nn+1) is defined as the solution of the linear system (2.5b), (2.6b), (2.7), (2.8c), (2.8d).

In Section 2.2, we will prove the invertibility of the involved linear systems and study the stability of ðSdecÞ.

Remark 2.2. If we want to replace the Scharfetter–Gummel fluxes by classical upwind fluxes, we just need to change the B
function and choose:
Please
Comp
BðxÞ ¼ 1þ x�; where x� ¼maxð�x;0Þ:
In fact, the Bernoulli function could be replaced by any function satisfying the three following properties: B(0) = 1, B(x) P 0
for all x 2 R and B(x) � B(�x) = �x for all x 2 R (see for instance Ref. [13]). But, with the Bernoulli function, the scheme may
be second order in space [14,15].
2.1.2. A fully implicit scheme
The only difference in the fully implicit scheme is in the definition of the numerical fluxes and of the boundary conditions

for P and N. Indeed, we replace (2.6b) by
F nþ1
u;iþ1

2
¼

B zuhiþ1
2
dWnþ1

iþ1
2

� �
unþ1

i � B �zuhiþ1
2
dWnþ1

iþ1
2

� �
unþ1

iþ1

hiþ1
2

; 0 6 i 6 I; for u ¼ P;N ð2:10Þ
and (2.8c) and (2.8d) by
� F nþ1
u;12
¼ r0

u unþ1
0 ;Wnþ1

0

� �
; for u ¼ P;N; ð2:11aÞ

F nþ1
u;Iþ1

2
¼ r1

uðunþ1
Iþ1 ;W

nþ1
Iþ1 ;VÞ; for u ¼ P;N: ð2:11bÞ
The new scheme will be denoted in all the sequel by ðSfiÞ.
At each time step, the vector of unknowns ðPnþ1;Nnþ1;Wnþ1Þ ¼ Pnþ1

i ;Nnþ1
i ;Wnþ1

i

� �
06i6Iþ1

is defined as the solution of a non-

linear system of equations. In Section 2.3, we will prove the existence of a solution to this nonlinear system and investigate
the stability of ðSfiÞ.

2.2. Stability analysis of a decoupled scheme

Proposition 2.3. Under the hypotheses (2.1)–(2.3), the scheme ðSdecÞ admits a unique solution (Pn,Nn,Wn)nP0. Moreover, if
P0,N0 2 L1(0,1) satisfy P0,N0 P 0 almost everywhere on (0,1), then Pn

i ;N
n
i P 0 for all 0 6 i 6 I + 1 and n P 0.
Proof. Let us first note that (P0,N0) is well defined by (2.9) and satisfies the nonnegativity condition. Assume now that for
any n P 0, (Pn,Nn) is given and satisfies the nonnegativity assumption. Then Wn is defined as the solution of the linear system
(2.5a), (2.6a), (2.8a), (2.8b). The matrix of this linear system is a tridiagonal matrix. As a0 and a1 are strictly positive, this
matrix is semistrictly diagonally dominant and thus invertible.

Knowing Wn, Pn+1 and Nn+1 are also defined as solutions of some linear systems. For u = P,N the linear system defined by
(2.5b), (2.6b), (2.8c), (2.8d) rewrites:
Mn
uunþ1 ¼ Sn

u: ð2:12Þ
The matrix Mn
u 2 MIþ2ðRÞ is a tridiagonal matrix, whose nonzero terms are defined by:
Mn
u

� �
ii ¼ eu

hi

Dt
þ

B zuhiþ1
2
dWn

iþ1
2

� �
hiþ1

2

þ
B �zuhi�1

2
dWn

i�1
2

� �
hi�1

2

; 81 6 i 6 I;

Mn
u

� �
iiþ1 ¼ �

B �zuhiþ1
2
dWn

iþ1
2

� �
hiþ1

2

; 81 6 i 6 I;

Mn
u

� �
ii�1 ¼ �

B zuhi�1
2
dWn

i�1
2

� �
hi�1

2

; 81 6 i 6 I;

Mn
u

� �
00 ¼

B zuh1
2
dWn

1
2

� �
h1

2

þ b0
uðW

n
0Þ;
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Please
Comp
Mn
u

� �
01 ¼ �

B �zuh1
2
dWn

1
2

� �
h1

2

;

Mn
u

� �
Iþ1Iþ1 ¼

B �zuhIþ1
2
dWn

Iþ1
2

� �
hIþ1

2

þ b1
u V �Wn

Iþ1

� �
;

Mn
u

� �
Iþ1I ¼ �

B zuhIþ1
2
dWn

Iþ1
2

� �
hIþ1

2

:

As eu > 0 and the functions b0
u, b1

u and B are nonnegative, the matrix Mn
u has positive diagonal terms and nonpositive off-

diagonal terms. Moreover, it is strictly diagonally dominant with respect to its columns. Therefore, Mn
u is an M-matrix: it is

invertible and Mn
u

� ��1 P 0. It yields the existence of a unique solution to (2.12).
The right hand side of the linear system (2.12), Sn

u, is defined by:
Sn
u

� �
i ¼ eu

hi
Dt un

i ;81 6 i 6 I;

Sn
u

� �
0 ¼ c0

u Wn
0

� �
; Sn

u

� �
Iþ1 ¼ c1

u V �Wn
Iþ1

� �
:

As un
i P 0 for 1 6 i 6 I and c0

u, c1
u are nonnegative functions, Sn

u is a positive-valued vector and as Mn
u

� ��1 P 0, we get that
unþ1

i P 0 for all 0 6 i 6 I + 1. It concludes the proof of Proposition 2.3 by induction. h
Proposition 2.4. Assume (2.1)–(2.4) and that P0,N0 2 L1(0,1) satisfy 0 6 P0
6 Pm and 0 6 N0

6 Nm almost everywhere on (0,1).
Then, if DWpzc

0 and DWpzc
1 fulfill:
� 1
3a0

P

1þ log a0a0
Pk0

P

� �� �
6 DWpzc

0 6
1
a0

N

1þ log a0a0
Nk0

N

� �� �
; ð2:13aÞ

� 1

b1
N

1þ log a1b1
Nm1

N

� �� �
6 DWpzc

1 6
1

3b1
P

1þ log a1b1
Pm1

P

� �� �
; ð2:13bÞ
and if the following inequality on the time step holds:
Dt 6 min
k2

9Pm ;
D1

D2

k2

Nm

 !
; ð2:14Þ
then the solution to the scheme ðSdecÞ satisfies
0 6 Pn
i 6 Pm and 0 6 Nn

i 6 Nm 80 6 i 6 I þ 1;8n P 0: ð2:15Þ
Proof. First, we note that the hypotheses on the initial conditions ensure that (2.15) is satisfied for n = 0. We now assume
that (2.15) is verified for n P 0 and prove that it also holds for n + 1. The nonnegativity has already been proven.

Let us first compute the product Mn
uum, where um is the constant vector of RIþ2, whose components are all equal to the

same value um. As the Bernoulli function defined by (2.7) satisfies B(x) � B(�x) = �x for all x 2 R, we have
Mn
uum

� �
i ¼ um eu

hi

Dt
� zu dWn

iþ1
2
� dWn

i�1
2

� �� �
; 81 6 i 6 I;

Mn
uum

� �
0 ¼ um �zudWn

1
2
þ b0

u Wn
0

� �� �
;

Mn
uum

� �
Iþ1 ¼ um zudWn

Iþ1
2
þ b1

u V �Wn
Iþ1

� �� �
:

Using (2.5a), (2.8a), (2.8b), it rewrites
Mn
uum

� �
i ¼ um eu

hi

Dt
þ zuhi

k2 ð3Pn
i � Nn

i þ qhlÞ
� �

; 81 6 i 6 I;

Mn
uum

� �
0 ¼ um � zu

a0
Wn

0 � DWpzc
0

� �
þ b0

u Wn
0

� �� �
;

Mn
uum

� �
Iþ1 ¼ um zu

a1
V � DWpzc

1 �Wn
Iþ1

� �
þ b1

u V �Wn
Iþ1

� �� �
:

Using (2.4), it yields
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Please
Comp
Mn
u unþ1 � um
� �� �

i ¼ eu
hi

Dt
un

i � um
� �

� zuhi

k2 um 3 Pn
i � Pm� �

� Nn
i � Nm� �� �

81 6 i 6 I;

Mn
uðunþ1 � umÞ

� �
0 ¼ c0

u Wn
0

� �
� um � zu

a0
Wn

0 � DWpzc
0

� �
þ b0

u Wn
0

� �� �
;

Mn
uðunþ1 � umÞ

� �
Iþ1 ¼ c1

u V �Wn
Iþ1

� �
� um zu

a1
V � DWpzc

1 �Wn
Iþ1

� �
þ b1

u V �Wn
Iþ1

� �� �
:

We now apply these results to u = P and N, with respectively um = Pm, um = Pm, and um = Nm, um = Nm. For the inner terms, we
get "1 6 i 6 I:
Mn
PðP

nþ1 � PmÞ
� �

i
¼ hi

Dt
Pn

i � Pm� �
1� 9Dt

k2 Pm
� �

þ 3Pmhi

k2 Nn
i � Nm� �

;

Mn
NðN

nþ1 � NmÞ
� �

i
¼ hi

Dt
Nn

i � Nm� � D1

D2
� Dt

k2 Nm
� �

þ 3Nmhi

k2 Pn
i � Pm� �

:

Therefore, if Dt verifies (2.14), we have ðMn
PðP

nþ1 � PmÞÞi 6 0 and Mn
NðN

nþ1 �NmÞ
� �

i
6 0 for all 1 6 i 6 I. It remains to prove

that Mn
uðunþ1 � umÞ

� �
0 6 0, Mn

uðunþ1 � umÞ
� �

Iþ1 6 0 for u = P,N. But, Mn
uðunþ1 � umÞ

� �
0 ¼ n0

u Wn
0

� �
and

Mn
uðunþ1 � umÞ

� �
Iþ1 ¼ n1

u V �Wn
Iþ1

� �
, with
n0
uðxÞ ¼ c0

uðxÞ � umb0
uðxÞ þ um zu

a0
x� um zu

a0
DWpzc

0 ;

n1
uðxÞ ¼ c1

uðxÞ � umb1
uðxÞ � um zu

a1
xþ um zu

a1
DWpzc

1 :
Using the definitions (2.1), we get
n0
uðxÞ ¼ �umk0

uezua0
ux þ um zu

a0
x� um zu

a0
DWpzc

0 ;

n1
uðxÞ ¼ �umm1

ue�zub1
ux � um zu

a1
xþ um zu

a1
DWpzc

1 :
The study of the variations of n0
u and n1

u for u = N,P shows that these functions are always increasing on an interval ð�1; �x�
and then decreasing on ½�x;þ1Þ. Therefore they reach a maximum value and the hypotheses (2.13b) ensure that the maxi-
mum value is always nonpositive. Then n0

P , n1
P , n0

N , n1
N are nonpositive functions on R.

Finally, we get that Mn
PðP

nþ1 � PmÞ
� �

i
6 0 and Mn

NðN
nþ1 �NmÞ

� �
i
6 0 for all 0 6 i 6 I + 1. As Mn

P and Mn
N are M-matrices, it

concludes the proof of Proposition 2.4. h

In the applications, we have k2 � 10�6 and D1
D2
� 10�14, so that the hypothesis on Dt, (2.14), imposes Dt � 10�20. It makes

the decoupled scheme unusable in practice and motivates the study of the fully implicit scheme.

2.3. Stability analysis of a fully implicit scheme

The scheme ðSfiÞ is defined as a set of nonlinear equations at each time step. We need to prove the existence of a solution
to the nonlinear system of equations and to study the stability of the scheme.

Proposition 2.5. Assume (2.1)–(2.4) and that P0,N0 2 L1(0,1) satisfy 0 6 P0
6 Pm and 0 6 N0

6 Nm almost everywhere on (0,1).
Then, there exists a solution to the fully implicit scheme ðSfiÞ: ((Pn,Nn)nP0, (Wn)nP1). Furthermore, if DWpzc

0 and DWpzc
1 verify

(2.13b), the solution to the scheme ðSfiÞ satisfies the stability property (2.15).

Proof. In order to prove Proposition 2.5, we adapt some ideas developed by Prohl and Schmuck in [16].
First, we note that (P0,N0) is well defined by (2.9) and satisfies (2.15). Assume now that for any n P 0, (Pn,Nn,Wn) is given

and satisfies (2.15). Then, we will prove that there exists a solution (Pn+1,Nn+1,Wn+1) to ðSfiÞ and that
0 6 Pnþ1
i 6 Pm and 0 6 Nnþ1

i 6 Nm 80 6 i 6 I þ 1:
Therefore, let us consider the mapping
T l
n : RIþ2 � RIþ2 ! RIþ2 � RIþ2

ðP;NÞ# ðeP; eNÞ

defined, for l > 0, by
� k2 dWiþ1
2
� dWi�1

2

� �
¼ hið3Pi � Ni þ qhlÞ; 1 6 i 6 I;

W0 � a0dW1
2
¼ DWpzc

0 ;

WIþ1 þ a1dWIþ1
2
¼ V � DWpzc

1 ;
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Please
Comp
eu
hi

Dt
1þ l

euk
2

� �
~ui �

l
euk

2 ui � un
i

� �
þ F u;iþ1

2
� F u;i�1

2
¼ 0; 1 6 i 6 I; for u ¼ P;N;

F u;iþ1
2
¼

B zuhiþ1
2
dWiþ1

2

� �
~ui � B �zuhiþ1

2
dWiþ1

2

� �
~uiþ1

hiþ1
2

; 0 6 i 6 I; for u ¼ P;N;

� F u;12
¼ r0

uð~u0;W0Þ ¼ b0
uðW0Þ~unþ1

0 � c0
uðW0Þ; for u ¼ P;N;

F u;Iþ1
2
¼ r1

uð~uIþ1;WIþ1;VÞ ¼ b1
uðV �WIþ1Þ~uIþ1 � c1

uðV �WIþ1Þ; for u ¼ P;N:
This mapping T l
n is defined by two successive steps:

� the first step defines an intermediate vector W as the solution of a linear system of equations,
� the second step defines eP and eN as solutions of linear systems of equations, very close to the systems involved in the

decoupled scheme (there is an additional term on the diagonal of the matrices and the right-hand-sides are slightly
modified).

Therefore, it is a continuous mapping from RIþ2 � RIþ2 to itself. Applying the proof of stability of Proposition 2.4, we
obtain that T l

n preserves the set:
K ¼ fðP;NÞ 2 RIþ2 � RIþ2; 0 6 Pi 6 Pm; 0 6 Ni 6 Nm; 8 0 6 i 6 Iþ 1g
as long as (2.13b) is satisfied and Dt verifies:
Dt 6 lmin
1

9Pm ;
1

Nm

� �
:

Then, thanks to Brouwer’s theorem, we conclude that T l
n has a fixed point in K. Moreover, this fixed point, with the cor-

responding W, is a solution to the scheme ðSfiÞ. It shows the existence of a solution to the scheme and the stability properties
(2.15). As this result holds for any l, the scheme is unconditionally stable. h
Remark 2.6. With the Brouwer fixed point theorem, we get the existence of one solution to the scheme ðSfiÞ but we do not
get any information on uniqueness. This question of uniqueness is relevant but still open. Therefore, in the sequel, the solu-
tion to the numerical scheme will be the one selected by Newton’s method used to solve the nonlinear system of equations
ðSfiÞ. During the numerical experiments we did not encounter situations hinting at multiple solutions.
3. Numerical schemes for the complete corrosion model

3.1. Change of variables

The corrosion model involves moving boundaries through (1.5). The system of equations is defined on the space–time
domain

S
06t6T[X0(t),X1(t)] � {t}. The size of the domain at time t is L(t) = X1(t) � X0(t). An Eulerian description is chosen in

order to handle the motion of the boundaries; the physical spatial domain is substituted by a computational one. Therefore,
we introduce the following change of variables:
ðx; tÞ# nðx; tÞ ¼ x� X0ðtÞ
X1ðtÞ � X0ðtÞ

; t
� �

[
06t6T

½X0ðtÞ;X1ðtÞ� � ftg ! ½0;1� � ½0; T�
and to every function u (respectively W) defined on
S

06t6T[X0(t),X1(t)] � {t} we associate a function �u (respectively W) de-
fined on [0,1] � [0,T] such that uðx; tÞ ¼ �uðnðx; tÞ; tÞ (respectively Wðx; tÞ ¼ Wðnðx; tÞ; tÞ). Then, we have:
@tu ¼ @t �u�
1

LðtÞ X00ðtÞ þ nL0ðtÞ
� �

@n�u

Ju ¼
1

LðtÞ ð�@n�u� zu�u@nWÞ ¼
1

LðtÞ J�u:
But, using the fact that n@n�u ¼ @nðn�uÞ � �u, we get
@tu ¼
1

LðtÞ @tðLðtÞ�uÞ � @n X00ðtÞ þ nL0ðtÞ
� �

�u
� �� �

:

Finally, forgetting the bars, the convection–diffusion equation with boundary conditions (1.8) rewrites in the new
variables:
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Please
Comp
euLðtÞ@tðLðtÞuÞ þ @nJu � eu@n LðtÞ X00ðtÞ þ nL0ðtÞ
� �

u
� �

¼ 0;

Ju ¼ �@nu� zuu@nW; n 2 ð0;1Þ ð3:1aÞ

� Ju � euuLðtÞX00ðtÞ ¼ LðtÞr0
uðu;WÞ; n ¼ 0 ð3:1bÞ

Ju þ euuLðtÞX01ðtÞ ¼ LðtÞr1
uðu;W;VÞ; n ¼ 1: ð3:1cÞ
We note that in the new variables, the convection–diffusion equation (3.1a) contains an additional convection term coming
from the displacement of the interfaces. Therefore, (3.1c) is equivalent to the following formulation:
euLðtÞ@tðLðtÞuÞ þ @n
bJu ¼ 0;bJu ¼ �@nu� zu@nWþ euLðtÞðX00ðtÞ þ nL0ðtÞÞ

� �
u; n 2 ð0;1Þ; ð3:2aÞ

� bJu ¼ LðtÞr0
uðu;WÞ; n ¼ 0; ð3:2bÞbJu ¼ LðtÞr1

uðu;W;VÞ; n ¼ 1: ð3:2cÞ
The equation on the electrostatic potential (1.4) rewrites in the new variables:
� k2

LðtÞ2
@2

nnW ¼ P � N þ 2C þ qhl; n 2 ð0;1Þ; ð3:3aÞ

W� a0

LðtÞ @nW ¼ DWpzc
0 ; n ¼ 0; ð3:3bÞ

Wþ a1

LðtÞ @nW ¼ V � DWpzc
1 ; x ¼ 1: ð3:3cÞ
Finally, the full DPCM model (1.1)–(1.5) rewritten on the fixed domain is given by (3.2) applied for u = N,P,C, (3.3) and the
moving boundary equations:
dX0

dt
¼ v0

dðtÞ þ
dX1

dt
1� Xox

mXFe

� �
; ð3:4aÞ

dX1

dt
¼ � D3

4D1

XFe

Xox

bJCð1Þ
LðtÞ ¼ �

D3

4D1

XFe

Xox
r1

CðCð1; tÞ;Wð1; tÞ;VÞ; ð3:4bÞ

with v0
dðtÞ ¼ k0

de�5a0
d
Wð0;tÞ; 8t P 0: ð3:4cÞ
3.2. Numerical scheme

The comparison of the decoupled and the implicit schemes on the simplified two-species model has shown the superi-
ority of the fully implicit scheme ðSfiÞ with respect to stability. Another motivation for this choice comes from the fact that
it has been proven that for this type of schemes, monotone and exponential decay of the free energy to its equilibrium value
can be shown for both the continuous and discretized versions of the problem [17]. In this sense, the scheme has the poten-
tial to reproduce important physical properties on the discrete level. Let us now adapt the scheme ðSfiÞ to the new system of
equations (3.2) (for u = N,P,C), (3.3). with the moving boundary equations (3.4). The notations for the mesh are the same as in
Section 2 but with the points denoted by (ni)06i6I+1 instead of (xi)06i6I+1. Let Dt be the time step.

The unknowns of the scheme are:

� the densities Nn
i ; P

n
i ;C

n
i

� �
06i6Iþ1;nP0 and the electrostatic potential Wn

i

� �
06i6Iþ1;nP1,

� the position of the interfaces Xn
0;X

n
1

� �
nP0.

The size of the domain (Ln)nP0 is defined by Ln ¼ Xn
1 � Xn

0 for all n P 0.
The discretization of Eqs. (3.2a) and (3.3a) leads to:
euLnþ1hi
Lnþ1unþ1

i � Lnun
i

Dt
þ Gnþ1

u;iþ1
2
� Gnþ1

u;i�1
2
¼ 0; 1 6 i 6 I; for u ¼ P;N;C; ð3:5aÞ

� k2

ðLnþ1Þ2
dWnþ1

iþ1
2
� dWnþ1

i�1
2

� �
¼ hi 3Pnþ1

i � Nnþ1
i þ 2Cnþ1

i � qhl

� �
; 1 6 i 6 I; ð3:5bÞ
where the numerical fluxes for W are still given by (2.6a) and for u = P,N,C by
Gnþ1
u;iþ1

2
¼ 1

hiþ1
2

B hiþ1
2

zudWnþ1
iþ1

2
þ euvnþ1

iþ1
2

� �� �
unþ1

i � B �hiþ1
2

zudWnþ1
iþ1

2
þ euvnþ1

iþ1
2

� �� �
unþ1

iþ1

� �
; 0 6 i 6 I; ð3:6Þ
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with the following approximation of the artificial drift velocity:
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vnþ1
iþ1

2
¼ Lnþ1 Xnþ1

0 � Xn
0

Dt
þ niþ1

2

Lnþ1 � Ln

Dt

 !
: ð3:7Þ
For the boundary conditions (3.3b), (3.3c), (3.2b), (3.2c), we respectively write:
Wnþ1
0 � a0

Lnþ1 dWnþ1
1
2
¼ DWpzc

0 ; ð3:8aÞ

Wnþ1
Iþ1 þ

a1

Lnþ1 dWnþ1
Iþ1

2
¼ V � DWpzc

1 ; ð3:8bÞ

� Gnþ1
u;12
¼ Lnþ1r0

u unþ1
0 ;Wnþ1

0

� �
; ð3:8cÞ

Gnþ1
u;Iþ1

2
¼ Lnþ1r1

u unþ1
Iþ1 ;W

nþ1
Iþ1

� �
: ð3:8dÞ
For the discretization of the moving interface equations (3.4), two different choices will be studied: either we use an Euler
explicit in time scheme for (3.4) or we use an Euler implicit in time scheme.

3.2.1. Explicit scheme for the moving interface equations
In this case, the scheme for (3.4) writes:
Xnþ1
0 � Xn

0

Dt
¼ k0

de�5a0
d
Wn

0 þ Xnþ1
1 � Xn

1

Dt
1� Xox

mXFe

� �
; ð3:9aÞ

Xnþ1
1 � Xn

1

Dt
¼ � D3

4D1

XFe

Xox
r1

C Cn
Iþ1;W

n
Iþ1;V

� �
; ð3:9bÞ
and we define Lnþ1 ¼ Xnþ1
1 � Xnþ1

0 .
With this choice of discretization, the computation of Xnþ1

0 ;Xnþ1
1 ; Lnþ1

� �
is decoupled from the computation of

Pnþ1
i ;Nnþ1

i ;Cnþ1
i ;Wnþ1

i

� �
06i6Iþ1

at each time step. In the sequel, the scheme (3.5)–(3.9) will be denoted by Se
tot

� �
.

3.2.2. Implicit scheme for the moving interface equations
In this case, the scheme for (3.4) writes:
Xnþ1
0 � Xn

0

Dt
¼ k0

de�5a0
d
Wnþ1

0 þ Xnþ1
1 � Xn

1

Dt
1� Xox

mXFe

� �
; ð3:10aÞ

Xnþ1
1 � Xn

1

Dt
¼ � D3

4D1

XFe

Xox
r1

C Cnþ1
Iþ1 ;W

nþ1
Iþ1 ;V

� �
ð3:10bÞ
and we define Lnþ1 ¼ Xnþ1
1 � Xnþ1

0 .
With this choice of discretization for (3.4), the computation of Xnþ1

0 ;Xnþ1
1 ; Lnþ1

� �
at each time step is completely coupled

with the computation of Pnþ1
i ;Nnþ1

i ; Cnþ1
i ;Wnþ1

i

� �
06i6Iþ1

. Indeed, the scheme (3.5)–(3.8) and (3.10), which will be denoted in

the sequel Si
tot

� �
, defines a nonlinear system of equations at each time step, whose unknowns are
Pnþ1
i ;Nnþ1

i ;Cnþ1
i ;Wnþ1

i

� �
06i6Iþ1

;Xnþ1
0 ;Xnþ1

1 ; Lnþ1
� �

:

3.3. Study of the galvanostatic case

Up to now, we have considered V as a given applied potential (the potentiostatic case). For the galvanostatic case, V is defined
by the supplementary Eq. (1.7). From the numerical point of view, this supplementary equation will be approximated by:
�3 Gnþ1
P;Iþ1

2
þ D3

4D1
Gnþ1

C;Iþ1
2

� �
þ D2

D1
Gnþ1

N;Iþ1
2
¼ 0 8n P 0: ð3:11Þ
It adds one unknown and one nonlinear equation to the previous system of nonlinear equations Si
tot

� �
. In the sequel, we will

denote this new scheme Si;gc
tot

� �
.

4. Implementation of the designed numerical methods

4.1. Explicit handling of the boundary positions

We start with the description of the implementation of the scheme Se
tot

� �
which involves the explicit handling of the

boundary positions. The nonlinear system corresponding to Se
tot

� �
is written as:
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Please
Comp
GðYÞ ¼ 0;
where Y 2 R4ðIþ2Þ is the vector of unknowns, ordered as follows:
Y ¼ Wnþ1
0 ; Pnþ1

0 ;Nnþ1
0 ;Cnþ1

0 ;Wnþ1
1 ; Pnþ1

1 ;Nnþ1
1 ;Cnþ1

1 ; . . . ; . . .
� �t

; ð4:1Þ
and G is the function from R4ðIþ2Þ to R4ðIþ2Þ defined by
GðYÞ ¼

Wnþ1
0 � a0

Lnþ1 dWnþ1
1
2
� DWpzc

0

DtGnþ1
P;12
þ DtLnþ1r0

P Pnþ1
0 ;Wnþ1

0

� �
DtGnþ1

N;12
þ DtLnþ1r0

N Nnþ1
0 ;Wnþ1

0

� �
DtGnþ1

C;12
þ DtLnþ1r0

C Cnþ1
0 ;Wnþ1

0

� �
� k2

ðLnþ1Þ2
ðdWnþ1

3
2
� dWnþ1

1
2
Þ � h1 3Pnþ1

1 � Nnþ1
1 þ 2Cnþ1

1 � qhl

� �
ePLnþ1h1 Lnþ1Pnþ1

1 � LnPn
1

� �
þ Dt Gnþ1

P;32
� Gnþ1

P;12

� �
eNLnþ1h1 Lnþ1Nnþ1

1 � LnNn
1

� �
þ Dt Gnþ1

N;32
� Gnþ1

N;12

� �
eCLnþ1h1 Lnþ1Cnþ1

1 � LnCn
1

� �
þ Dt Gnþ1

C;32
� Gnþ1

C;12

� �
..
.

Wnþ1
Iþ1 þ

a1
Lnþ1 dWnþ1

Iþ1
2
� V � DWpzc

1

� �
DtGnþ1

P;Iþ1
2
� DtLnþ1r1

PðP
nþ1
Iþ1 ;W

nþ1
Iþ1 Þ

� �
DtGnþ1

N;Iþ1
2
� DtLnþ1r1

NðN
nþ1
Iþ1 ;W

nþ1
Iþ1 Þ

� �
DtGnþ1

C;Iþ1
2
� DtLnþ1r1

CðC
nþ1
Iþ1 ;W

nþ1
Iþ1 Þ

� �

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

: ð4:2Þ
Newton’s method is used in order to solve the nonlinear system. This strategy in particular can take advantage of the fact
that the solution for tn can be taken as initial value. The Jacobian matrix, denoted by A, has a band structure, which in a stan-
dard manner allows LU factorization. Therefore each linear system in Newton’s iteration can be solved in O(I) floating point
operations.

4.2. Implicit handling of the boundary positions

We describe the algorithm used to solve the nonlinear system Si
tot

� �
in Section 3.2. A similar algorithm has been imple-

mented for the scheme Si;gc
tot

� �
of Section 3.3. The nonlinear system Si

tot

� �
is written as:
FðZÞ ¼ 0;
where Z 2 R4ðIþ2Þþ2 is the vector of unknowns, ordered as follows:
Y

Xnþ1
0 ;Xnþ1

1

� �t

 !
; ð4:3Þ
and F(Z) is the function from R4ðIþ2Þþ2 to R4ðIþ2Þþ2 defined by:
FðZÞ ¼

GðYÞ
Xnþ1

0 � Xn
0

� �
� Dtk0

de�5a0
d
Wnþ1

0 þ Xnþ1
1 � Xn

1

� �
1� Xox

mXFe

� �� �
Xnþ1

1 � Xn
1

� �
þ Dt D3

4D1

XFe
Xox

r1
C Cnþ1

Iþ1 ;W
nþ1
Iþ1 ;V

� �
0BBB@

1CCCA: ð4:4Þ
Again, Newton’s method is applied to solve this nonlinear system of equations. The Schur complement technique is applied
with the following block decomposition of the Jacobian matrix:
ð4:5Þ
with A ¼ JGðYÞ 2 M4ðIþ2Þ, E 2M4ðIþ2Þ;2, F 2 M2;4ðIþ2Þ and D 2M2.
Splitting the unknown vector and the right-hand-side as follows:
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ð4:6Þ
with w1 and v1 in 2 R4ðIþ2Þ and w2 and v2 in 2 R2, we have:
ðD� FA�1EÞw2 ¼ v2 � FA�1v1; ð4:7Þ
w1 ¼ A�1v1 � A�1Ew2: ð4:8Þ
Solving (4.7) and (4.8) requires three solutions of linear systems associated to the banded matrix A, whose half-bandwidth is
bounded by 7 thanks to the ordering of the unknowns described by (4.1). Thus, the LU factorization of the matrix A can be
computed in O(I) floating operations, and since all the other computations required for one Newton iteration are (at most) of
the same order, the CPU-time for each of these iterations is in O(I).

4.3. Handling of the galvanostatic case

Initially, Eq. (3.11) of the galvanostatic scheme Si;gc
tot

� �
has been handled by a fixed point iteration to detect V. After aug-

menting system (4.4) by Eq. (3.11) and the unknown V, the resulting linear system still can be well handled by the Schur
complement approach described in Section 4.2.

4.4. A priori spatial refinement of boundary layers

As the occurrence of boundary layers is a well known feature to be expected for solutions of coupled Nernst–Planck–Pois-
son equations, an a priori refinement of the spatial mesh in the vicinity of the domain boundaries is performed. The position
of the discretization nodes in the domain [0,1] is calculated from the zeros of the Tchebyshev polynomials of second kind:
ni ¼
1
2

1� cos p � i
I þ 1

� 	� �
0 6 i 6 I þ 1:
4.5. Adaptive time step control and detection of pseudo steady states

In general, at the beginning of a simulation run, changes in the solution are much larger than at later stages. Therefore, an
adaptive time step control technique based on the approach of Johnson et al. [18] has been implemented. As a result, the
time step size will be kept smaller as long as one observes high gradients, generally at the beginning of the simulation. Time
step sizes are much larger when the solution is close to equilibrium. As a result, the control of the time step size can guar-
antee fast simulations preserving good accuracy and avoiding high computational cost. The stability of the fully implicit ap-
proach allows to control the size of the time steps without taking into account possible stability constraints.

The time integration procedure is described as follows. First, sampling times T0,T1, . . .,TN subdividing the time interval
[T0,TN] are defined. The computation of the solution is enforced at these times, which makes possible comparisons between
the adaptive time step size method with different control parameters and the approach using a constant time step without
the need to interpolate solutions. In practice, coarser sampling intervals are considered at the end of the simulation when the
solution is expected to become smoother. At the beginning, these intervals are arranged in a finer way. Then, the time dis-
cretization TJ + tJ,k within each sampling interval [TJ,TJ+1] is carried out by the following adaptive method:

(i) Given an initial solution Z0, a solution ZJ,k is computed on each sampling interval [TJ,TJ+1] at each time step TJ + tJ,k, for
TJ
6 TN.

(ii) At each time step, Newton’s method is used to solve the system F(Z) = 0.
(iii) The time integration involves a control of the time step size based on the difference between two successive time iter-

ates kZJ,k+1 � ZJ,kk. For that purpose, a tolerance d is introduced, which ensures the appropriate variation of the time
step size:
EJ;k
r ¼ kZ

J;kþ1
r � ZJ;k

r k 6 Wrd; r 2 R ¼ fW; P;N; C;V ;X0;X1g: ð4:9Þ
Here, W ¼ fWrgr2R is a vector of weights related to the different physical variables, and Zr is the part of Z which relates to
the physical variable r 2 R. The weights are adjusted considering the errors between two successive time iterates at the
beginning of simulation.

(iv) If the error EJ;k ¼maxr2REJ;k
r is not small enough, the time step size is divided by 2 and the next iterate ZJ,k+1 at time

TJ + tJ,k + DtJ,k+1 is computed again. If not, the next iterate is accepted and the next time step size is updated:
DtJ;kþ2 ¼min
r2R

DtJ;kþ1 Wr d

kZJ;kþ1
r � ZJ;k

r k
:
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(v) We choose an appropriate minimum time step size Dtmin, which ensures bounded relative error EJ;k; J 6 J0; k 6 k0 dur-
ing the first J0,k0 time steps. Then we enable the time step size control by Eq. (4.9) from the J0,k0 + 1 time steps.

The outline of the algorithm for adaptive time step control is given as follows:

(1) Compute the initial data Z0

(2) Dt0,1 = Dtmin

(3) For J = 0 to N
(3.1) For each time step TJ + tJ,k

6 TJ+1

(3.1.a) Perform Newton’s method to compute the new iterate ZJ,k+1 by solving F(ZJ,k+1) = 0
(3.1.b) If kZJ;kþ1

r � ZJ;k
r k 6Wr d; 8r 2 R

Then accept ZJ,k+1, and choose
Table 5
Compar

Se
tot

�
Si

tot

�
Si

tot

�

Please
Comp
DtJ;kþ2 ¼min
r2R

DtJ;kþ1Wr d

kZJ;kþ1
r � ZJ;k

r k
else DtJ,k+1 = DtJ,k+1/2 and go to (3.1.a)

Of particular interest are pseudo steady states of the system which are characterized by the equilibrium between the
rates of oxide layer creation at the metallic interface and oxide layer dissolution at the solute interface. As a consequence,
one would observe a moving oxide layer of constant thickness. In terms of the transformed system (3.2)–(3.4) such states
are characterized by the stationarity of the unknowns W,N,P,C and the oxide layer thickness L, while the boundary positions
X0(t),X1(t) are still evolving.

Therefore, we assume that the system has reached a pseudo steady state and terminate the simulation if the change in the
thickness of the oxide layer is small compared to the velocity of the metallic interface:
XJ;kþ1
1 � XJ;k

1

� �
� XJ;kþ1

0 � XJ;k
0

� �


 



XJ;kþ1

1 � XJ;k
1




 


 < �:
5. Performance of the numerical methods

5.1. Comparison of the different numerical strategies

In this section, we compare the following strategies presented in Section 4:

� Explicit handling of the boundary positions: Se
tot

� �
. For the galvanostatic case, we use a fixed point method to calculate the

corrosion potential.
� Implicit handling of the boundary positions: Si

tot

� �
and Si;gc

tot

� �
. In the galvanostatic case, the equation for V is added in the

nonlinear system of equations. We will compare the results obtained with a fixed time step and with the adaptive time
step strategy.

The results in this section have been obtained using a model without the boundary velocity terms in (1.1b), (1.1c), (1.2b),
(1.2c), (1.3b), (1.3c). No significant difference to the numerical performance of the full model has been observed.

Table 5.1 presents for all cases the total number of Newton iterations required during a given simulation and the corre-
sponding CPU time. For the adaptive time step approach, the parameter d has been fixed to d = 0.1 and the weights W are:
WW ¼ 0:05; WP ¼ 0:05; WN ¼ 0:05; WC ¼ 0:1;WV ¼ 0:05; WX0 ¼ 0:5; WX1 ¼ 0:01
� �

:

.1
ison of the performance of the different solution strategies.

Potentiostatic case (Tmax = 601 h) Galvanostatic case (Tmax = 219 h)

CPU time (s) Newton its. CPU time (s) Newton its.�
, Dt = 5 � 10�3 h 8.71 � 103 221,793 4.97 � 104 1,316,084�

fixed Dt = 5 � 10�3 h 1.49 � 104 240,526 3.72 � 103 111,472�
adaptive time step (Dtmin = 5 � 10�3 h) 2.48 � 102 4027 3.79 � 102 6233
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Fig. 5.1. Estimated error: difference between the boundary positions for different grid sizes and a those of a reference solution computed on a grid with
30,000 points after 2 h, for d = 0.1 and Dtmin = 5 � 10�3 h.

Fig. 5.2. Estimated error: difference between the discrete solutions for different grid sizes and a reference solution computed on a grid with 30,000 points
after 2 h, for d = 0.1 and Dtmin = 5 � 10�3 h.
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We note that the use of a constant time step enforces the algorithm to proceed over the full simulation interval with the
small time step required by the first time iteration. The use of the adaptive time step approach together with implicit han-
dling of the boundary positions provides satisfactory times of computation.
5.2. Order of convergence in space and time

Since no exact solution is available for this problem, we estimate the error by calculating the difference to a reference
solution computed on a fine space-and-time grid.

Figs. 5.1 and 5.2 respectively report the error for the interface positions and the density profiles for the schemes Si
tot

� �
and Si;gc

tot

� �
(see Sections 4.2 and 4.3). Grid sizes range from h = 10�3 to h = 2 � 10�2, and the time step was chosen adaptively.

For all the plotted quantities, the second order convergence in space is confirmed. Such order can be expected due to the
choice of the Bernoulli function in the definition of the numerical fluxes, as it has been proven for model problems in [14,15].

In order to check the convergence in time of our method, we have run simulations with some fixed time steps and com-
pare the obtained solutions to a reference solution computed with a small time step. Fig. 5.3 demonstrates the first order
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Fig. 5.3. Estimated error: difference after 2 h between discrete solutions with 2000 grid points for different values of a fixed time step Dt and a reference
solution computed with Dt = 2 � 10�6 h.

Table 5.2
Average number of Newton steps per time step.

Potentiostatic case (Tmax = 601 h) Galvanostatic case (Tmax = 219 h)

Time steps Newton steps Average Time steps Newton steps Average

1453 4027 2.77 1740 6233 3.58

16 C. Bataillon et al. / Journal of Computational Physics xxx (2012) xxx–xxx
convergence in time for the density profiles and the free corrosion potential (in the galvanostatic case). Similar results are
obtained for the interface positions.

5.3. Newton convergence

Concerning the convergence rate of Newton’s method, Table 5.2 shows that the average number of Newton steps per time
step is small. The main deviation from this average number happens during the first time step. In general, we observe qua-
dratic convergence of Newton’s method.
6. Numerical experiments

The physico-chemical parameters for claystones chosen are based on the values found in the literature [19], where poten-
tiostatic measurements have been reported for the potential range from �0.15 to 1.05 V/NHE. Their results have been ob-
tained using a borate buffer solution which allows for an experimental environment with controlled pH value, whereas
the buffer system itself is inert with respect to the process under investigation. In a similar context, a borate buffer solution
has been used in [20].

The other parameters of the DPCM, which describe the metal and oxide layer characteristics, the kinetics and the electro-
static potential are discussed in Ref. [1].

Some of them can be found in the literature [21–29]. Table 6.1 gives the values.

6.1. Potentiostatic case

Fig. 6.1(a) shows the current density after reaching constant thickness, i.e., constant and equal interface velocities. For the
three pH values, the current density becomes potential independent at less negative potentials. This corresponds to the well-
known passive current density [30]. It must be outlined that the passive current decreases with pH. Such behavior is well
documented in the literature [31]. For the same data, Fig. 6.1(b) plots the dependency of the oxide layer thickness on the
applied potential. The constant thickness reaches zero at certain value of the potential called passivation potential Ep

[30]. For values of the applied potential less than Ep, the surface of the metal is not covered by any oxide layer. From the
figure, we can read the passivation potentials Ep = �0.45 V/NHE at pH 7, Ep = �0.6 V/NHE at pH 8, and Ep = �0.64 V/NHE
at pH 9.
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Table 6.1
Physical parameters of the test problem.

T (K) pH Eredox (V/NHE) aFeþ2 ðmol �m�3Þ
298 7 �0.2 1 � 10�8

aFeþ3 ðmol �m�3Þ R (j � k�1 �mol�1) k (J � K�1) F (C �mol�1)

2.7496 � 10�25 8.32 1.38 � 10�23 9.6487 � 104

v0 (F �m�2) me (kg) XFe (m3 �mol�1) nDOS (mol � (m�3 � J�1))
8.854 � 10�12 9.11 � 10�31 7.105 � 10�6 1.35 � 1024

L0 (m) Xox (m3 �mol�1) v D1 (m2 � s�1)
3 � 10�9 4.474 � 10�5 10 1 � 10�20

D2 (m2 � s�1) D3 (m2 � s�1) C0 (F �m�2) C1 (F �m�2)
1 � 10�6 1 � 10�20 0.5 1

DWpzc
0 (V) DWpzc

1 (V) V (V/ENH) k0
Fe ðm � s�1Þ

0.392–0.059 pH 0 Vimposed 50

m0
Fe ðm � s�1Þ k1

Fe ðm � s�1Þ m1
Fe ðm � s�1Þ k0

e ðm � s�1Þ
6.65203 1 0.1 1 � 10�8

m0
e ðmol � ðm�2 � s�1ÞÞ k0

r ðm � s�1Þ m0
r ðmol � ðm�2 � s�1ÞÞ k0

ox ðmol � ðm�2 � s�1ÞÞ
3.80943 � 10�5 3.67525 1 � 10�9 1 � 1041

m0
ox ðmol � ðm�2 � s�1ÞÞ k1

ox ðmol � ðm�2 � s�1ÞÞ m1
red ðmol � ðm�2 � s�1ÞÞ k0

d ðpHÞ ðmol � ðm�2 � s�1ÞÞ
10 1 � 10�6 1 � 10�5 0.2 � 10�pH

a0
u; b

0
u

� �
(u = P,N,C,r) a1

u ; b
1
u

� �
(u = P,C) a0

d

(0.5,0.5) (0.5,0.5) 0

Fig. 6.1. Current density and oxide layer thickness after reaching pseudo steady state vs. applied potential, for different pH values in claystones. Parameter
values are given in Table 6.1.
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6.2. Galvanostatic case

The left plot in Fig. 6.2 shows the dependency of the thickness of the oxide layer on the pH value. The so-called steady
state thickness follows a logarithmic law with a slope equal to 1. This behavior is directly linked to the chosen pH
dependency k0

d ¼ 0:2 � 10�pH. The thickness reaches zero at the passivation pH value which is 7.2 for the data used. This fea-
ture of the passivity is similar to the passivation potential Ep but for spontaneous passivation. The value predicted is in accor-
dance with the literature [32]. Please note that the time to reach a constant interface velocity (pseudo steady state) strongly
depends on the pH value, and may reach thousands of years in concrete. From an experimental point of view, the pseudo
steady state is considered as reached when the thickness does not evolve significantly over several hours. This explains
why the experimental curves published in the literature correspond to the curve obtained for 1 month. The break of the slope
has been attributed to a change in the dissolution mechanism. The results presented here indicate that the break of the slope
results mainly from the fact that the experimental time was too short to reach an actual pseudo steady state.
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Fig. 6.2. Thickness of the oxide layer (left) and corrosion rate (right) depending on pH value.

Fig. 6.3. Free corrosion potential vs. pH value.
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The right plot in Fig. 6.2 shows the evolution of the corrosion rate with respect to the pH value. The pseudo steady state
corrosion rate decreases with the pH value with an order equal to �1 (linear in log plot). This was an expected result because
in anaerobic condition the oxidant is water or more precisely the proton [30]. As the proton activity in the solution has been
defined as 10�pH, the decrease shown in the right plot in Fig. 6.2 simply depicts that in pseudo steady state, the corrosion rate
is directly proportional to the activity of protons in solution.

In order to perform the calculations corresponding to Figs. 6.2 and 6.3, the number of nodes in the discretization grid has
been significantly increased in order to accommodate the comparably thick oxide layers in the case of high pH values. As a
consequence, the computation time to obtain these results was 32.9 h (for the full range of pH values). Fine tuning of the
numerical parameters may allow to reduce this number if necessary.
6.3. Further remarks

The numerical experiments in both cases (potentiostatic and galvanostatic) suggest the existence of a pseudo steady state
which is characterized by a constant thickness of the oxide layer and a constant velocity of the interface. The time to reach
this steady state strongly depends on the pH value of the surrounding media. Future work will focus on the mathematical
analysis of this steady state.

While the presented data show that the model delivers meaningful results, we need to note that several parameters of the
model, in particular the Butler Volmer coefficient a0

d , are subject to discussion in the literature.
While verification of the model by comparison to analytical results has been performed [1], future work among other top-

ics will focus on comparison to experimental results with the potential to support the identification of currently uncertain
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parameters of the model. In particular, it appears to be possible to incorporate the numerical model into a numerical pro-
cedure for parameter identification.

Another focus of future activities is the coupling of the present model to a geochemical model of the surroundings includ-
ing the investigation of the role of the porous hydroxide layer.
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